Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Encapsulation of Anabolic Peptide in Lipid Nano Vesicles for Osteoporosis

Author(s): Sagar Salave, Dhwani Rana and Derajram Benival*

Volume 23, Issue 7, 2022

Published on: 02 September, 2022

Page: [495 - 503] Pages: 9

DOI: 10.2174/1389203723666220822120305

Price: $65

Abstract

Background: Screening of critical variables, including formulation and process variables, in the development of various dosage forms facilitates the identification of the most influencing parameters, which modulate the responses, thereby helping in building the strong quality target product profile.

Objective: The objective of the present work was to screen out the most influential and critical variables for the development of an anabolic peptide encapsulated lipid nanovesicles (PTH-LNVs).

Methods: PTH-LNVs were prepared by the ethanol injection method. Taguchi standard orthogonal array L8 design was employed to assess the effect of formulation and processing variables on different response variables. Independent variables considered were drug concentration, lipid concentration, cholesterol concentration, stirring rate, and rate of injection, whereas dependent variables studied were particle size, PDI, zeta potential, % entrapment efficiency, and % drug loading. Particle size, PDI, and zeta potential were evaluated by a zeta sizer. Drug loading efficiency and % entrapment efficiency were determined by HPLC analysis.

Results: The ethanol injection method was employed to formulate PTH-LNVs using Taguchi standard orthogonal array L8 design. From the half-normal plot and Pareto ranking analysis, it was found that drug, lipid, and cholesterol concentration have a significant effect on responses of formulation and are hence considered critical variables during the formulation development.

Conclusion: The presented work demonstrates the feasibility of Taguchi orthogonal array design in the screening of potential independent factors in the development of peptide encapsulated nanoformulations.

Keywords: Anabolic peptide, PTH (1-34), lipid nano vesicles, taguchi design, osteoporosis, bone mineral density.

« Previous
Graphical Abstract
[1]
Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet, 2019, 393(10169), 364-376.
[http://dx.doi.org/10.1016/S0140-6736(18)32112-3] [PMID: 30696576]
[2]
Dobnig, H. A review of teriparatide and its clinical efficacy in the treatment of osteoporosis. Expert Opin. Pharmacother., 2004, 5(5), 1153-1162.
[http://dx.doi.org/10.1517/14656566.5.5.1153] [PMID: 15155114]
[3]
Eastell, R.; Walsh, J.S. Anabolic treatment for osteoporosis. Teriparatide. Clin. Cases Miner. Bone Metab., 2017, 14(2), 173-178.
[http://dx.doi.org/10.11138/ccmbm/2017.14.1.173] [PMID: 29263728]
[4]
Quattrocchi, E.; Kourlas, H. Teriparatide: A review. Clin. Ther., 2004, 26(6), 841-854.
[http://dx.doi.org/10.1016/S0149-2918(04)90128-2] [PMID: 15262455]
[5]
Salave, S.; Rana, D.; Benival, D. Peptide functionalised nanocarriers for bone specific delivery of PTH (1-34) in osteoporosis. Curr. Nanomed., 2021, 11(3), 142-148.
[http://dx.doi.org/10.2174/2468187312666211220112324]
[6]
Lindsay, R.; Krege, J.H.; Marin, F.; Jin, L.; Stepan, J.J. Teriparatide for osteoporosis: Importance of the full course. Osteoporos. Int., 2016, 27(8), 2395-2410.
[http://dx.doi.org/10.1007/s00198-016-3534-6] [PMID: 26902094]
[7]
Werle, M.; Samhaber, A.; Bernkop-Schnürch, A. Degradation of teriparatide by gastro-intestinal proteolytic enzymes. J. Drug Target., 2006, 14(3), 109-115.
[http://dx.doi.org/10.1080/10611860600647934] [PMID: 16753824]
[8]
FORTEO (teriparatide) Label.. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/021318s053lbl.pdf (Accessed March 13, 2022).
[9]
Kothari, R.; Kumar, V.; Jena, R.; Tunga, R.; Tunga, B.S. Modes of degradation and impurity characterization in rhPTH (1-34) during sta-bility studies. PDA J. Pharm. Sci. Technol., 2011, 65(4), 348-362.
[http://dx.doi.org/10.5731/pdajpst.2011.00745] [PMID: 22293522]
[10]
Merutka, G.; Murphy, B.M.; Payne, R.W.; Wilson, G.A.; Matsuura, J.E.; Henry, C.S.; Manning, M.C. Stability of lyophilized teriparatide, PTH(1-34), after reconstitution. Eur. J. Pharm. Biopharm., 2016, 99, 84-93.
[http://dx.doi.org/10.1016/j.ejpb.2015.11.012] [PMID: 26620825]
[11]
Helwig, J.J.; Yang, M.C.M.; Bollack, C.; Judes, C.; Pang, P.K.T. Structure-activity relationship of parathyroid hormone: Relative sensitivity of rabbit renal microvessel and tubule adenylate cyclases to oxidized PTH and PTH inhibitors. Eur. J. Pharmacol., 1987, 140(3), 247-257.
[http://dx.doi.org/10.1016/0014-2999(87)90281-0] [PMID: 2820761]
[12]
Rana, D.; Salave, S.; Longare, S.; Agarwal, R.; Kalia, K.; Benival, D. Nanotherapeutics in tumour microenvironment for cancer therapy. Nanosci. Nanotechnology-Asia, 2021, 12(1)
[13]
Salave, S.; Rana, D.; Pardhe, R.; Bule, P.; Benival, D. Unravelling micro and nano vesicular system in intranasal drug delivery for epilepsy. Pharm. Nanotechnol., 2022, 10, 10.
[http://dx.doi.org/10.2174/2211738510666220426115340] [PMID: 35473543]
[14]
Ding, S.; Khan, A.I.; Cai, X.; Song, Y.; Lyu, Z.; Du, D.; Dutta, P.; Lin, Y. Overcoming blood-brain barrier transport: Advances in nanopar-ticle-based drug delivery strategies. Mater. Today, 2020, 37, 112-125.
[http://dx.doi.org/10.1016/j.mattod.2020.02.001] [PMID: 33093794]
[15]
Bahari, J.N.; Rezaie, S.L.; Jafary, O.N.; Akbari, J.H.; Rafiee, T.M.; Abedin, D.F. Preparation, statistical optimisation and in vitro characteri-sation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (lactic-co-glycolic acid) blend nanoparticles for prolonged delivery of teri-paratide. J. Microencapsul., 2016, 33(5), 460-474.
[http://dx.doi.org/10.1080/02652048.2016.1208296] [PMID: 27424890]
[16]
Bahari, J.N.; Montazeri, H.; Rezaie, S.L.; Jafary, O.N.; Barbari, G.R.; Amini, M.; Ghahremani, M.H.; Rafiee, T.M.; Abedin, D.F. Prepara-tion, characterization and in vivo evaluation of a combination delivery system based on hyaluronic acid/jeffamine hydrogel loaded with PHBV/PLGA blend nanoparticles for prolonged delivery of Teriparatide. Eur. J. Pharm. Sci., 2017, 101, 167-181.
[http://dx.doi.org/10.1016/j.ejps.2017.02.018] [PMID: 28193537]
[17]
Dave, J.R.; Dewle, A.M.; Mhaske, S.T.; Phulpagar, P.T.; Mathe, V.L.; More, S.E.; Khan, A.A.; Murthy, A.V.R.; Datar, S.S.; Jog, A.J.; Page, M.; Tomar, G.B. Hydroxyapatite nanorods loaded with parathyroid hormone (PTH) synergistically enhance the net formative effect of PTH anabolic therapy. Nanomedicine, 2019, 15(1), 218-230.
[http://dx.doi.org/10.1016/j.nano.2018.10.003] [PMID: 30343014]
[18]
Jaji, A.Z.; Zakaria, Z.; Mahmud, R.; Loqman, M.Y.; Hezmee, M.N.M.; Isa, T.; Wenliang, F.; Hammadi, N.I. Synthesis, characterization, and cytocompatibility of potential cockle shell aragonite nanocrystals for osteoporosis therapy and hormonal delivery. Nanotechnol. Sci. Appl., 2017, 10, 23-33.
[http://dx.doi.org/10.2147/NSA.S113030] [PMID: 28176933]
[19]
Narayanan, D.; Anitha, A.; Jayakumar, R.; Nair, S.V.; Chennazhi, K.P. Synthesis, characterization and preliminary in vitro evaluation of PTH 1-34 loaded chitosan nanoparticles for osteoporosis. J. Biomed. Nanotechnol., 2012, 8(1), 98-106.
[http://dx.doi.org/10.1166/jbn.2012.1367] [PMID: 22515098]
[20]
Narayanan, D.; Anitha, A.; Jayakumar, R.; Chennazhi, K.P. PTH 1-34 loaded thiolated chitosan nanoparticles for osteoporosis: Oral bioa-vailability and anabolic effect on primary osteoblast cells. J. Biomed. Nanotechnol., 2014, 10(1), 166-178.
[http://dx.doi.org/10.1166/jbn.2014.1700] [PMID: 24724508]
[21]
Narayanan, D.; Anitha, A.; Jayakumar, R.; Chennazhi, K.P. In vitro and in vivo evaluation of osteoporosis therapeutic peptide PTH 1-34 loaded pegylated chitosan nanoparticles. Mol. Pharm., 2013, 10(11), 4159-4167.
[http://dx.doi.org/10.1021/mp400184v] [PMID: 24006937]
[22]
Altaani, B.M.; Almaaytah, A.M.; Dadou, S.; Alkhamis, K.; Daradka, M.H.; Hananeh, W. Oral delivery of teriparatide using a nanoemulsion system: Design, in vitro and in vivo evaluation. Pharm. Res., 2020, 37(4), 80.
[http://dx.doi.org/10.1007/s11095-020-02793-0] [PMID: 32253527]
[23]
Bhattacharyya, S.; Sogali, B.S. Application of statistical design to assess the critical process parameters of ethanol injection method for the preparation of liposomes. Dhaka University Journal of Pharmaceutical Sciences, 2019, 18(1), 103-111.
[http://dx.doi.org/10.3329/dujps.v18i1.41897]
[24]
Jaafar-Maalej, C.; Diab, R.; Andrieu, V.; Elaissari, A.; Fessi, H. Ethanol injection method for hydrophilic and lipophilic drug-loaded lipo-some preparation. J. Liposome Res., 2010, 20(3), 228-243.
[http://dx.doi.org/10.3109/08982100903347923] [PMID: 19899957]
[25]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[26]
Jaafar-Maalej, C.; Charcosset, C.; Fessi, H. A new method for liposome preparation using a membrane contactor. J. Liposome Res., 2011, 21(3), 213-220.
[http://dx.doi.org/10.3109/08982104.2010.517537] [PMID: 20860451]
[27]
Gouda, A.; Sakr, O.S.; Nasr, M.; Sammour, O. Ethanol injection technique for liposomes formulation: An insight into development, influ-encing factors, challenges and applications. J. Drug Deliv. Sci. Technol., 2021, 61, 102174.
[http://dx.doi.org/10.1016/j.jddst.2020.102174]
[28]
Jain, S.K.; Gupta, Y.; Jain, A.; Bhola, M. Multivesicular liposomes bearing celecoxib-β-cyclodextrin complex for transdermal delivery. Drug Deliv., 2007, 14(6), 327-335.
[http://dx.doi.org/10.1080/10717540601098740] [PMID: 17701522]
[29]
Pons, M.; Foradada, M.; Estelrich, J. Liposomes obtained by the ethanol injection method. Int. J. Pharm., 1993, 95(1-3), 51-56.
[http://dx.doi.org/10.1016/0378-5173(93)90389-W]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy