Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Review Article

Natural Products as Monoamine Oxidase Inhibitors: Potential Agents for Neurological Disorders

Author(s): Neetu Agrawal*, Aditya Bhardwaj, Sonia Singh, Ahsas Goyal and Anand Gaurav

Volume 27, Issue 5, 2024

Published on: 06 June, 2023

Page: [701 - 714] Pages: 14

DOI: 10.2174/1386207326666230510141008

Price: $65

Abstract

The role of medicinal plants has been advantageous due to their manifestation through various cellular and molecular mechanisms. Inhibition of the monoamine oxidase enzyme is suspected to be a highly effective treatment for various neurological illnesses like Alzheimer's disease, Parkinson’s disease, depression, social phobia, and panic disorders. The study of phytochemicals and plant extracts used as a traditional source of medication revealed that they possess the vast potential for monoamine oxidase inhibition. Thus, the article focuses on the potential use of plant extracts and phytochemicals as sources of novel MAO inhibitors for treating neurological disorders. Exhaustive literature search revealed that a variety of phytochemicals from the categories such as flavonoids, alkaloids, glycosides, alkyl phenyl ketones, coumarin derivatives and essential oils have displayed potential MAO inhibition. This review highlights the progress made in the discovery and development of plant-based MAO inhibitors and aims to provide medicinal chemists with an overview of this information to aid in the development of clinically viable drugs.

Keywords: Traditional plants, neurotransmitters, glycosides, alkaloids, flavonoids, coumarin derivatives, CNS stimulants, plant extracts.

Graphical Abstract
[1]
Hardy, K. Paleomedicine and the evolutionary context of medicinal plant use. Rev. Bras. Farmacogn., 2021, 31(1), 1-15.
[http://dx.doi.org/10.1007/s43450-020-00107-4] [PMID: 33071384]
[2]
Carlini, E.A. Plants and the central nervous system. Pharmacol. Biochem. Behav., 2003, 75(3), 501-512.
[http://dx.doi.org/10.1016/S0091-3057(03)00112-6] [PMID: 12895668]
[3]
Rosenzweig-Lipson, S.; Beyer, C.E.; Hughes, Z.A.; Khawaja, X.; Rajarao, S.J.; Malberg, J.E.; Rahman, Z.; Ring, R.H.; Schechter, L.E. Differentiating antidepressants of the future: Efficacy and safety. Pharmacol. Ther., 2007, 113(1), 134-153.
[http://dx.doi.org/10.1016/j.pharmthera.2006.07.002] [PMID: 17010443]
[4]
Dhingra, D.; Goyal, P.K. Inhibition of MAO and GABA: Probable mechanisms for antidepressant-like activity of Nardostachys jatamansi DC. in mice. Indian J. Exp. Biol., 2008, 46(4), 212-218.
[PMID: 18512329]
[5]
Rickards, H. Depression in neurological disorders: Parkinson’s disease, multiple sclerosis, and stroke. J. Neurol. Neurosurg. Psychiatry, 2005, 76(S1), i48-i52.
[http://dx.doi.org/10.1136/jnnp.2004.060426] [PMID: 15718222]
[6]
Mantegazza, M.; Curia, G.; Biagini, G.; Ragsdale, D.S.; Avoli, M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol., 2010, 9(4), 413-424.
[http://dx.doi.org/10.1016/S1474-4422(10)70059-4] [PMID: 20298965]
[7]
Tipton, K.F. Enzymology of monoamine oxidase. Cell Biochem. Funct., 1986, 4(2), 79-87.
[http://dx.doi.org/10.1002/cbf.290040202] [PMID: 3518979]
[8]
Ramsay, R.R.; Sablin, S.O.; Singer, T.P. Redox properties of the flavin cofactor of monoamine oxidases A and B and their relationship to the kinetic mechanism. Prog Brain Res., 1995, 106, 33-39.
[9]
Hamadjida, A.; Nuara, S.G.; Frouni, I.; Kwan, C.; Bédard, D.; Gourdon, J.C.; Huot, P. Monoamine oxidase A inhibition as monotherapy reverses parkinsonism in the MPTP-lesioned marmoset. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(11), 2139-2144.
[http://dx.doi.org/10.1007/s00210-020-01927-w] [PMID: 32601846]
[10]
Agrawal, N.; Mishra, P. Novel isoxazole derivatives as potential antiparkinson agents: synthesis, evaluation of monoamine oxidase inhibitory activity and docking studies. Med. Chem. Res., 2019, 28(9), 1488-1501.
[http://dx.doi.org/10.1007/s00044-019-02388-4]
[11]
Agrawal, N.; Mishra, P. Synthesis, monoamine oxidase inhibitory activity and computational study of novel isoxazole derivatives as potential antiparkinson agents. Comput. Biol. Chem., 2019, 79, 63-72.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.012] [PMID: 30731360]
[12]
Ma, J.; Yoshimura, M.; Yamashita, E.; Nakagawa, A.; Ito, A.; Tsukihara, T. Structure of rat monoamine oxidase A and its specific recognitions for substrates and inhibitors. J. Mol. Biol., 2004, 338(1), 103-114.
[http://dx.doi.org/10.1016/j.jmb.2004.02.032] [PMID: 15050826]
[13]
Yasunobu, K.T.; Tan, A. Advances in monoamine oxidase enzymology. In: Structure and Functions of Amine Oxidases; CRC Press, 2018; pp. 209-217.
[http://dx.doi.org/10.1201/9781351076951-20]
[14]
Alborghetti, M.; Nicoletti, F. Different generations of type-b monoamine oxidase inhibitors in Parkinson’s disease: From bench to bedside. Curr. Neuropharmacol., 2019, 17(9), 861-873.
[http://dx.doi.org/10.2174/1570159X16666180830100754] [PMID: 30160213]
[15]
Cai, Z. Monoamine oxidase inhibitors: Promising therapeutic agents for Alzheimer’s disease (Review). Mol. Med. Rep., 2014, 9(5), 1533-1541.
[http://dx.doi.org/10.3892/mmr.2014.2040] [PMID: 24626484]
[16]
van Diermen, D.; Marston, A.; Bravo, J.; Reist, M.; Carrupt, P.A.; Hostettmann, K. Monoamine oxidase inhibition by Rhodiola rosea L. roots. J. Ethnopharmacol., 2009, 122(2), 397-401.
[http://dx.doi.org/10.1016/j.jep.2009.01.007] [PMID: 19168123]
[17]
Tewari, D.; Pandey, H.K.; Sah, A.N.; Meena, H.; Chander, V.; Singh, R.; Singh, P. Phytochemical, Antioxidant and Antidepressant Evaluation of Ocimum Basilicum, O. Tenuiflorum, O. Kilimandscharicum Grown in India. J. Biol. Act. Prod. from Nat., 2015, 5, 120-131.
[18]
Jang, M.H.; Piao, X.L.; Kim, J.M.; Kwon, S.W.; Park, J.H. Terpenoid content of valeriana wallichii extracts and antidepressant-like response profiles. Phytother. Res., 2008, 22, 544-549.
[http://dx.doi.org/10.1002/ptr.2406] [PMID: 18338769]
[19]
Larit, F.; Elokely, K.M.; Chaurasiya, N.D.; Benyahia, S.; Nael, M.A.; León, F.; Abu-Darwish, M.S.; Efferth, T.; Wang, Y.H.; Belouahem-Abed, D.; Benayache, S.; Tekwani, B.L.; Cutler, S.J. Inhibition of human monoamine oxidase A and B by flavonoids isolated from two Algerian medicinal plants. Phytomedicine, 2018, 40, 27-36.
[http://dx.doi.org/10.1016/j.phymed.2017.12.032] [PMID: 29496172]
[20]
Haraguchi, H.; Tanaka, Y.; Kabbash, A.; Fujioka, T.; Ishizu, T.; Yagi, A. Monoamine oxidase inhibitors from. Phytochemistry, 2004, 65(15), 2255-2260.
[http://dx.doi.org/10.1016/j.phytochem.2004.06.025] [PMID: 15587710]
[21]
Peng, F.; Tao, Q.; Wu, X.; Dou, H.; Spencer, S.; Mang, C.; Xu, L.; Sun, L.; Zhao, Y.; Li, H.; Zeng, S.; Liu, G.; Hao, X. Cytotoxic, cytoprotective and antioxidant effects of isolated phenolic compounds from fresh ginger. Fitoterapia, 2012, 83(3), 568-585.
[http://dx.doi.org/10.1016/j.fitote.2011.12.028] [PMID: 22248534]
[22]
Zhi, K.K.; Yang, Z.D.; Shi, D.F.; Yao, X.J.; Wang, M.G. Desmodeleganine, a new alkaloid from the leaves of Desmodium elegans as a potential monoamine oxidase inhibitor. Fitoterapia, 2014, 98, 160-165.
[http://dx.doi.org/10.1016/j.fitote.2014.07.022] [PMID: 25102471]
[23]
Hwang, J.S.; Lee, S.A.; Hong, S.S.; Lee, K.S.; Lee, M.K.; Hwang, B.Y.; Ro, J.S. Monoamine oxidase inhibitory components from the roots of Sophora flavescens. Arch. Pharm. Res., 2005, 28(2), 190-194.
[http://dx.doi.org/10.1007/BF02977714] [PMID: 15789750]
[24]
Saaby, L.; Rasmussen, H.B.; Jäger, A.K. MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull. J. Ethnopharmacol., 2009, 121(1), 178-181.
[http://dx.doi.org/10.1016/j.jep.2008.10.012] [PMID: 19013512]
[25]
Recalde-Gil, M.A.; Klein-Júnior, L.C.; dos Santos Passos, C.; Salton, J.; de Loreto Bordignon, S.A.; Monace, F.D.; Filho, V.C.; Henriques, A.T. Monoamine oxidase inhibitory activity of biflavonoids from branches of Garcinia gardneriana (Clusiaceae). Nat. Prod. Commun., 2017, 12(4), 1934578X1701200.
[http://dx.doi.org/10.1177/1934578X1701200411] [PMID: 30520583]
[26]
Pant, N.; Misra, H.; Jain, D.C. A xanthone glycoside from aerial parts of Swertia paniculata. J. Saudi Chem. Soc., 2014, 18(5), 551-554.
[http://dx.doi.org/10.1016/j.jscs.2011.11.001]
[27]
Urbain, A.; Marston, A.; Grilo, L.S.; Bravo, J.; Purev, O.; Purevsuren, B.; Batsuren, D.; Reist, M.; Carrupt, P.A.; Hostettmann, K. Xanthones from Gentianella amarella ssp. acuta with acetylcholinesterase and monoamine oxidase inhibitory activities. J. Nat. Prod., 2008, 71(5), 895-897.
[http://dx.doi.org/10.1021/np070690l] [PMID: 18336006]
[28]
Gacche, R.N.; Shaikh, R.U.; Chapole, S.M.; Jadhav, A.D.; Jadhav, S.G. Kinetics of inhibition of monoamine oxidase using Cymbopogon martinii (Roxb.) Wats.: A potential antidepressant herbal ingredient with antioxidant activity. Indian J. Clin. Biochem., 2011, 26(3), 303-308.
[http://dx.doi.org/10.1007/s12291-011-0124-4] [PMID: 22754197]
[29]
Adediwura, F.J.A.; Bola, O.A. Antidepressant activities of the methanol extract, petroleum ether and ethyl acetate fractions of Morus mesozygia stem bark. Pharmacol. Pharm., 2013, 4(1), 100-103.
[http://dx.doi.org/10.4236/pp.2013.41014]
[30]
Han, X.H.; Hong, S.S.; Hwang, J.S.; Jeong, S.H.; Hwang, J.H.; Lee, M.H.; Lee, M.K.; Lee, D.; Ro, J.S.; Hwang, B.Y. Monoamine oxidase inhibitory constituents from the fruits of Cudrania tricuspidata. Arch. Pharm. Res., 2005, 28(12), 1324-1327.
[http://dx.doi.org/10.1007/BF02977895] [PMID: 16392662]
[31]
Hong, S.S.; Han, X.H.; Park, S.Y.; Choi, W.H.; Lee, M.K.; Hur, J.D.; Hwang, B.Y.; Ro, J.S. Monoamine oxidase inhibitor from Uncaria rhynchophylla. Nat. Prod. Sci., 2005, 11, 145-149.
[32]
Hou, W.C.; Lin, R.D.; Chen, C.T.; Lee, M.H. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J. Ethnopharmacol., 2005, 100(1-2), 216-220.
[http://dx.doi.org/10.1016/j.jep.2005.03.017] [PMID: 15890481]
[33]
Herraiz, T.; González, D.; Ancín-Azpilicueta, C.; Arán, V.J.; Guillén, H. β-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem. Toxicol., 2010, 48(3), 839-845.
[http://dx.doi.org/10.1016/j.fct.2009.12.019] [PMID: 20036304]
[34]
Passos, C.S.; Simões-Pires, C.A.; Nurisso, A.; Soldi, T.C.; Kato, L.; de Oliveira, C.M.A.; de Faria, E.O.; Marcourt, L.; Gottfried, C.; Carrupt, P.A.; Henriques, A.T. Indole alkaloids of Psychotria as multifunctional cholinesterases and monoamine oxidases inhibitors. Phytochemistry, 2013, 86, 8-20.
[http://dx.doi.org/10.1016/j.phytochem.2012.11.015] [PMID: 23261030]
[35]
Lee, S.A.; Hwang, J.S.; Han, X.H.; Lee, C.; Lee, M.H.; Choe, S.G.; Hong, S.S.; Lee, D.; Lee, M.K.; Hwang, B.Y. Methylpiperate derivatives from Piper longum and their inhibition of monoamine oxidase. Arch. Pharm. Res., 2008, 31(6), 679-683.
[http://dx.doi.org/10.1007/s12272-001-1212-7] [PMID: 18563347]
[36]
Armijos, C.; Gilardoni, G.; Amay, L.; Lozano, A.; Bracco, F.; Ramirez, J.; Bec, N.; Larroque, C.; Finzi, P.V.; Vidari, G. Phytochemical and ethnomedicinal study of Huperzia species used in the traditional medicine of Saraguros in Southern Ecuador; AChE and MAO inhibitory activity. J. Ethnopharmacol., 2016, 193, 546-554.
[http://dx.doi.org/10.1016/j.jep.2016.09.049] [PMID: 27686269]
[37]
Han, X.H.; Hong, S.S.; Lee, D.; Lee, J.J.; Lee, M.S.; Moon, D.C.; Han, K.; Oh, K.W.; Lee, M.K.; Ro, J.S.; Hwang, B.Y. Quinolone alkaloids from evodiae fructus and their inhibitory effects on monoamine oxidase. Arch. Pharm. Res., 2007, 30(4), 397-401.
[http://dx.doi.org/10.1007/BF02980210] [PMID: 17489352]
[38]
Kong, L.D.; Cheng, C.H.K.; Tan, R.X. Inhibition of MAO A and B by some plant-derived alkaloids, phenols and anthraquinones. J. Ethnopharmacol., 2004, 91(2-3), 351-355.
[http://dx.doi.org/10.1016/j.jep.2004.01.013] [PMID: 15120460]
[39]
Lee, S.A.; Hong, S.S.; Han, X.H.; Hwang, J.S.; Oh, G.J.; Lee, K.S.; Lee, M.K.; Hwang, B.Y.; Ro, J.S. Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chem. Pharm. Bull., 2005, 53(7), 832-835.
[http://dx.doi.org/10.1248/cpb.53.832] [PMID: 15997146]
[40]
Lee, M.K.; Hwang, B.Y.; Lee, S.A.; Oh, G.J.; Choi, W.H.; Hong, S.S.; Lee, K.S.; Ro, J.S. 1-methyl-2-undecyl-4(1H)-quinolone as an irreversible and selective inhibitor of type B monoamine oxidase. Chem. Pharm. Bull., 2003, 51(4), 409-411.
[http://dx.doi.org/10.1248/cpb.51.409] [PMID: 12672993]
[41]
Ro, J.S.; Lee, S.S.; Lee, K.S.; Lee, M.K. Inhibition of type A monoamine oxidase by coptisine in mouse brain. Life Sci., 2001, 70(6), 639-645.
[http://dx.doi.org/10.1016/S0024-3205(01)01437-0] [PMID: 11833714]
[42]
Kong, L.D.; Cheng, C.H.K.; Tan, R.X. Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med., 2001, 67(1), 74-76.
[http://dx.doi.org/10.1055/s-2001-10874] [PMID: 11270727]
[43]
Dimitrov, M.; Nikolova, I.; Benbasat, N.; Kitanov, G.; Danchev, N. Acute toxicity, antidepressive and mao inhibitory activity of mangiferin isolated from Hypericum Aucheri. Biotechnol. Biotechnol. Equip., 2011, 25(4), 2668-2671.
[http://dx.doi.org/10.5504/BBEQ.2011.0099]
[44]
Matkowski, A.; Kuś, P.; Góralska, E.; Woźniak, D. Mangiferin - a bioactive xanthonoid, not only from mango and not just antioxidant. Mini Rev. Med. Chem., 2013, 13(3), 439-455.
[PMID: 23190031]
[45]
Kaya, D.; Jäger, A.K.; Yalçın, F.N.; Ersöz, T. MAO-A inhibition profiles of some benzophenone glucosides from Gentiana verna subsp. pontica. Nat. Prod. Commun., 2014, 9(4), 1934578X1400900.
[http://dx.doi.org/10.1177/1934578X1400900420] [PMID: 24868869]
[46]
Turkmenoglu, F.; Baysal, İ.; Ciftci-Yabanoglu, S.; Yelekci, K.; Temel, H.; Paşa, S.; Ezer, N.; Çalış, İ.; Ucar, G. Flavonoids from sideritis species: Human monoamine oxidase (hMAO) inhibitory activities, molecular docking studies and crystal structure of xanthomicrol. Molecules, 2015, 20(5), 7454-7473.
[http://dx.doi.org/10.3390/molecules20057454] [PMID: 25915461]
[47]
Baek, S.C.; Park, M.H.; Ryu, H.W.; Lee, J.P.; Kang, M.G.; Park, D.; Park, C.M.; Oh, S.R.; Kim, H. Rhamnocitrin isolated from Prunus padus var. seoulensis: A potent and selective reversible inhibitor of human monoamine oxidase A. Bioorg. Chem., 2019, 83, 317-325.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.051] [PMID: 30396116]
[48]
Chaurasiya, N.D.; Gogineni, V.; Elokely, K.M.; León, F.; Núñez, M.J.; Klein, M.L.; Walker, L.A.; Cutler, S.J.; Tekwani, B.L. Isolation of acacetin from Calea urticifolia with inhibitory properties against human monoamine oxidase-A and -B. J. Nat. Prod., 2016, 79(10), 2538-2544.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00440] [PMID: 27754693]
[49]
Samoylenko, V.; Rahman, M.M.; Tekwani, B.L.; Tripathi, L.M.; Wang, Y.H.; Khan, S.I.; Khan, I.A.; Miller, L.S.; Joshi, V.C.; Muhammad, I. Banisteriopsis caapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson’s disease. J. Ethnopharmacol., 2010, 127(2), 357-367.
[http://dx.doi.org/10.1016/j.jep.2009.10.030] [PMID: 19879939]
[50]
Dhiman, P.; Malik, N.; Sobarzo-Sánchez, E.; Uriarte, E.; Khatkar, A. Quercetin and related chromenone derivatives as monoamine oxidase inhibitors: Targeting neurological and mental disorders. Molecules, 2019, 24(3), 418.
[http://dx.doi.org/10.3390/molecules24030418] [PMID: 30678358]
[51]
Lee, S.; Chung, H.; Lee, I. Phenolics with inhibitory activity on mouse brain monoamine oxidase (MAO) from whole parts of Artemisia vulgaris L (Mugwort). Food Sci. Biotechnol., 2000, 9, 179-182.
[52]
Pan, X.; Kong, L.D.; Zhang, Y.; Cheng, C.H.; Tan, R.X. In vitro inhibition of rat monoamine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis. Acta Pharmacol. Sin., 2000, 21(10), 949-953.
[PMID: 11501051]
[53]
Kim, J.H.; Son, Y.K.; Kim, G.H.; Hwang, K.H. Xanthoangelol and 4-hydroxyderricin are the major active principles of the inhibitory activities against monoamine oxidases on Angelica keiskei K. Biomol. Ther., 2013, 21(3), 234-240.
[http://dx.doi.org/10.4062/biomolther.2012.100] [PMID: 24265870]
[54]
Lee, T.; Liu, D.; Hsu, F.; Wu, W.; Hou, W. Structure-activity relationships of five myricetin galloylglycosides from leaves of acacia confusa. Bot. Stud., 2006, 47, 37-43.
[55]
López, V.; Martín, S.; Gómez-Serranillos, M.P.; Carretero, M.E.; Jäger, A.K.; Calvo, M.I. Neuroprotective and neurological properties of Melissa officinalis. Neurochem. Res., 2009, 34(11), 1955-1961.
[http://dx.doi.org/10.1007/s11064-009-9981-0] [PMID: 19760174]
[56]
Deng, S.; West, B. Antidepressant effects of noni fruit and its active principals. Asian J. Med. Sci., 2011, 3, 79-83.
[57]
Olsen, H.T.; Stafford, G.I.; van Staden, J.; Christensen, S.B.; Jäger, A.K. Isolation of the MAO-inhibitor naringenin from Mentha aquatica L. J. Ethnopharmacol., 2008, 117(3), 500-502.
[http://dx.doi.org/10.1016/j.jep.2008.02.015] [PMID: 18372132]
[58]
Dreiseitel, A.; Korte, G.; Schreier, P.; Oehme, A.; Locher, S.; Domani, M.; Hajak, G.; Sand, P.G. Berry anthocyanins and their aglycons inhibit monoamine oxidases A and B. Pharmacol. Res., 2009, 59(5), 306-311.
[http://dx.doi.org/10.1016/j.phrs.2009.01.014] [PMID: 19416630]
[59]
Han, X.H.; Hong, S.S.; Hwang, J.S.; Lee, M.K.; Hwang, B.Y.; Ro, J.S. Monoamine oxidase inhibitory components from Cayratia japonica. Arch. Pharm. Res., 2007, 30(1), 13-17.
[http://dx.doi.org/10.1007/BF02977772] [PMID: 17328236]
[60]
Han, Y.N.; Noh, D.B.; Han, D.S. Studies on the monoamine oxidase inhibitors of medicinal plants I. Isolation of MAO-B inhibitors from Chrysanthemum indicum. Arch. Pharm. Res., 1987, 10(2), 142-147.
[http://dx.doi.org/10.1007/BF02857780]
[61]
Gao, G.Y.; Li, D.J.; Keung, W.M. Synthesis of potential antidipsotropic isoflavones: Inhibitors of the mitochondrial monoamine oxidase-aldehyde dehydrogenase pathway. J. Med. Chem., 2001, 44(20), 3320-3328.
[http://dx.doi.org/10.1021/jm0101390] [PMID: 11563931]
[62]
Lee, H.W.; Ryu, H.W.; Kang, M.G.; Park, D.; Lee, H.; Shin, H.M.; Oh, S.R.; Kim, H. Potent inhibition of monoamine oxidase A by decursin from Angelica gigas Nakai and by wogonin from Scutellaria baicalensis Georgi. Int. J. Biol. Macromol., 2017, 97, 598-605.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.080] [PMID: 28109809]
[63]
Klein-Júnior, L.C.; Recalde-Gil, M.A.; Passos, C.S.; de Bitencourt, F.G.; Salton, J.; Danielli, L.J.; Bordignon, S.A.L.; Henriques, A.T. The monoamine oxidase inhibitory activity of essential oils obtained from Peperomia Ruiz. & Pav. (Piperaceae) species and their chemical composition. J. Essent. Oil-Bear. Plants, 2016, 19(7), 1762-1768.
[http://dx.doi.org/10.1080/0972060X.2016.1181576]
[64]
Huong, D.T.L.; Choi, H.C.; Rho, T.C.; Lee, H.S.; Lee, M.K.; Kim, Y.H. Inhibitory activity of monoamine oxidase by coumarins from Peucedanum japonicum. Arch. Pharm. Res., 1999, 22(3), 324-326.
[http://dx.doi.org/10.1007/BF02976373] [PMID: 10403141]
[65]
Jeong, S.H.; Han, X.H.; Hong, S.S.; Hwang, J.S.; Hwang, J.H.; Lee, D.; Lee, M.K.; Ro, J.S.; Hwang, B.Y. Monoamine oxidase inhibitory coumarins from the aerial parts of Dictamnus albus. Arch. Pharm. Res., 2006, 29(12), 1119-1124.
[http://dx.doi.org/10.1007/BF02969302] [PMID: 17225461]
[66]
Lee, H.W.; Ryu, H.W.; Baek, S.C.; Kang, M.G.; Park, D.; Han, H.Y.; An, J.H.; Oh, S.R.; Kim, H. Potent inhibitions of monoamine oxidase A and B by acacetin and its 7-O-(6-O-malonylglucoside) derivative from Agastache rugosa. Int. J. Biol. Macromol., 2017, 104(Pt A), 547-553.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.076] [PMID: 28634060]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy