Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

An In Silico Investigation of SPC24 as a Putative Biomarker of Kidney Renal Clear Cell Carcinoma and Kidney Renal Papillary Cell Carcinoma for Predicting Prognosis and/or Immune Infiltration

Author(s): Shengqiang Fu, Binbin Gong, Yi Ding, Changshui Zhuang, Qiang Chen, Siyuan Wang, Zhilong Li, Ming Ma, Yifu Liu*, Zhicheng Zhang* and Ting Sun*

Volume 25, Issue 13, 2022

Published on: 29 April, 2022

Page: [2278 - 2294] Pages: 17

DOI: 10.2174/1386207325666220315105054

Price: $65

Abstract

Background and Objective: SPC24 was reported to be correlated with the development of many cancers. However, its role in renal cancer was unclear. Our aim was to explore the role of SPC24 in kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) in types of renal cancer.

Methods: SPC24 expressions in KIRC and KIRP were firstly analyzed. Subsequently, the correlation between SPC24 expression and TNM staging of KIRC and KIRP and the accuracy of SPC24 in diagnosing KIRC and KIRP were explored. Moreover, the correlation between SPC24 expression and prognosis of KIRC and KIRP were analyzed. Univariate and multivariate analyses were performed to identify prognostic factors in KIRC and KIRP, and nomograms were constructed. The correlation between SPC24 expression and immune cell infiltration, immune molecules, microsatellite instability (MSI), and tumor mutational burden (TMB) were further explored. Finally, the correlations between SPC24 expression and prognosis of KIRC based on different immune cell enrichment were analyzed.

Results: SPC24 was significantly up-regulated in multiple cancers, especially KIRC and KIRP. SPC24 expression was significantly correlated with the TNM stage of KIRC and KIRP, and upregulated SPC24 suggested a worse prognosis. Besides, SPC24 possesses good accuracy in diagnosing KIRC and KIRP. The SPC24-based nomograms displayed satisfactory efficacy in KIRC and KIRP. Moreover, we found that SPC24 expression was closely correlated with immune cell infiltration, immune molecules, and TMB in KIRC, and up-regulated SPC24 revealed poor prognosis based on different immune cell enrichment.

Conclusion: SPC24 has the potential to be a biomarker predicting the prognosis and/or immune infiltration of KIRC and KIRP.

Keywords: SPC24, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, prognosis, immune infiltration, putative biomarker.

Graphical Abstract
[1]
Pontes, O.; Oliveira-Pinto, S.; Baltazar, F.; Costa, M. Renal cell carcinoma therapy: Current and new drug candidates. Drug Discov. Today, 2021, 27(1), 304-314.
[PMID: 34265458]
[2]
Ye, Z-H.; Gui, D-W. miR 539 suppresses proliferation and induces apoptosis in renal cell carcinoma by targeting high mobility group A2. Mol. Med. Rep., 2018, 17(4), 5611-5618.
[http://dx.doi.org/10.3892/mmr.2018.8578] [PMID: 29436648]
[3]
Ren, S.; Wang, W.; Shen, H.; Zhang, C.; Hao, H.; Sun, M.; Wang, Y.; Zhang, X.; Lu, B.; Chen, C.; Wang, Z. Development and validation of a clinical prognostic model based on immune-related genes expressed in clear cell renal cell carcinoma. Front. Oncol., 2020, 10, 1496.
[4]
Lu, J.; Qian, C.; Ji, Y.; Bao, Q.; Lu, B. Gene signature associated with bromodomain genes predicts the prognosis of kidney renal clear cell carcinoma. Front. Genet., 2021, 12, 643935.
[5]
Díaz-Montero, C.M.; Rini, B.I.; Finke, J.H. The immunology of renal cell carcinoma. Nat. Rev. Nephrol., 2020, 16(12), 721-735.
[http://dx.doi.org/10.1038/s41581-020-0316-3] [PMID: 32733094]
[6]
Kim, C-S.; Kim, Y.; Kwon, T.; Yoon, J.H.; Kim, K.H.; You, D.; Hong, J.H.; Ahn, H.; Jeong, I.G. Regulatory T cells and TGF-β1 in clini-cally localized renal cell carcinoma: Comparison with age-matched healthy controls. Urol. Oncol., 2015, 33, 113.e119-113.e125.
[7]
Murakami, T.; Tanaka, N.; Takamatsu, K.; Hakozaki, K.; Fukumoto, K.; Masuda, T.; Mikami, S.; Shinojima, T.; Kakimi, K.; Tsunoda, T.; Sawada, K.; Imamura, T.; Mizuno, R.; Oya, M. Multiplexed single-cell pathology reveals the association of CD8 T-cell heterogeneity with prognostic outcomes in renal cell carcinoma. Cancer Immunol. Immunother., 2021, 70(10), 3001-3013.
[http://dx.doi.org/10.1007/s00262-021-03006-2] [PMID: 34259900]
[8]
Obradovic, A.; Chowdhury, N.; Haake, S.M.; Ager, C.; Wang, V.; Vlahos, L.; Guo, X.V.; Aggen, D.H.; Rathmell, W.K.; Jonasch, E.; John-son, J.E.; Roth, M.; Beckermann, K.E.; Rini, B.I.; McKiernan, J.; Califano, A.; Drake, C.G. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell, 2021, 184(11), 2988-3005.e16.
[http://dx.doi.org/10.1016/j.cell.2021.04.038] [PMID: 34019793]
[9]
Wang, Y.; Wang, Y.; Xu, L.; Lu, X.; Fu, D.; Su, J.; Geng, H.; Qin, G.; Chen, R.; Quan, C.; Niu, Y.; Yue, D. CD4 + T cells promote renal cell carcinoma proliferation via modulating YBX1. Exp. Cell Res., 2018, 363(1), 95-101.
[http://dx.doi.org/10.1016/j.yexcr.2017.12.026] [PMID: 29289594]
[10]
Liu, Y.; Shang, D. Transforming growth factor-β1 enhances proliferative and metastatic potential by up-regulating lymphoid enhancer-binding factor 1/integrin αMβ2 in human renal cell carcinoma. Mol. Cell. Biochem., 2020, 465(1-2), 165-174.
[http://dx.doi.org/10.1007/s11010-019-03676-8] [PMID: 31848806]
[11]
Lee, H.J.; Shin, D.H.; Lee, Y.J.; Lee, S.J.; Hwang, C.S.; Kim, A.; Park, W.Y.; Lee, J.H.; Choi, K.U.; Kim, J.Y.; Lee, C.H.; Sol, M.Y.; Park, S.W. PD-L1 expression and infiltration by CD4+ and FoxP3+ T cells are increased in Xp11 translocation renal cell carcinoma and indicate poor prognosis. Histopathology, 2020, 76(5), 714-721.
[http://dx.doi.org/10.1111/his.14047] [PMID: 31841221]
[12]
Liu, S.; Wang, F.; Tan, W.; Zhang, L.; Dai, F.; Wang, Y.; Fan, Y.; Yuan, M.; Yang, D.; Zheng, Y.; Deng, Z.; Liu, Y.; Cheng, Y. CTLA4 has a profound impact on the landscape of tumor-infiltrating lymphocytes with a high prognosis value in clear cell renal cell carcinoma (ccRCC). Cancer Cell Int., 2020, 20(1), 519.
[http://dx.doi.org/10.1186/s12935-020-01603-2] [PMID: 33117084]
[13]
Zhou, F.; Shen, D.; Xiong, Y.; Cheng, S.; Xu, H.; Wang, G.; Qian, K.; Ju, L.; Zhang, X. CTHRC1 is a prognostic biomarker and correlated with immune infiltrates in kidney renal papillary cell carcinoma and kidney renal clear cell carcinoma. Front. Oncol., 2020, 10, 570819.
[14]
McCleland, M.L.; Kallio, M.J.; Barrett-Wilt, G.A.; Kestner, C.A.; Shabanowitz, J.; Hunt, D.F.; Gorbsky, G.J.; Stukenberg, P.T. The verte-brate Ndc80 complex contains Spc24 and Spc25 homologs, which are required to establish and maintain kinetochore-microtubule attach-ment. Curr. Biol., 2004, 14(2), 131-137.
[http://dx.doi.org/10.1016/j.cub.2003.12.058] [PMID: 14738735]
[15]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artifi-cial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[16]
Chen, S.; Wang, X.; Zheng, S.; Li, H.; Qin, S.; Liu, J.; Jia, W.; Shao, M.; Tan, Y.; Liang, H.; Song, W.; Lu, S.; Liu, C.; Yang, X. Increased SPC24 in prostatic diseases and diagnostic value of SPC24 and its interacting partners in prostate cancer. Exp. Ther. Med., 2021, 22(3), 923.
[http://dx.doi.org/10.3892/etm.2021.10355] [PMID: 34306192]
[17]
Wang, Y.; Yang, H.; Zhang, G.; Luo, C.; Zhang, S.; Luo, R.; Deng, B. hsa-miR-7-5p suppresses proliferation, migration and promotes apoptosis in hepatocellular carcinoma cell lines by inhibiting SPC24 expression. Biochem. Biophys. Res. Commun., 2021, 561, 80-87.
[http://dx.doi.org/10.1016/j.bbrc.2021.05.020] [PMID: 34020142]
[18]
Zhou, J.; Pei, Y.; Chen, G.; Cao, C.; Liu, J.; Ding, C.; Wang, D.; Sun, L.; Xu, P.; Niu, G. SPC24 Regulates breast cancer progression by PI3K/AKT signaling. Gene, 2018, 675, 272-277.
[http://dx.doi.org/10.1016/j.gene.2018.07.017] [PMID: 30180968]
[19]
Yin, H.; Meng, T.; Zhou, L.; Chen, H.; Song, D. SPC24 is critical for anaplastic thyroid cancer progression. Oncotarget, 2017, 8(13), 21884-21891.
[http://dx.doi.org/10.18632/oncotarget.15670] [PMID: 28423533]
[20]
Zhou, J.; Yu, Y.; Pei, Y.; Cao, C.; Ding, C.; Wang, D.; Sun, L.; Niu, G. A potential prognostic biomarker SPC24 promotes tumorigenesis and metastasis in lung cancer. Oncotarget, 2017, 8(39), 65469-65480.
[http://dx.doi.org/10.18632/oncotarget.18971] [PMID: 29029446]
[21]
Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res., 2020, 48(W1), W509-W514.
[http://dx.doi.org/10.1093/nar/gkaa407] [PMID: 32442275]
[22]
Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res., 2017, 77(21), e108-e110.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0307] [PMID: 29092952]
[23]
Menyhárt, O.; Nagy, Á.; Győrffy, B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocel-lular carcinoma. R. Soc. Open Sci., 2018, 5(12), 181006.
[http://dx.doi.org/10.1098/rsos.181006] [PMID: 30662724]
[24]
Hu, J.; Qiu, D.; Yu, A.; Hu, J.; Deng, H.; Li, H.; Yi, Z.; Chen, J.; Zu, X. YTHDF1 is a potential pan-cancer biomarker for prognosis and immunotherapy. Front. Oncol., 2021, 11, 607224.
[http://dx.doi.org/10.3389/fonc.2021.607224] [PMID: 34026603]
[25]
Singh, A.V.; Maharjan, R-S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces, 2021, 13(1), 1943-1955.
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[26]
Singh, A.V.; Chandrasekar, V.; Janapareddy, P.; Mathews, D.E.; Laux, P.; Luch, A.; Yang, Y.; Garcia-Canibano, B.; Balakrishnan, S.; Abi-nahed, J.; Al Ansari, A.; Dakua, S.P. Emerging application of nanorobotics and artificial intelligence to cross the bbb: Advances in design, controlled maneuvering, and targeting of the barriers. ACS Chem. Neurosci., 2021, 12(11), 1835-1853.
[http://dx.doi.org/10.1021/acschemneuro.1c00087] [PMID: 34008957]
[27]
Iasonos, A.; Schrag, D.; Raj, G.V.; Panageas, K.S. How to build and interpret a nomogram for cancer prognosis. J. Clin. Oncol., 2008, 26(8), 1364-1370.
[http://dx.doi.org/10.1200/JCO.2007.12.9791] [PMID: 18323559]
[28]
Liao, G.; Wang, P.; Wang, Y. Identification of the prognosis value and potential mechanism of immune checkpoints in renal clear cell carcinoma microenvironment. Front. Oncol., 2021, 11, 720125.
[29]
Chen, C.; Sheng, Y. Prognostic impact of MITD1 and associates with immune infiltration in kidney renal clear cell carcinoma. Technol. Cancer Res. Treat., 2021, 20, 15330338211036233.
[30]
Li, Y.; Wang, C.; Gao, Y.; Zhou, L. Identification and validation of PIK3CA as a marker associated with prognosis and immune infiltration in renal clear cell carcinoma. J. Oncol., 2021, 2021, 3632576.
[http://dx.doi.org/10.1155/2021/3632576] [PMID: 34367282]
[31]
Xu, W.; Tian, X.; Liu, W.; Anwaier, A.; Su, J.; Zhu, W.; Wan, F.; Shi, G.; Wei, G.; Qu, Y.; Zhang, H.; Ye, D. m6A regulator-mediated methylation modification model predicts prognosis, tumor microenvironment characterizations and response to immunotherapies of clear cell renal cell carcinoma. Front. Oncol., 2021, 11, 709579.
[http://dx.doi.org/10.3389/fonc.2021.709579] [PMID: 34295828]
[32]
de Vries-Brilland, M.; McDermott, D.F.; Suárez, C.; Powles, T.; Gross-Goupil, M.; Ravaud, A.; Flippot, R.; Escudier, B.; Albigès, L. Checkpoint inhibitors in metastatic papillary renal cell carcinoma. Cancer Treat. Rev., 2021, 99, 102228.
[http://dx.doi.org/10.1016/j.ctrv.2021.102228] [PMID: 34111642]
[33]
Mu, D.; Qin, F.; Li, B.; Zhou, Q. Identification of the sixth complement component as potential key genes in hepatocellular carcinoma via bioinformatics analysis. BioMed Res. Int., 2020, 2020, 7042124.
[http://dx.doi.org/10.1155/2020/7042124] [PMID: 33083480]
[34]
Huang, Y.; Wang, J.; Jia, P.; Li, X.; Pei, G.; Wang, C.; Fang, X.; Zhao, Z.; Cai, Z.; Yi, X.; Wu, S.; Zhang, B. Clonal architectures predict clinical outcome in clear cell renal cell carcinoma. Nat. Commun., 2019, 10(1), 1245.
[http://dx.doi.org/10.1038/s41467-019-09241-7] [PMID: 30886153]
[35]
Bai, D.; Feng, H.; Yang, J.; Yin, A.; Qian, A.; Sugiyama, H. Landscape of immune cell infiltration in clear cell renal cell carcinoma to aid immunotherapy. Cancer Sci., 2021, 112(6), 2126-2139.
[http://dx.doi.org/10.1111/cas.14887] [PMID: 33735492]
[36]
Najjar, Y.G.; Finke, J.H. Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer. Front. Oncol., 2013, 3, 49.
[http://dx.doi.org/10.3389/fonc.2013.00049] [PMID: 23508517]
[37]
Menke, J.; Kriegsmann, J.; Schimanski, C.C.; Schwartz, M.M.; Schwarting, A.; Kelley, V.R. Autocrine CSF-1 and CSF-1 receptor coex-pression promotes renal cell carcinoma growth. Cancer Res., 2012, 72(1), 187-200.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1232] [PMID: 22052465]
[38]
Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med., 2017, 377(25), 2500-2501.
[http://dx.doi.org/10.1056/NEJMc1713444] [PMID: 29262275]
[39]
Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol., 2019, 30(1), 44-56.
[http://dx.doi.org/10.1093/annonc/mdy495] [PMID: 30395155]
[40]
Hause, R.J.; Pritchard, C.C.; Shendure, J.; Salipante, S.J. Classification and characterization of microsatellite instability across 18 cancer types. Nat. Med., 2016, 22(11), 1342-1350.
[http://dx.doi.org/10.1038/nm.4191] [PMID: 27694933]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy