Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

A Mini-review Based on Multivesicular Liposomes: Composition, Design, Preparation, Characteristics, and Therapeutic Importance as DEPOFOAM® Technology

Author(s): Putrevu Sreelaya and Sankha Bhattacharya*

Volume 24, Issue 12, 2023

Published on: 24 February, 2023

Page: [1479 - 1488] Pages: 10

DOI: 10.2174/1389201024666230201090814

Price: $65

Abstract

Vesicular delivery systems are a kind of drug delivery system that is gaining popularity due to its sustained release nature. This article was designed to understand the characteristics of a drug carrier called multivesicular liposomes, which have the potential to be the future of sustainedrelease drug delivery systems. Multivesicular liposomes have a honeycomb-like structure made up of non-concentric aqueous polyhedral compartments separated by continuous lipid membranes. Because of their unusual structure, they can encapsulate both hydrophilic and lipophilic pharmaceuticals and release them in a prolonged and controlled manner. They also have high encapsulation efficiency, bioavailability, biocompatibility, and stability, and are biodegradable by nature, making them suitable for treating chronic disorders. Encapsulating drugs into multivesicular liposomes is called DepoFoam® technology, which has the capability to release them in a timely manner, lowering the drug administration frequency. As a result, the FDA has approved several various approaches for this technology to treat chronic conditions. Multivesicular liposomes in the form of DepoFoam® technology hold a promising future as a novel drug delivery system. Much research needs to be done to extend their use across various aspects of the therapeutic field.

Keywords: Multivesicular liposomes, DepoFoam technology, conventional liposomes, vesicles, depot system, Pacira pharmaceuticals.

Next »
Graphical Abstract
[1]
Shah, S.; Dhawan, V.; Holm, R.; Nagarsenker, M.S.; Perrie, Y. Liposomes: Advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev., 2020, 154-155, 102-122.
[http://dx.doi.org/10.1016/j.addr.2020.07.002] [PMID: 32650041]
[2]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9(4), 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[3]
Chaurasiya, A.; Gorajiya, A.; Panchal, K.; Katke, S.; Singh, A.K. A review on multivesicular liposomes for pharmaceutical applications: preparation, characterization, and translational challenges. Drug Deliv. Transl. Res., 2022, 12(7), 1569-1587.
[http://dx.doi.org/10.1007/s13346-021-01060-y] [PMID: 34599471]
[4]
Fan, Y.; Marioli, M.; Zhang, K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J. Pharm. Biomed. Anal., 2021, 192, 113642.
[http://dx.doi.org/10.1016/j.jpba.2020.113642] [PMID: 33011580]
[5]
Meure, L.A.; Foster, N.R.; Dehghani, F. Conventional and dense gas techniques for the production of liposomes: A review. AAPS PharmSciTech, 2008, 9(3), 798-809.
[http://dx.doi.org/10.1208/s12249-008-9097-x] [PMID: 18597175]
[6]
Arias, J.L. Liposomes in drug delivery: a patent review (2007 - present). Expert Opin. Ther. Pat., 2013, 23(11), 1399-1414.
[http://dx.doi.org/10.1517/13543776.2013.828035] [PMID: 23957267]
[7]
Jesorka, A.; Orwar, O. Liposomes: technologies and analytical applications. Annu. Rev. Anal. Chem., 2008, 1(1), 801-832.
[http://dx.doi.org/10.1146/annurev.anchem.1.031207.112747] [PMID: 20636098]
[8]
Briuglia, M.L.; Rotella, C.; McFarlane, A.; Lamprou, D.A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res., 2015, 5(3), 231-242.
[http://dx.doi.org/10.1007/s13346-015-0220-8] [PMID: 25787731]
[9]
Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm., 2021, 601, 120571.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120571] [PMID: 33812967]
[10]
El-Hammadi, M.M.; Arias, J.L.J.E.O.o.T.P. An update on liposomes in drug delivery: A patent review (2014-2018). Expert Opin. Ther. Pat., 2019, 29(11), 891-907.
[11]
Khalil, I.A.H. Introductory Chapter: Overview on Nanomedicine Market., 2020.
[12]
Puffer, R.C.; Tou, K.; Winkel, R.E.; Bydon, M.; Currier, B.; Freedman, B.A. Liposomal bupivacaine incisional injection in single-level lumbar spine surgery. Spine J., 2016, 16(11), 1305-1308.
[http://dx.doi.org/10.1016/j.spinee.2016.06.013] [PMID: 27349628]
[13]
Liu, G.; Hou, S.; Tong, P.; Li, J. Liposomes: Preparation, characteristics, and application strategies in analytical chemistry. Crit. Rev. Anal. Chem., 2022, 52(2), 392-412.
[http://dx.doi.org/10.1080/10408347.2020.1805293] [PMID: 32799645]
[14]
Liu, G.; He, S.; Ding, Y.; Chen, C.; Cai, Q.; Zhou, W. Multivesicular liposomes for glucose-responsive insulin delivery. Pharmaceutics, 2021, 14(1), 21.
[http://dx.doi.org/10.3390/pharmaceutics14010021] [PMID: 35056918]
[15]
Shi, Y.; Li, L. Current advances in sustained-release systems for parenteral drug delivery. Expert Opin. Drug Deliv., 2005, 2(6), 1039-1058.
[http://dx.doi.org/10.1517/17425247.2.6.1039] [PMID: 16296808]
[16]
Zheng, N. Bioequivalence for liposomal drug products. FDA Bioequivalence Standards, 2014, 275-296.
[http://dx.doi.org/10.1007/978-1-4939-1252-0_11]
[17]
Bari, H.J.I.J.P.S.R.R. A prolonged release parenteral drug delivery system-an overview. Int J Pharm Sci Rev Res, 2010, 3(1), 1-11.
[18]
Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Jadidi Kouhbanani, M.A.; Varma, R.S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol., 2021, 9, 705886.
[http://dx.doi.org/10.3389/fbioe.2021.705886] [PMID: 34568298]
[19]
Gray, A.B.; Johnson, D.D.; Johnson, A.M. Multi-vesicular liposomes for targeted delivery of drugs and biologics for tissue engineering; Google Patents, 2021.
[20]
Katre, N.V.J.A.J.o.D.D. Liposome-based depot injection technologies. Am. J. Drug Delivery, 2004, 2, 213-227.
[http://dx.doi.org/10.2165/00137696-200402040-00002]
[21]
Ellena, J.F. Distribution of phospholipids and triglycerides in multivesicular lipid particles. Chemistry, 1999, 6(2), 97-106.
[http://dx.doi.org/10.1080/107175499267011]
[22]
Angst, M.S.; Drover, D.R.J.C.p. Pharmacology of drugs formulated with DepoFoam™. Clin. Pharmacokinet., 2006, 45(12), 1153-1176.
[http://dx.doi.org/10.2165/00003088-200645120-00002]
[23]
Tsirkin, S. Tailor-made single-core PLGA microbubbles as acoustic cavitation enhancers for therapeutic applications. ACS Appl. Mater. Interfaces, 2021, 22, 25748-25758.
[http://dx.doi.org/10.1021/acsami.1c04770]
[24]
Ly, N.P.; Han, H.S.; Kim, M.; Park, J.H.; Choi, K.Y. Plant-derived nanovesicles: Current understanding and applications for cancer therapy. Bioact. Mater., 2023, 22, 365-383.
[http://dx.doi.org/10.1016/j.bioactmat.2022.10.005] [PMID: 36311046]
[25]
Hartounian, H. Production of multivesicular liposomes. US Patent No. US9585838B2, 2017.
[26]
Hall, J.S. Manufacturing of bupivacaine multivesicular liposomes; Google Patents, 2021.
[27]
Trucillo, P.; Campardelli, R.; Reverchon, E.J.P. Liposomes: From bangham to supercritical fluids. Processes, 2020, 8(9), 1022.
[http://dx.doi.org/10.3390/pr8091022]
[28]
Li, Y.; Zhang, R.; Li, X.; Li, W.; Lu, Y.; Dai, C. The preparation of dexamethasone sodium phosphate multivesicular liposomes thermosensative hydrogel and its impact on noise-induced hearing loss in the Guinea pigs. Exp. Cell Res., 2020, 387(1), 111755.
[http://dx.doi.org/10.1016/j.yexcr.2019.111755] [PMID: 31812471]
[29]
Matveyenka, M.; Rizevsky, S.; Pellois, J.P.; Kurouski, D. Lipids uniquely alter rates of insulin aggregation and lower toxicity of amyloid aggregates. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2023, 1868(1), 159247.
[http://dx.doi.org/10.1016/j.bbalip.2022.159247] [PMID: 36272517]
[30]
Zuo, J.; Gong, T.; Sun, X.; Huang, Y.; Peng, Q.; Zhang, Z. Multivesicular liposomes for the sustained release of thymopentin: Stability, pharmacokinetics and pharmacodynamics. Pharmazie, 2012, 67(6), 507-512.
[PMID: 22822538]
[31]
Manna, S.; Wu, Y.; Wang, Y.; Koo, B.; Chen, L.; Petrochenko, P.; Dong, Y.; Choi, S.; Kozak, D.; Oktem, B.; Xu, X.; Zheng, J. Probing the mechanism of bupivacaine drug release from multivesicular liposomes. J. Control. Release, 2019, 294, 279-287.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.029] [PMID: 30576748]
[32]
Manna, S. Significance of Cryo-scanning electron microscopy (Cryo-SEM) in evaluating the morphology of multivesicular liposomes. Microscopy and Microanalysis, 2019, 25(S2), 1272-1273.
[33]
Li, N.; Shi, A.; Wang, Q.; Zhang, G. Multivesicular liposomes for the sustained release of angiotensin i-converting enzyme (ace) inhibitory peptides from peanuts: Design, characterization, and in vitro evaluation. Molecules, 2019, 24(9), 1746.
[http://dx.doi.org/10.3390/molecules24091746] [PMID: 31060345]
[34]
Vafaei, S.Y.; Dinarvand, R.; Esmaeili, M.; Mahjub, R.; Toliyat, T. Controlled-release drug delivery system based on fluocinolone acetonide-cyclodextrin inclusion complex incorporated in multivesicular liposomes. Pharm. Dev. Technol., 2015, 20(7), 775-781.
[http://dx.doi.org/10.3109/10837450.2014.920358] [PMID: 24856960]
[35]
Rajvaidya, M. Development and characterization of multivesicular liposomes bearing serratiopeptidase for sustained delivery. J. Drug Delivery Sci. Technol., 2007, 17(5), 315-320.
[http://dx.doi.org/10.1016/S1773-2247(07)50048-1]
[36]
Abuzar, S.M.; Park, E.J.; Seo, Y.; Lee, J.; Baik, S.H.; Hwang, S.J. Preparation and evaluation of intraperitoneal long-acting oxaliplatin-loaded multi-vesicular liposomal depot for colorectal cancer treatment. Pharmaceutics, 2020, 12(8), 736.
[http://dx.doi.org/10.3390/pharmaceutics12080736] [PMID: 32764318]
[37]
He, Y.; Qin, L.; Huang, Y.; Ma, C. Advances of nano-structured extended-release local anesthetics. Nanoscale Res. Lett., 2020, 15(1), 13.
[http://dx.doi.org/10.1186/s11671-019-3241-2] [PMID: 31950284]
[38]
Mura, P. Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. Int. J. Pharm., 2020, 579, 119181.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119181] [PMID: 32112928]
[39]
Vatankhah, M. Preparation and optimization of vancomycin hydrochloride encapsulated multivesicular liposomes for sustained locoregional delivery. Int. Pharma. Acta, 2011, 4(1), 4e6-1-12.
[40]
Rastogi, H. Lipopharmaceuticals: A critical review focused on recent advances in liposomal drug delivery. J. Pharmaceut. Educ. Res., 2020, 2, 7-11.
[http://dx.doi.org/10.37021/ijper.v2i1.2]
[41]
Mu, H.; Wang, Y.; Chu, Y.; Jiang, Y.; Hua, H.; Chu, L.; Wang, K.; Wang, A.; Liu, W.; Li, Y.; Fu, F.; Sun, K. Multivesicular liposomes for sustained release of bevacizumab in treating laser-induced choroidal neovascularization. Drug Deliv., 2018, 25(1), 1372-1383.
[http://dx.doi.org/10.1080/10717544.2018.1474967] [PMID: 29869520]
[42]
Giuliano, C.B. Multivesicular Vesicles. Preparation and Applications., 2021, 3(2) e2000049
[43]
Lambert, W.J.; Los, K. DepoFoam multivesicular liposomes for the sustained release of macromolecules. In: Modified-release drug delivery technology; CRC Press, 2008; pp. 235-242.
[http://dx.doi.org/10.3109/9781420045260-18]
[44]
a) Salehi, B.; Mishra, A.P.; Nigam, M.; Kobarfard, F.; Javed, Z.; Rajabi, S.; Khan, K.; Ashfaq, H.A.; Ahmad, T.; Pezzani, R.; Ramírez-Alarcón, K.; Martorell, M.; Cho, W.C.; Ayatollahi, S.A.; Sharifi-Rad, J. Multivesicular liposome (depofoam) in human diseases. Iran. J. Pharm. Res., 2020, 19(2), 9-21.
[PMID: 33224207];
b) Lu, B.; Ma, Q.; Zhang, J.; Liu, R.; Yue, Z.; Xu, C.; Li, Z.; Lin, H. Preparation and characterization of bupivacaine multivesicular liposome: A QbD study about the effects of formulation and process on critical quality attributes. Int. J. Pharm., 2021, 598, 120335.
[45]
Ye, Q.; Asherman, J.; Stevenson, M.; Brownson, E.; Katre, N.V. DepoFoam™ technology: a vehicle for controlled delivery of protein and peptide drugs. J. Control. Release, 2000, 64(1-3), 155-166.
[http://dx.doi.org/10.1016/S0168-3659(99)00146-7] [PMID: 10640654]
[46]
Paliwal, H.; Parihar, A.; Prajapati, B.J.F.N. Current state-of-the-art and new trends in self-assembled nanocarriers as drug delivery systems. Font. Nanotechnol., 2022, 4, 836674.
[http://dx.doi.org/10.3389/fnano.2022.836674]
[47]
Angst, M.S.; Drover, D.R. Pharmacology of drugs formulated with DepoFoam: a sustained release drug delivery system for parenteral administration using multivesicular liposome technology. Clin. Pharmacokinet., 2006, 45(12), 1153-1176.
[http://dx.doi.org/10.2165/00003088-200645120-00002] [PMID: 17112293]
[48]
Mantripragada, S.B.; Howell, S.B. Sustained-release drug delivery with DepoFoam. Drug Delivery Systems in Cancer Therapy; Springer: Berlin, 2004, pp. 247-262.
[49]
Bhusal, P.; Harrison, J.; Sharma, M.; Jones, D.S.; Hill, A.G.; Svirskis, D. Controlled release drug delivery systems to improve post-operative pharmacotherapy. Drug Deliv. Transl. Res., 2016, 6(5), 441-451.
[http://dx.doi.org/10.1007/s13346-016-0305-z] [PMID: 27329201]
[50]
Kaye, A.D.; Armstead-Williams, C.; Hyatali, F.; Cox, K.S.; Kaye, R.J.; Eng, L.K.; Farooq Anwar, M.A.; Patel, P.V.; Patil, S.; Cornett, E.M. Exparel for postoperative pain management: a comprehensive review. Curr. Pain Headache Rep., 2020, 24(11), 73.
[http://dx.doi.org/10.1007/s11916-020-00905-4] [PMID: 33098008]
[51]
Grayson, L.S.; Hansbrough, J.F.; Zapata-Sirvent, R.L.; Kim, T.; Kim, S. Pharmacokinetics of DepoFoam gentamicin delivery system and effect on soft tissue infection. J. Surg. Res., 1993, 55(5), 559-564.
[http://dx.doi.org/10.1006/jsre.1993.1184] [PMID: 8231176]
[52]
Sun, L.; Wang, T.; Gao, L.; Quan, D.; Feng, D. Multivesicular liposomes for sustained release of naltrexone hydrochloride: design, characterization and in vitro/in vivo evaluation. Pharm. Dev. Technol., 2013, 18(4), 828-833.
[http://dx.doi.org/10.3109/10837450.2012.700934] [PMID: 22759074]
[53]
Langston, M.; Ramprasad, M.P.; Kararli, T.T.; Galluppi, G.R.; Katre, N.V. Modulation of the sustained delivery of myelopoietin (Leridistim) encapsulated in multivesicular liposomes (DepoFoam). J. Control. Release, 2003, 89(1), 87-99.
[http://dx.doi.org/10.1016/S0168-3659(03)00073-7] [PMID: 12695065]
[54]
Ramprasad, M.P.; Anantharamaiah, G.M.; Garber, D.W.; Katre, N.V. Sustained-delivery of an apolipoproteinE–peptidomimetic using multivesicular liposomes lowers serum cholesterol levels. J. Control. Release, 2002, 79(1-3), 207-218.
[55]
Li, N.; Shi, A.; Wang, Q.; Zhang, G. Multivesicular liposomes for the sustained release of angiotensin I-converting enzyme (ACE) inhibitory peptides from peanuts: Design, characterization, and in vitro evaluation. Molecules, 2019, 24(9), 1746.
[56]
Ali, M.F.M. Topical delivery and photodynamic evaluation of a multivesicular liposomal Rose Bengal. Lasers Med. Sci., 2011, 26, 267-275.
[57]
Mu, H.; Wang, Y.; Chu, Y.; Jiang, Y.; Hua, H.; Chu, L.; Wang, K.; Wang, A.; Liu, W.; Li, Y.; Fu, F.; Sun, K. Multivesicular liposomes for sustained release of bevacizumab in treating laser-induced choroidal neovascularization. Drug Deliv., 2018, 25(1), 1372-1383.
[58]
Luo, Y.; Liu, Z.; Zhang, X.; Huang, J.; Yu, X.; Li, J.; Xiong, D.; Sun, X.; Zhong, Z. Effect of a controlled-release drug delivery system made of oleanolic acid formulated into multivesicular liposomes on hepatocellular carcinoma in vitro and in vivo. Int. J. Nanomed., 2016, 11, 3111.
[59]
Zuo, J.; Gong, T.; Sun, X.; Huang, Y.; Peng, Q.; Zhang, Z. Multivesicular liposomes for the sustained release of thymopentin: stability, pharmacokinetics and pharmacodynamics. Pharmazie, 2012, 67(6), 507-512.
[60]
Liu, G.; He, S.; Ding, Y.; Chen, C.; Cai, Q.; Zhou, W. Multivesicular liposomes for glucose-responsive insulin delivery. Pharmaceutics, 2021, 14(1), 21.
[61]
Li, Y.; Zhang, R.; Li, X.; Li, W.; Lu, Y.; Dai, C. The preparation of dexamethasone sodium phosphate multivesicular liposomes thermosensative hydrogel and its impact on noise-induced hearing loss in the Guinea pigs. Exp. Cell Res., 2020, 387(1), 111755.
[62]
Zhang, L.; Ding, L.; Tang, C.; Li, Y.; Yang, L. Liraglutide-loaded multivesicular liposome as a sustained-delivery reduces blood glucose in SD rats with diabetes. Drug Deliv., 2016, 23(9), 3358-3363.
[63]
Vazquez Fuster, I. B.; Taylor, A.R.; Smith, A.N.; Duran, S.H.; Ravis, W.R.; Jasper, S.L.; Arnold, R.D. Pharmacokinetics of multivesicular liposomal encapsulated cytarabine when administered subcutaneously in dogs. J. Vet. Intern. Med., 2020, 34(4), 1563-1569.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy