Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Recent Advances in the Synthesis of Nitrogen Heterocycles Using β-Nitrostyrenes as Substrates

Author(s): Chunmei Li, Xiang Zhou, Furen Zhang* and Zhenlu Shen*

Volume 27, Issue 2, 2023

Published on: 18 April, 2023

Page: [108 - 118] Pages: 11

DOI: 10.2174/1385272827666230329104528

Price: $65

Abstract

The exploration of synthetic methodologies that allow rapid access to a wide variety of N-heterocycles is of critical importance to the medicinal chemist as it provides the ability to expand the available drug-like chemical space and drives more efficient drug discovery programs. β-Nitrostyrenes, as unique active intermediates, have been widely applied in synthetic organic chemistry because of their versatile utility as pharmaceutical agents and agrochemicals. In this review, we summarize the recent development and application of the elegant and efficient methods that enable the concise synthesis of N-heterocycles from β-nitrostyrenes and various partners in a step- and atom-economic manner, including cascade reactions, C-H activation, regio- and stereoselective syntheses, as well as other novel syntheses, which will potentially provide useful insights for further exploring and designing novel reactions.

Keywords: Drug discovery, N-heterocycles, β-nitrostyrenes, domino reaction, green chemistry, cascade reactions.

Next »
Graphical Abstract
[1]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[2]
(a) Bur, S.K.; Padwa, A. The Pummerer reaction: Methodology and strategy for the synthesis of heterocyclic compounds. Chem. Rev., 2004, 104(5), 2401-2432.
[http://dx.doi.org/10.1021/cr020090l] [PMID: 15137795];
(b) Xu, J.; Stevenson, J. Drug-like index: A new approach to measure druglike compounds and their diversity. J. Chem. Inf. Comput. Sci., 2000, 40(5), 1177-1187.
[http://dx.doi.org/10.1021/ci000026+] [PMID: 11045811];
(c) Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014];
(d) Wang, Y.; Zhang, W.X.; Xi, Z. Carbodiimide-based synthesis of Nheterocycles: Moving from two classical reactive sites to chemical bond breaking/forming reaction. Chem. Soc. Rev., 2020, 49(16), 5810-5849.
[http://dx.doi.org/10.1039/C9CS00478E] [PMID: 32658233]
[3]
(a) Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Adv., 2020, 10(72), 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G] [PMID: 35557843];
(b) Eftekhari-Sis, B.; Zirak, M. Chemistry of α-oxoesters: A powerful tool for the synthesis of heterocycles. Chem. Rev., 2015, 115(1), 151-264.
[http://dx.doi.org/10.1021/cr5004216] [PMID: 25423283];
(c) Sharma, U.K.; Ranjan, P.; Van der Eycken, E.V.; You, S.L. Sequential and direct multicomponent reaction (MCR)-based dearomatization strategies. Chem. Soc. Rev., 2020, 49(23), 8721-8748.
[http://dx.doi.org/10.1039/D0CS00128G] [PMID: 33079105];
(d) Ramana Reddy, M.; Darapaneni, C.M.; Patil, R.D.; Kumari, H. Recent synthetic methodologies for imidazo[1,5- a]pyridines and related heterocycles. Org. Biomol. Chem., 2022, 20(17), 3440-3468.
[http://dx.doi.org/10.1039/D2OB00386D] [PMID: 35394477]
[4]
(a) Nie, B.; Wu, W.; Zhang, Y.; Jiang, H.; Zhang, J. Recent advances in the synthesis of bridgehead (or ring-junction) nitrogen heterocycles via transition metal-catalyzed C–H bond activation and functionalization. Org. Chem. Front., 2020, 7(19), 3067-3099.
[http://dx.doi.org/10.1039/D0QO00510J];
(b) Meera, G.; Rohit, K.R.; Saranya, S.; Anilkumar, G. Microwave assisted synthesis of five membered nitrogen heterocycles. RSC Adv., 2020, 10(59), 36031-36041.
[http://dx.doi.org/10.1039/D0RA05150K] [PMID: 35517065];
(c) Zhang, B.; Studer, A. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors. Chem. Soc. Rev., 2015, 44(11), 3505-3521.
[http://dx.doi.org/10.1039/C5CS00083A] [PMID: 25882084]
[5]
(a) Liu, G.; Liu, X.; Cai, Z.; Jiao, G.; Xu, G.; Tang, W. Design of phosphorus ligands with deep chiral pockets: Practical synthesis of chiral β-arylamines by asymmetric hydrogenation. Angew. Chem. Int. Ed., 2013, 52(15), 4235-4238.
[http://dx.doi.org/10.1002/anie.201300646] [PMID: 23495148];
(b) Fioravanti, S.; Pellacani, L.; Tardella, P.A.; Vergari, M.C. Facile and highly stereoselective one-pot synthesis of either (E)- or (Z)-nitro alkenes. Org. Lett., 2008, 10(7), 1449-1451.
[http://dx.doi.org/10.1021/ol800224k] [PMID: 18302403];
(c) Motokura, K.; Tomita, M.; Tada, M.; Iwasawa, Y. Acid-base bifunctional catalysis of silica-alumina-supported organic amines for carbon-carbon bond-forming reactions. Chemistry, 2008, 14(13), 4017-4027.
[http://dx.doi.org/10.1002/chem.200702048] [PMID: 18351703];
(d) Alizadeh, A.; Khodaei, M.M.; Eshghi, A. Ambiphilic dual activation role of a task-specific ionic liquid: 2-hydroxyethylammonium formate as a recyclable promoter and medium for the green synthesis of β-nitrostyrenes. J. Org. Chem., 2010, 75(23), 8295-8298.
[http://dx.doi.org/10.1021/jo101696z] [PMID: 21047089];
(e) Bharathiraja, G.; Sakthivel, S.; Sengoden, M.; Punniyamurthy, T. A novel tandem sequence to pyrrole syntheses by 5-endo-dig cyclization of 1,3- enynes with amines. Org. Lett., 2013, 15(19), 4996-4999.
[http://dx.doi.org/10.1021/ol402305b] [PMID: 24032607];
(f) Palmieri, A.; Gabrielli, S.; Ballini, R. An improved, fully heterogeneous, diastereoselective synthesis of (Z)-α-bromonitroalkenes. Synlett, 2013, 24, 0114.;
(g) Zhang, M.; Hu, P.; Zhou, J.; Wu, G.; Huang, S.; Su, W. Pd-catalyzed multidehydrogenative cross-coupling between (hetero)arenes and nitroethane to construct β-aryl nitroethylenes. Org. Lett., 2013, 15(7), 1718-1721.
[http://dx.doi.org/10.1021/ol400507u] [PMID: 23528043];
(h) Stevens, T. Reaction of β -bromostyrene and dinitrogen tetroxide. A radical displacement. J. Org. Chem., 1960, 25(9), 1658.
[http://dx.doi.org/10.1021/jo01079a045];
(i) Mutkule, N.; Bugad, N.; Mokale, S.; Choudhari, V.; Ubale, M. Novel approach in the synthesis of imidazo [1, 2‐ a ] pyridine from phenyl acrylic acids. J. Heterocycl. Chem., 2020, 57(8), 3186-3192.
[http://dx.doi.org/10.1002/jhet.4026];
(j) Paul, N.; Maity, S.; Panja, S.; Maiti, D. Recent advances in the nitration of olefins. Chem. Rec., 2021, 21(10), 2896-2908.
[http://dx.doi.org/10.1002/tcr.202100217] [PMID: 34569706]
[6]
Ballini, R.; Marcantoni, E.; Petrini, M. Amino Group Chemistry; Ricci, A., Ed.; , 2008, pp. 93-148.
[http://dx.doi.org/10.1002/9783527621262.ch3]
[7]
(a) Halimehjani, A.Z.; Namboothiri, I.N.N.; Hooshmand, S.E. Part I: Nitroalkenes in the synthesis of heterocyclic compounds. RSC Adv., 2014, 4(89), 48022-48084.
[http://dx.doi.org/10.1039/C4RA08828J];
(b) Sukhorukov, A.Y. Nitro compounds as versatile building blocks for the synthesis of pharmaceutically relevant substances. Front Chem., 2020, 8, 595246.
[http://dx.doi.org/10.3389/fchem.2020.595246] [PMID: 33195101];
(c) Maria, F.P.A. Organocatalytic asymmetric nitro-michael reactions. Curr. Org. Synth., 2016, 13(5), 687-725.
[http://dx.doi.org/10.2174/1570179412666150914200843];
(d) Noble, A.; Anderson, J.C. Nitro-Mannich Reaction. Chem. Rev., 2013, 113(5), 2887-2939.
[http://dx.doi.org/10.1021/cr300272t] [PMID: 23461586];
(e) Sukhorukov, A.Y.; Sukhanova, A.A.; Zlotin, S.G. Stereoselective reactions of nitro compounds in the synthesis of natural compound analogs and active pharmaceutical ingredients. Tetrahedron, 2016, 72(41), 6191-6281.
[http://dx.doi.org/10.1016/j.tet.2016.07.067];
(f) Tabolin, A.A.; Sukhorukov, A.Y.; Ioffe, S.L. α-electrophilic reactivity of nitronates. Chem. Rec., 2018, 18(10), 1489-1500.
[http://dx.doi.org/10.1002/tcr.201800009] [PMID: 29667300]
[8]
(a) Nitroalkanes and nitroalkenes in synthesis: Tetrahedron Symposia-in-Print, no. 41; Pergamon: Oxford, UK, 1990, p. 285. In: Tetrahedron; Barrett, A.G.M., Ed.; , 1990; 46, . (21);
(b) Perekalin, V.V.; Lipina, E.S.; Berestovitskaya, V.M.; Efremov, D.A. Nitroalkenes: conjugated nitro compounds; Wiley: Chichester, UK, 1994, p. 256.;
(c) Halimehjani, A.Z.; Namboothiri, I.N.N.; Hooshmand, S.E. Nitroalkenes in the synthesis of carbocyclic compounds. RSC Adv., 2014, 4(59), 31261.
[http://dx.doi.org/10.1039/C4RA04069D]
[9]
(a) Doyle, A.G.; Jacobsen, E.N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev., 2007, 107(12), 5713-5743.
[http://dx.doi.org/10.1021/cr068373r] [PMID: 18072808];
(b) Halimehjani, A.Z.; Namboothiri, I.N.N.; Hooshmand, S.E.; Part, I.I. Part II: Nitroalkenes in the synthesis of heterocyclic compounds. RSC Adv., 2014, 4(93), 51794-51829.
[http://dx.doi.org/10.1039/C4RA08830A]
[10]
(a) Volla, C.M.R.; Atodiresei, I.; Rueping, M. Catalytic C-C bond-forming multi-component cascade or domino reactions: Pushing the boundaries of complexity in asymmetric organocatalysis. Chem. Rev., 2014, 114(4), 2390-2431.
[http://dx.doi.org/10.1021/cr400215u] [PMID: 24304297];
(b) Lancianesi, S.; Palmieri, A.; Petrini, M. Synthetic approaches to 3-(2-nitroalkyl) indoles and their use to access tryptamines and related bioactive compounds. Chem. Rev., 2014, 114(14), 7108-7149.
[http://dx.doi.org/10.1021/cr400676v] [PMID: 24905229];
(c) Han, X.; Yuan, C.; Hou, B.; Liu, L.; Li, H.; Liu, Y.; Cui, Y. Chiral covalent organic frameworks: Design, synthesis and property. Chem. Soc. Rev., 2020, 49(17), 6248-6272.
[http://dx.doi.org/10.1039/D0CS00009D] [PMID: 32724943];
(d) Dybtsev, D.N.; Bryliakov, K.P. Asymmetric catalysis using metal-organic frameworks. Coord. Chem. Rev., 2021, 437, 213845.
[http://dx.doi.org/10.1016/j.ccr.2021.213845];
(e) Cao, W.; Feng, X.; Liu, X. Reversal of enantioselectivity in chiral metal complex-catalyzed asymmetric reactions. Org. Biomol. Chem., 2019, 17(27), 6538-6550.
[http://dx.doi.org/10.1039/C9OB01027K] [PMID: 31219126]
[11]
(a) Kaur, K.; Namboothiri, I.N.N. Morita-baylis-hillman and rauhut-currier reactions of conjugated nitroalkenes. Chimia, 2012, 66(12), 913-920.
[http://dx.doi.org/10.2533/chimia.2012.913] [PMID: 23394275];
(b) Denmark, S.E.; Thorarensen, A. Tandem [4+2]/[3+2] cycloadditions of nitroalkenes. Chem. Rev., 1996, 96(1), 137-166.
[http://dx.doi.org/10.1021/cr940277f] [PMID: 11848747]
[12]
(a) Maji, B. N-Heterocyclic-carbene-catalyzed reactions of nitroalkenes: Synthesizing important building blocks. Asian J. Org. Chem., 2018, 7(1), 70-84.
[http://dx.doi.org/10.1002/ajoc.201700520];
(b) Pookkandam Parambil, S.; Pulikkal Veettil, S.; Dehaen, W. The Synthesis of five-membered N-heterocycles by cycloaddition of nitroalkenes with (In)organic azides and other 1,3-dipoles. Synthesis, 2022, 54(4), 910-924.
[http://dx.doi.org/10.1055/a-1547-0196]
[13]
(a) Rostami, H.; Shiri, L. Application of β-nitrostyrene in multicomponent reactions for the synthesis of pyrrole derivatives. ChemistrySelect, 2020, 5(36), 11197-11220.
[http://dx.doi.org/10.1002/slct.202002563];
(b) Kesavan, V.; Vishwanath, M.; Prakash, M.; Vinayagam, P. Diastereoselective three-component cascade reaction to construct oxindole-fused spirotetrahydrofurochroman scaffolds for drug discovery. Synthesis, 2016, 48, 2671.
[http://dx.doi.org/10.1055/s-0035-1562516];
(c) Li, L.; Chen, Q.; Xiong, X.; Zhang, C.; Qian, J.; Shi, J.; An, Q.; Zhang, M. Synthesis of polysubstituted pyrroles via a gold(I)-catalyzed tandem three-component reaction at room temperature. Chin. Chem. Lett., 2018, 29(12), 1893-1896.
[http://dx.doi.org/10.1016/j.cclet.2018.09.004];
(d) Rostami, H.; Shiri, L. Fe3O4@SiO2-CPTMS-Guanidine-SO3H-catalyzed one-pot multicomponent synthesis of polysubstituted pyrrole derivatives under solvent-free conditions. Russ. J. Org. Chem., 2019, 55(8), 1204-1211.
[http://dx.doi.org/10.1134/S1070428019080207];
(e) Balu Atar, A.; Han, E.; Sohn, D.H.; Kang, J. A solvent and transition metal-free, highly efficient Brønsted acidic ionic liquid promoted one-potthree-component reactions for the synthesis of tetrasubstituted pyrroles. Synth. Commun., 2019, 49(9), 1181-1192.
[http://dx.doi.org/10.1080/00397911.2019.1593460];
(f) Lin, X.; Mao, Z.; Dai, X.; Lu, P.; Wang, Y. A straightforward one-pot multicomponent synthesis of polysubstituted pyrroles. Chem. Commun., 2011, 47(23), 6620-6622.
[http://dx.doi.org/10.1039/c1cc11363a] [PMID: 21562679];
(g) Aginagalde, M.; Bello, T.; Masdeu, C.; Vara, Y.; Arrieta, A.; Cossío, F.P. Formation of γ-oxoacids and 1H-pyrrol-2(5H)-ones from α,β-unsaturated ketones and ethyl nitroacetate. J. Org. Chem., 2010, 75(21), 7435-7438.
[http://dx.doi.org/10.1021/jo101388x] [PMID: 20886821];
(h) Chen, L.; Iwamoto, R.; Ukaji, Y.; Inomata, K. Total synthesis of doubly locked 5Za15Ea-Biliverdin derivative: A convergent synthesis of the E-anti dipyrrole component locked with a 7-membered ring. Chem. Lett., 2011, 40(6), 632-634.
[http://dx.doi.org/10.1246/cl.2011.632];
(i) Zheng, B.; Conlon, D.A.; Corbett, R.M.; Chau, M.; Hsieh, D.M.; Yeboah, A.; Hsieh, D.; Müslehiddinoğlu, J.; Gallagher, W.P.; Simon, J.N.; Burt, J. Development of a practical synthesis of a functionalized pyrrolo[2,1-f][1,2,4]triazine nucleus. Org. Proc. Res. Dev., 2012, 16(11), 1846-1853.
[http://dx.doi.org/10.1021/op300252n]
[14]
Li, C.; Liang, X.; Zhang, F.; Qi, C. Synthesis of tetrahydro-4H-indol-4-one derivatives catalyzed by carbonaceous material. Catal. Commun., 2015, 62, 6-9.
[http://dx.doi.org/10.1016/j.catcom.2014.12.026]
[15]
Qi, C.; Zhang, F.; Li, C. An efficient and mild synthesis of tetrahydro-4H-indol-4-one derivatives via a domino reaction in water. Synthesis, 2013, 45(21), 3007-3017.
[http://dx.doi.org/10.1055/s-0033-1338526]
[16]
Huang, H.; Fu, T.; Hu, J.; Li, C.; Zhang, F. An efficient strategy for synthesis of 2,6‐dimethyl‐1,3‐diarylpyrano[4,3‐ b]pyrrol‐4(1 H)‐one derivatives in water. J. Heterocycl. Chem., 2019, 56(12), 3363-3369.
[http://dx.doi.org/10.1002/jhet.3733]
[17]
Gattu, R.; Bhattacharjee, S.; Mahato, K.; Khan, A.T. Electronic effect of substituents on anilines favors 1,4-addition to trans -β-nitrostyrenes: Access to N -substituted 3-arylindoles and 3-arylindoles. Org. Biomol. Chem., 2018, 16(20), 3760-3770.
[http://dx.doi.org/10.1039/C8OB00736E] [PMID: 29722779]
[18]
Huang, C.Y.; Kuo, C.W.; Konala, A.; Yang, T.H.; Lin, L.; Chen, Y.W.; Kavala, V.; Yao, C-F. Synthesis of 3-arylindole derivatives from nitroalkane precursors. RSC Adv., 2016, 6(98), 96049-96056.
[http://dx.doi.org/10.1039/C6RA21144E]
[19]
Ahmadian, M.; Rad-Moghadam, K.; Dehghanian, A.; Jafari, M. A novel domino protocol for three-component synthesis of new dibenzo[ e,g]indoles: Flexible intramolecular charge transfers. New J. Chem., 2022, 46(6), 2940-2951.
[http://dx.doi.org/10.1039/D1NJ05341H]
[20]
Das, A.; Roy, H.; Ansary, I. Microwave-assisted, one-pot three-component synthesis of 6-(pyrrolyl) coumarin/quinolone derivatives catalyzed by In(III) chloride. ChemistrySelect, 2018, 3(33), 9592-9595.
[http://dx.doi.org/10.1002/slct.201801931]
[21]
(a) Arumugam, N.; Almansour, A.I.; Kumar, R.S.; Mohammad Ali Al-Aizari, A.J.; Alaqeel, S.I.; Kansız, S.; Krishna, V.S.; Sriram, D.; Dege, N. Regio- and diastereoselective synthesis of spiropyrroloquinoxaline grafted indole heterocyclic hybrids and evaluation of their anti- Mycobacterium tuberculosis activity. RSC Adv., 2020, 10(40), 23522-23531.
[http://dx.doi.org/10.1039/D0RA02525A] [PMID: 35517328];
(b) Bolous, M.; Arumugam, N.; Almansour, A.I.; Suresh Kumar, R.; Maruoka, K.; Antharam, V.C.; Thangamani, S. Broad-spectrum antifungal activity of spirooxindolo-pyrrolidine tethered indole/imidazole hybrid heterocycles against fungal pathogens. Bioorg. Med. Chem. Lett., 2019, 29(16), 2059-2063.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.022] [PMID: 31320146]
[22]
(a) Barkov, A.Y.; Zimnitskiy, N.S.; Korotaev, V.Y.; Kutyashev, I.B.; Moshkin, V.S.; Sosnovskikh, V.Y. Regio- and stereoselective 1,3-dipolar cycloaddition of indenoquinoxalinone azomethine ylides to β-nitrostyrenes: synthesis of spiro[indeno[1,2-b]quinoxaline-11,3′-pyrrolizidines] and spiro[indeno[1,2-b]quinoxaline-11,2′-pyrrolidines]. Chem. Heterocycl. Compd., 2017, 53(4), 451-459.
[http://dx.doi.org/10.1007/s10593-017-2074-0];
(b) Liu, Q.; Zhao, K.; Zhi, Y.; Raabe, G.; Enders, D. Squaramide-catalyzed domino Michael/aza-Henry [3 + 2] cycloaddition: asymmetric synthesis of functionalized 5-trifluoromethyl and 3-nitro substituted pyrrolidines. Org. Chem. Front., 2017, 4(7), 1416-1419.
[http://dx.doi.org/10.1039/C7QO00161D]
[23]
Zhang, F.; Li, C.; Wang, C.; Qi, C. Facile synthesis of benzoindoles and naphthofurans through carbonaceous material-catalyzed cyclization of naphthylamines/naphthols with nitroolefins in water. Org. Biomol. Chem., 2015, 13(17), 5022-5029.
[http://dx.doi.org/10.1039/C5OB00129C] [PMID: 25823420]
[24]
Wang, C.; Zhang, Y.; Wan, X.; Gan, J. DABCO-promoted [3+2] annulation for efficient synthesis of 1,2,5-triaryl-1H-imidazoles from substitutednitrostyrenes and N-arylbenzimidamides. Synthesis, 2021, 53(23), 4507-4515.
[http://dx.doi.org/10.1055/a-1533-6872]
[25]
Gopi, E.; Kumar, T.; Menna-Barreto, R.F.S.; Valença, W.O.; da Silva Júnior, E.N.; Namboothiri, I.N.N. Imidazoles from nitroallylic acetates and α-bromonitroalkenes with amidines: synthesis and trypanocidal activity studies. Org. Biomol. Chem., 2015, 13(38), 9862-9871.
[http://dx.doi.org/10.1039/C5OB01444A] [PMID: 26288376]
[26]
Wang, T.; Qing, X.; Dai, C.; Su, Z.; Wang, C. Regioselective construction of 1,3-diaryl tetrahydroindazolones via the three-component reaction of 1,3-cyclohexanediones, β-nitrostyrenes and arylhydrazines. Org. Biomol. Chem., 2018, 16(14), 2456-2463.
[http://dx.doi.org/10.1039/C8OB00304A] [PMID: 29561021]
[27]
Peng, X.; Huang, D.; Wang, K.H.; Wang, Y.; Wang, J.; Su, Y.; Hu, Y. Synthesis of trifluoromethylated pyrazolidines by [3 + 2] cycloaddition. Org. Biomol. Chem., 2017, 15(29), 6214-6222.
[http://dx.doi.org/10.1039/C7OB01299C] [PMID: 28702602]
[28]
Quan, X.J.; Ren, Z.H.; Wang, Y.Y.; Guan, Z.H. p-Toluenesulfonic acid mediated 1,3-dipolar cycloaddition of nitroolefins with NaN3 for synthesis of 4-aryl-NH-1,2,3-triazoles. Org. Lett., 2014, 16(21), 5728-5731.
[http://dx.doi.org/10.1021/ol5027975] [PMID: 25343314]
[29]
Chen, Y.; Nie, G.; Zhang, Q.; Ma, S.; Li, H.; Hu, Q. Copper-catalyzed [3 + 2] cycloaddition/oxidation reactions between nitro-olefins and organic azides: highly regioselective synthesis of NO2-substituted 1,2,3-triazoles. Org. Lett., 2015, 17(5), 1118-1121.
[http://dx.doi.org/10.1021/ol503687w] [PMID: 25695309]
[30]
Li, D.; Liu, L.; Tian, Y.; Ai, Y.; Tang, Z.; Sun, H.; Zhang, G. A flow strategy for the rapid, safe and scalable synthesis of N-H 1, 2, 3-triazoles via acetic acid mediated cycloaddition between nitroalkene and NaN3. Tetrahedron, 2017, 73(27-28), 3959-3965.
[http://dx.doi.org/10.1016/j.tet.2017.05.065]
[31]
(a) Källström, S.; Leino, R. Synthesis of pharmaceutically active compounds containing a disubstituted piperidine framework. Bioorg. Med. Chem., 2008, 16(2), 601-635.
[http://dx.doi.org/10.1016/j.bmc.2007.10.018] [PMID: 17980609];
(b) Yamashita, T.; Yasuda, K.; Kizu, H.; Kameda, Y.; Watson, A.A.; Nash, R.J.; Fleet, G.W.J.; Asano, N. New polyhydroxylated pyrrolidine, piperidine, and pyrrolizidine alkaloids from Scilla sibirica. J. Nat. Prod., 2002, 65(12), 1875-1881.
[http://dx.doi.org/10.1021/np020296h] [PMID: 12502331];
(c) Mochizuki, A.; Nakamoto, Y.; Naito, H.; Uoto, K.; Ohta, T. Design, synthesis, and biological activity of piperidine diamine derivatives as factor Xa inhibitor. Bioorg. Med. Chem. Lett., 2008, 18(2), 782-787.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.037] [PMID: 18039572]
[32]
(a) Trabaco, A.A.; Aerts, N.; Alvarez, R.M.; Andres, J.I.; Boeckx, I.; Fernandez, J.; Gomez, A.; Janssens, F.E.; Leenaerts, J.E.; Lucas, A.I.D.; Matesanz, E. Steckler; T.; Pullan, S. 4-Phenyl-4-[1H-imidazol-2-yl]-piperidine derivatives as non-peptidic selective delta-opioid agonists with potential anxiolytic/antidepressant properties. Bioorg. Med. Chem. Lett., 2007, 17, 3860.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.012] [PMID: 17512730];
(b) Takaya, Y.; Tasaka, H.; Chiba, T.; Uwai, K.; Tanitsu, M.; Kim, H.S.; Wataya, Y.; Miura, M.; Takeshita, M.; Oshima, Y. New type of febrifugine analogues, bearing a quinolizidine moiety, show potent antimalarial activity against Plasmodium malaria parasite. J. Med. Chem., 1999, 42(16), 3163-3166.
[http://dx.doi.org/10.1021/jm990131e] [PMID: 10447961]
[33]
Li, Y.; Xue, Z.; Ye, W.; Liu, J.; Yao, J.; Wang, C. One-pot multicomponent synthesis of highly functionalized piperidines from substituted β-nitrostyrenes, Meldrum’s acid, aromatic aldehydes, and ammonium acetate. ACS Comb. Sci., 2014, 16(3), 113-119.
[http://dx.doi.org/10.1021/co4001502] [PMID: 24521510]
[34]
Kim, S-G.; Kang, K-T. A one-pot catalytic enantioselective synthesis of functionalized tetrahydroquinolines by Aza-Michael/Michael cascade reactions of N-protected 2-aminophenyl α,β-unsaturated esters with nitroolefins. Synthesis, 2014, 46(24), 3365-3373.
[http://dx.doi.org/10.1055/s-0034-1379044]
[35]
Luo, H.; Yan, X.; Chen, L.; Li, Y.; Liu, N.; Yin, G. Enantioselective catalytic domino Aza-Michael-Henry reactions: One-pot asymmetric synthesis of 3-nitro-1,2-dihydroquinolines via iminium activation. Eur. J. Org. Chem., 2016, 2016(9), 1702-1707.
[http://dx.doi.org/10.1002/ejoc.201501618]
[36]
Qing, X.; Wang, T.; Zhang, F.; Wang, C. One-pot synthesis of 2,4,6-triarylpyridines from β-nitrostyrenes, substituted salicylic aldehydes and ammonium acetate. RSC Adv., 2016, 6(98), 95957-95964.
[http://dx.doi.org/10.1039/C6RA18630K]
[37]
Potter, T.J.; Li, Y.; Ward, M.D.; Ellman, J.A. RhIII-Catalyzed synthesis of isoquinolones and 2-pyridones by annulation of N-methoxyamides and nitroalkenes. Eur. J. Org. Chem., 2018, 2018(32), 4381-4388.
[http://dx.doi.org/10.1002/ejoc.201800745] [PMID: 30220876]
[38]
Gattu, R.; Mondal, S.; Ali, S.; Khan, A.T. Iodine monobromide catalysed regioselective synthesis of 3-arylquinolines from α-aminoacetophenones and trans -β-nitrostyrenes. Org. Biomol. Chem., 2019, 17(2), 347-353.
[http://dx.doi.org/10.1039/C8OB02333F] [PMID: 30548050]
[39]
Li, C.; Zhang, F.; Yang, Z.; Qi, C. Chemoselective synthesis of quinoxalines and benzimidazoles by silica gel catalysis. Tetrahedron Lett., 2014, 55(40), 5430-5433.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.022]
[40]
Devi, E.S.; Alanthadka, A.; Nagarajan, S.; Sridharan, V.; Maheswari, C.U. Metal-free, base catalyzed oxidative amination and denitration reaction: Regioselective synthesis of 3-arylimidazo[1,2-a]pyridines. Tetrahedron Lett., 2018, 59(38), 3485-3489.
[http://dx.doi.org/10.1016/j.tetlet.2018.08.024]
[41]
Mizushige, K.; Ueda, T.; Yukiiri, K.; Suzuki, H. Olprinone: a phosphodiesterase III inhibitor with positive inotropic and vasodilator effects. Cardiovasc. Drug Rev., 2002, 20(3), 163-174.
[http://dx.doi.org/10.1111/j.1527-3466.2002.tb00085.x] [PMID: 12397365]
[42]
Makhova, N.N.; Pleshchev, M.I.; Epishina, M.A.; Kulikov, A.S. Synthesis and transformations of nitrogen heterocycles in ionic liquids. Chem. Heterocycl. Compd., 2014, 50(5), 634-646.
[http://dx.doi.org/10.1007/s10593-014-1516-1]
[43]
Telvekar, V.; Jagadhane, P. Synthesis of 3-Nitro-2-arylimidazo[1,2-a]pyridines using sodium dichloroiodide. Synlett, 2014, 25(18), 2636-2638.
[http://dx.doi.org/10.1055/s-0034-1379185]
[44]
Tachikawa, Y.; Nagasawa, Y.; Furuhashi, S.; Cui, L.; Yamaguchi, E.; Tada, N.; Miura, T.; Itoh, A. Metal-free synthesis of imidazopyridine from nitroalkene and 2-aminopyridine in the presence of a catalytic amount of iodine and aqueous hydrogen peroxide. RSC Adv., 2015, 5(13), 9591-9593.
[http://dx.doi.org/10.1039/C4RA14970J]
[45]
Das, D.; Jena, A.K.; Pal, C.K.; Bourda, L.; Van Hecke, K. CuI Nanoparticle-catalyzed regioselective synthesis of 3-nitro-2-arylimidazo[1,2-a]pyridines using oxygen as oxidant. Asian J. Org. Chem., 2022, 11(3), e202100776.
[http://dx.doi.org/10.1002/ajoc.202100776]
[46]
Monir, K.; Bagdi, A.K.; Ghosh, M.; Hajra, A. Unprecedented catalytic activity of Fe(NO3)3·9H2O: regioselective synthesis of 2-nitroimidazopyridines via oxidative amination. Org. Lett., 2014, 16(17), 4630-4633.
[http://dx.doi.org/10.1021/ol502218u] [PMID: 25140881]
[47]
Ha, P.T.M.; Lieu, T.N.; Doan, S.H.; Phan, T.T.B.; Nguyen, T.T.; Truong, T.; Phan, N.T.S. Indium-based metal–organic frameworks as catalysts: synthesis of 2-nitro-3-arylimidazo[1,2-a]pyridines via oxidative amination under air using MIL-68(In) as an effective heterogeneous catalyst. RSC Adv., 2017, 7(37), 23073-23082.
[http://dx.doi.org/10.1039/C7RA02802D]
[48]
Sree Uppalapati, D.; Sekhara Reddy Dachuru, R.; Veni Sunkara, S. Metal-free regioselective strategy for the synthesis of 2-nitro-3-arylimidazo[1,2-a]pyridines via oxidative amination under air using Silica sulfuric acid as an effective heterogeneous catalyst. Heterocycles, 2021, 102(7), 1402.
[http://dx.doi.org/10.3987/COM-21-14464]
[49]
Yadav, S.; Srivastava, M.; Rai, P.; Tripathi, B.P.; Mishra, A.; Singh, J.; Singh, J. Oxidative organophotoredox catalysis: A regioselective synthesis of 2-nitro substituted imidazopyridines and 3-substituted indoles, initiated by visible light. New J. Chem., 2016, 40(11), 9694-9701.
[http://dx.doi.org/10.1039/C6NJ02365G]
[50]
Lee, K.J.; Kim, S.H.; Kim, S.; Park, H.; Cho, Y.R.; Chung, B.Y.; Schweizer, E.E. 1,2,4-Triazole-Fused Heterocycles; Part 1: Preparation of 5,10-Dihydro-[1,2,4]-triazolo[5,1- b]quinazolines. Synthesis, 1994, 1994(10), 1057-1062.
[http://dx.doi.org/10.1055/s-1994-25637]
[51]
Gupta, A.; Sasan, S.; Kour, A.; Nelofar, N.; Manikrao Mondhe, D.; Kapoor, K.K. Triarylimidazo[1,2- a]pyridine-8-carbonitriles: Solvent-free synthesis and their anti-cancer evaluation. Synth. Commun., 2019, 49(14), 1813-1822.
[http://dx.doi.org/10.1080/00397911.2019.1605445]
[52]
Payra, S.; Saha, A.; Banerjee, S. Nano-NiFe2O4 catalyzed microwave assisted one-pot regioselective synthesis of novel 2-alkoxyimidazo[1,2-a]pyridines under aerobic conditions. RSC Adv., 2016, 6(15), 12402-12407.
[http://dx.doi.org/10.1039/C5RA25540F]
[53]
Pleshchev, M.I.; Das Gupta, N.V.; Kuznetsov, V.V.; Fedyanin, I.V.; Kachala, V.V.; Makhova, N.N. CAN-mediated new, regioselective one-pot access to bicyclic cationic structures with 2,3-dihydro-1H-pyrazolo[1,2-a]pyrazol-4-ium core. Tetrahedron, 2015, 71(47), 9012-9021.
[http://dx.doi.org/10.1016/j.tet.2015.09.033]
[54]
Nasri, L.; Ríos-Gutiérrez, M.; Nacereddine, A.K.; Djerourou, A.; Domingo, L.R. A molecular electron density theory study of [3 + 2] cycloaddition reactions of chiral azomethine ylides with β-nitrostyrene. Theor. Chem. Acc., 2017, 136(9), 104.
[http://dx.doi.org/10.1007/s00214-017-2133-8]
[55]
Aksenov, A.V.; Aksenov, D.A.; Griaznov, G.D.; Aksenov, N.A.; Voskressensky, L.G.; Rubin, M. Unexpected cyclization of 2-(2-aminophenyl)indoles with nitroalkenes to furnish indolo[3,2- c]quinolines. Org. Biomol. Chem., 2018, 16(23), 4325-4332.
[http://dx.doi.org/10.1039/C8OB00588E] [PMID: 29808901]
[56]
Moreira, N.M.; Martelli, L.S.R.; de Julio, K.I.R.; Zukerman-Schpector, J.; Opatz, T.; Corrêa, A.G. Copper-catalyzed one-pot synthesis of 3-(N-heteroarenyl)acrylonitriles through radical conjugated addition of β-nitrostyrene to methylazaarenes. Eur. J. Org. Chem., 2020, 2020(29), 4563-4570.
[http://dx.doi.org/10.1002/ejoc.202000673]
[57]
Aksenov, A.V.; Arutiunov, N.A.; Kirilov, N.K.; Aksenov, D.A.; Grishin, I.Y.; Aksenov, N.A.; Wang, H.; Du, L.; Betancourt, T.; Pelly, S.C.; Kornienko, A.; Rubin, M. [3 + 2]-Annulation of pyridinium ylides with 1-chloro-2-nitrostyrenes unveils a tubulin polymerization inhibitor. Org. Biomol. Chem., 2021, 19(33), 7234-7245.
[http://dx.doi.org/10.1039/D1OB01141C] [PMID: 34387294]
[58]
Rostami, H.; Shiri, L. One-pot multicomponent synthesis of pyrrolo[1,2-a] pyrazines in water catalyzed by Fe3O4@SiO2-OSO3H. ChemistrySelect, 2018, 3(47), 13487-13492.
[http://dx.doi.org/10.1002/slct.201802759]
[59]
Arumugam, N.; Almansour, A.I.; Kumar, R.S.; Periasamy, V.S.; Athinarayanan, J.; Alshatwi, A.A.; Govindasami, P.; Altaf, M.; Menéndez, J.C. Regio- and diastereoselective synthesis of anticancer spirooxindoles derived from tryptophan and histidine via three-component 1,3-dipolar cycloadditions in an ionic liquid. Tetrahedron, 2018, 74(38), 5358-5366.
[http://dx.doi.org/10.1016/j.tet.2018.04.032]
[60]
Barkov, A.Y.; Zimnitskiy, N.S.; Korotaev, V.Y.; Kutyashev, I.B.; Moshkin, V.S.; Sosnovskikh, V.Y. Highly regio- and stereoselective 1,3-dipolar cycloaddition of stabilised azomethine ylides to 3,3,3-trihalogeno-1-nitropropenes: synthesis of trihalomethylated spiro[indoline-3,2′-pyrrolidin]-2-ones and spiro[indoline-3,3′-pyrrolizin]-2-ones. Tetrahedron, 2016, 72(43), 6825-6836.
[http://dx.doi.org/10.1016/j.tet.2016.09.017]
[61]
(a) Motornov, V.A.; Tabolin, A.A.; Nelyubina, Y.V.; Nenajdenko, V.G.; Ioffe, S.L. Copper-mediated oxidative [3 + 2]-annulation of nitroalkenes and pyridinium ylides: general access to functionalized indolizines and efficient synthesis of 1-fluoroindolizines. Org. Biomol. Chem., 2019, 17(6), 1442-1454.
[http://dx.doi.org/10.1039/C8OB03126F] [PMID: 30672946];
(b) Motornov, V.A.; Tabolin, A.A.; Nenajdenko, V.G.; Ioffe, S.L. Copper-mediated oxidative [3+2]-annulation of nitroalkenes and ylides of 1,2-diazines: Assembly of functionalized pyrrolo[1,2-b]pyridazines. ChemistrySelect, 2021, 6(37), 9969-9974.
[http://dx.doi.org/10.1002/slct.202103189];
(c) Motornov, V.A.; Tabolin, A.A.; Ioffe, S.L. Oxidative [3+2]-annulation of nitroalkenes and azolium ylides in the presence of Cu(II): efficient synthesis of [5,5]-annulated N-fused heterocycles. New J. Chem., 2022, 46(9), 4134-4141.
[http://dx.doi.org/10.1039/D1NJ05332A]
[62]
Zhang, F.; Li, C. L-Proline-catalyzed cyclization of 6-aminopyrimidine-4(3H)-ones with nitroolefins: Synthesis of polysubstituted 5-arylpyrrolo[2,3-d]pyrimidin-4-ones. Synlett, 2017, 28(11), 1315-1320.
[http://dx.doi.org/10.1055/s-0036-1588757]
[63]
Li, C.; Fan, W.; Qi, C.; Zhang, F. Four component synthesis of pyrrolo[3,2-c]pyridin-4-one derivatives. Tetrahedron Lett., 2020, 61(34), 152253.
[http://dx.doi.org/10.1016/j.tetlet.2020.152253]
[64]
Zhang, F.; Li, C.; Liang, X. Solid acid-catalyzed domino cyclization reaction: regio- and diastereoselective synthesis of pyrido[2,3- d]pyrimidine derivatives bearing three contiguous stereocenters. Green Chem., 2018, 20(9), 2057-2063.
[http://dx.doi.org/10.1039/C7GC03812G]
[65]
Zhang, F.; Li, C.; Qi, C. A one-pot three-component strategy for highly diastereoselective synthesis of spirocycloalkane fused pyrazolo[3,4- b]pyridine derivatives using recyclable solid acid as a catalyst. Org. Chem. Front., 2020, 7(17), 2456-2466.
[http://dx.doi.org/10.1039/D0QO00591F]
[66]
Hamzehloueian, M.; Sarrafi, Y.; Aghaei, Z. An experimental and theoretical study on the regioselective synthesis of a new class of spiropyrrolothiazoles with quinoxaline motifs via a 1,3-dipolar cycloaddition reaction. An evaluation of DFT methods. RSC Adv., 2015, 5(93), 76368-76376.
[http://dx.doi.org/10.1039/C5RA14071D]
[67]
Sagar, A.; Babu, V.N.; Dey, A.; Sharada, D.S. I2-promoted denitration strategy: one-pot three component synthesis of pyrrole-fused benzoxazines. Tetrahedron Lett., 2015, 56(21), 2710-2713.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.011]
[68]
Sim, J.T.; Kim, H.; Kim, S.G. Stereoselective synthesis of benzosulfamidatefused tetrahydroquinazoline scaffold via organocatalytic [4+2] cycloaddition of 2-amino-β-nitrostyrenses of cyclic N-sulfimines. Tetrahedron Lett., 2016, 57(52), 5907-5910.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.072]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy