Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Perspective

Emerging Roles of the Neurotrophic Peptides IGF-1 and PACAP in Amyotrophic Lateral Sclerosis

Author(s): Grazia Maugeri, Agata Grazia D’Amico and Velia D’Agata*

Volume 23, Issue 9, 2022

Published on: 23 September, 2022

Page: [571 - 573] Pages: 3

DOI: 10.2174/1389203723666220805123251

Next »
[1]
Renton, A.E.; Chiò, A.; Traynor, B.J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci., 2014, 17(1), 17-23.
[http://dx.doi.org/10.1038/nn.3584] [PMID: 24369373]
[2]
Nimchinsky, E.A.; Young, W.G.; Yeung, G.; Shah, R.A.; Gordon, J.W.; Bloom, F.E.; Morrison, J.H.; Hof, P.R. Differential vulnerability of oculomotor, facial, and hypoglossal nuclei in G86R superoxide dismutase transgenic mice. J. Comp. Neurol., 2000, 416(1), 112-125.
[http://dx.doi.org/10.1002/(SICI)1096-9861(20000103)416:1<112:AID-CNE9>3.0.CO;2-K] [PMID: 10578106]
[3]
Hedlund, E.; Karlsson, M.; Osborn, T.; Ludwig, W.; Isacson, O. Global gene expression profiling of somatic motor neuron populations with different vulnerability identify molecules and pathways of degeneration and protection. Brain, 2010, 133(Pt 8), 2313-2330.
[http://dx.doi.org/10.1093/brain/awq167] [PMID: 20826431]
[4]
Brockington, A.; Ning, K.; Heath, P.R.; Wood, E.; Kirby, J.; Fusi, N.; Lawrence, N.; Wharton, S.B.; Ince, P.G.; Shaw, P.J. Unravelling the enigma of selective vulnerability in neurodegeneration: Motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathol., 2013, 125(1), 95-109.
[http://dx.doi.org/10.1007/s00401-012-1058-5] [PMID: 23143228]
[5]
Comley, L.; Allodi, I.; Nichterwitz, S.; Nizzardo, M.; Simone, C.; Corti, S.; Hedlund, E. Motor neurons with differential vulnerability to degeneration show distinct protein signatures in health and ALS. Neuroscience, 2015, 291, 216-229.
[http://dx.doi.org/10.1016/j.neuroscience.2015.02.013] [PMID: 25697826]
[6]
Rinderknecht, E.; Humbel, R.E. Primary structure of human insulin-like growth factor II. FEBS Lett., 1978, 89(2), 283-286.
[http://dx.doi.org/10.1016/0014-5793(78)80237-3] [PMID: 658418]
[7]
Hakuno, F.; Takahashi, S.I. IGF1 receptor signaling pathways. J. Mol. Endocrinol., 2018, 61(1), T69-T86.
[http://dx.doi.org/10.1530/JME-17-0311] [PMID: 29535161]
[8]
Nakao, Y.; Otani, H.; Yamamura, T.; Hattori, R.; Osako, M.; Imamura, H. Insulin-like growth factor 1 prevents neuronal cell death and paraplegia in the rabbit model of spinal cord ischemia. J. Thorac. Cardiovasc. Surg., 2001, 122(1), 136-143.
[http://dx.doi.org/10.1067/mtc.2001.114101] [PMID: 11436046]
[9]
Vincent, A.M.; Mobley, B.C.; Hiller, A.; Feldman, E.L. IGF-I prevents glutamate-induced motor neuron programmed cell death. Neurobiol. Dis., 2004, 16(2), 407-416.
[http://dx.doi.org/10.1016/j.nbd.2004.03.001] [PMID: 15193297]
[10]
Hughes, R.A.; Sendtner, M.; Thoenen, H. Members of several gene families influence survival of rat motoneurons in vitro and in vivo. J. Neurosci. Res., 1993, 36(6), 663-671.
[http://dx.doi.org/10.1002/jnr.490360607] [PMID: 8145295]
[11]
Torres-Aleman, I.; Barrios, V.; Berciano, J. The peripheral insulin-like growth factor system in amyotrophic lateral sclerosis and in multiple sclerosis. Neurology, 1998, 50(3), 772-776.
[http://dx.doi.org/10.1212/WNL.50.3.772] [PMID: 9521273]
[12]
Dobrowolny, G.; Giacinti, C.; Pelosi, L.; Nicoletti, C.; Winn, N.; Barberi, L.; Molinaro, M.; Rosenthal, N.; Musarò, A. Muscle expression of a local IGF-1 isoform protects motor neurons in an ALS mouse model. J. Cell Biol., 2005, 168(2), 193-199.
[http://dx.doi.org/10.1083/jcb.200407021] [PMID: 15657392]
[13]
Wen, D.; Cui, C.; Duan, W.; Wang, W.; Wang, Y.; Liu, Y.; Li, Z.; Li, C. The role of insulin-like growth factor 1 in ALS cell and mouse models: A mitochondrial protector. Brain Res. Bull., 2019, 144, 1-13.
[http://dx.doi.org/10.1016/j.brainresbull.2018.09.015] [PMID: 30414993]
[14]
Kaspar, B.K.; Lladó, J.; Sherkat, N.; Rothstein, J.D.; Gage, F.H. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science, 2003, 301(5634), 839-842.
[http://dx.doi.org/10.1126/science.1086137] [PMID: 12907804]
[15]
Lai, E.C.; Felice, K.J.; Festoff, B.W.; Gawel, M.J.; Gelinas, D.F.; Kratz, R.; Murphy, M.F.; Natter, H.M.; Norris, F.H.; Rudnicki, S.A. Effect of recombinant human insulin-like growth factor-I on progression of ALS. A placebo-controlled study. Neurology, 1997, 49(6), 1621-1630.
[http://dx.doi.org/10.1212/WNL.49.6.1621] [PMID: 9409357]
[16]
Borasio, G.D.; Robberecht, W.; Leigh, P.N.; Emile, J.; Guiloff, R.J.; Jerusalem, F.; Silani, V.; Vos, P.E.; Wokke, J.H.; Dobbins, T. A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. Neurology, 1998, 51(2), 583-586.
[http://dx.doi.org/10.1212/WNL.51.2.583] [PMID: 9710040]
[17]
Beauverd, M.; Mitchell, J.D.; Wokke, J.H.; Borasio, G.D. Recombinant human insulin-like growth factor I (rhIGF-I) for the treatment of amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst. Rev., 2012, 11, CD002064.
[http://dx.doi.org/10.1002/14651858.CD002064.pub3] [PMID: 23152212]
[18]
Harmar, A.J.; Fahrenkrug, J.; Gozes, I.; Laburthe, M.; May, V.; Pisegna, J.R.; Vaudry, D.; Vaudry, H.; Waschek, J.A.; Said, S.I. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br. J. Pharmacol., 2012, 166(1), 4-17.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01871.x] [PMID: 22289055]
[19]
Vaudry, D.; Falluel-Morel, A.; Bourgault, S.; Basille, M.; Burel, D.; Wurtz, O.; Fournier, A.; Chow, B.K.; Hashimoto, H.; Galas, L.; Vaudry, H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev., 2009, 61(3), 283-357.
[http://dx.doi.org/10.1124/pr.109.001370] [PMID: 19805477]
[20]
D’Amico, A.G.; Maugeri, G.; Musumeci, G.; Reglodi, D.; D’Agata, V. PACAP and NAP: Effect of two functionally related peptides in diabetic retinopathy. J. Mol. Neurosci., 2021, 71(8), 1525-1535.
[http://dx.doi.org/10.1007/s12031-020-01769-4] [PMID: 33403597]
[21]
D’Agata, V.; Cavallaro, S.; Stivala, F.; Canonico, P.L. Tissue-specific and developmental expression of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in rat brain. Eur. J. Neurosci., 1996, 8(2), 310-318.
[http://dx.doi.org/10.1111/j.1460-9568.1996.tb01215.x] [PMID: 8714702]
[22]
Hannibal, J. Pituitary adenylate cyclase-activating peptide in the rat central nervous system: An immunohistochemical and in situ hybridization study. J. Comp. Neurol., 2002, 453(4), 389-417.
[http://dx.doi.org/10.1002/cne.10418] [PMID: 12389210]
[23]
Shioda, S.; Ohtaki, H.; Nakamachi, T.; Dohi, K.; Watanabe, J.; Nakajo, S.; Arata, S.; Kitamura, S.; Okuda, H.; Takenoya, F.; Kitamura, Y. Pleiotropic functions of PACAP in the CNS: Neuroprotection and neurodevelopment. Ann. N. Y. Acad. Sci., 2006, 1070, 550-560.
[http://dx.doi.org/10.1196/annals.1317.080] [PMID: 16888224]
[24]
Maugeri, G.; D’Amico, A.G.; Musumeci, G.; Reglodi, D.; D’Agata, V. Effects of Pacap on schwann cells: Focus on nerve injury. Int. J. Mol. Sci., 2020, 21(21), 8233.
[http://dx.doi.org/10.3390/ijms21218233] [PMID: 33153152]
[25]
Chen, W.H.; Tzeng, S.F. Pituitary adenylate cyclase-activating polypeptide prevents cell death in the spinal cord with traumatic injury. Neurosci. Lett., 2005, 384(1-2), 117-121.
[http://dx.doi.org/10.1016/j.neulet.2005.04.070] [PMID: 15913892]
[26]
Ohsawa, M.; Brailoiu, G.C.; Shiraki, M.; Dun, N.J.; Paul, K.; Tseng, L.F. Modulation of nociceptive transmission by pituitary adenylate cyclase activating polypeptide in the spinal cord of the mouse. Pain, 2002, 100(1-2), 27-34.
[http://dx.doi.org/10.1016/S0304-3959(02)00207-5] [PMID: 12435456]
[27]
Tomimatsu, N.; Arakawa, Y. Survival-promoting activity of pituitary adenylate cyclase-activating polypeptide in the presence of phosphodiesterase inhibitors on rat motoneurons in culture: CAMP-protein kinase A-mediated survival. J. Neurochem., 2008, 107(3), 628-635.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05638.x] [PMID: 18717811]
[28]
Mesnard, N.A.; Sanders, V.M.; Jones, K.J. Differential gene expression in the axotomized facial motor nucleus of presymptomatic SOD1 mice. J. Comp. Neurol., 2011, 519(17), 3488-3506.
[http://dx.doi.org/10.1002/cne.22718] [PMID: 21800301]
[29]
Morello, G.; Spampinato, A.G.; Conforti, F.L.; D’Agata, V.; Cavallaro, S. Selection and prioritization of candidate drug targets for amyotrophic lateral sclerosis through a meta-analysis approach. J. Mol. Neurosci., 2017, 61(4), 563-580.
[http://dx.doi.org/10.1007/s12031-017-0898-9] [PMID: 28236105]
[30]
Ringer, C.; Büning, L.S.; Schäfer, M.K.; Eiden, L.E.; Weihe, E.; Schütz, B. PACAP signaling exerts opposing effects on neuroprotection and neuroinflammation during disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis., 2013, 54, 32-42.
[http://dx.doi.org/10.1016/j.nbd.2013.02.010] [PMID: 23466699]
[31]
Bonaventura, G.; Iemmolo, R.; D’Amico, A.G.; La Cognata, V.; Costanzo, E.; Zappia, M.; D’Agata, V.; Conforti, F.L.; Aronica, E.; Cavallaro, S. PACAP and PAC1R are differentially expressed in motor cortex of amyotrophic lateral sclerosis patients and support survival of iPSC-derived motor neurons. J. Cell. Physiol., 2018, 233(4), 3343-3351.
[http://dx.doi.org/10.1002/jcp.26182] [PMID: 28926110]
[32]
Maugeri, G.; D’Amico, A.G.; Rasà, D.M.; Federico, C.; Saccone, S.; Morello, G.; La Cognata, V.; Cavallaro, S.; D’Agata, V. Molecular mechanisms involved in the protective effect of pituitary adenylate cyclase-activating polypeptide in an in vitro model of amyotrophic lateral sclerosis. J. Cell. Physiol., 2019, 234(4), 5203-5214.
[http://dx.doi.org/10.1002/jcp.27328] [PMID: 30238989]
[33]
D’Amico, A.G.; Maugeri, G.; Saccone, S.; Federico, C.; Cavallaro, S.; Reglodi, D.; D’Agata, V. PACAP modulates the autophagy process in an in vitro model of amyotrophic lateral sclerosis. Int. J. Mol. Sci., 2020, 21(8), 2943.
[http://dx.doi.org/10.3390/ijms21082943] [PMID: 32331311]

© 2024 Bentham Science Publishers | Privacy Policy