Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Advancement of the Cleavage Methods of Carbohydrate-derived Isopropylidene and Cyclohexylidene Ketals

Author(s): Shilpi Gupta, Anjali Sharma, Dhananjoy Mondal and Smritilekha Bera*

Volume 26, Issue 7, 2022

Published on: 09 June, 2022

Page: [715 - 734] Pages: 20

DOI: 10.2174/1385272826666220426104217

Price: $65

Abstract

Carbohydrates, amino acids, and nucleosides, the fundamental building blocks of complex biomolecules in nature, are essential starting materials for the fabrication of natural and unnatural structural entities, which necessitate the masking and demasking of various functional groups with the utmost chemoselectivity, mildness, and efficiency to avoid unintended bond breaking and formation, as well as associated reactions. Ketals, benzylidene, methoxymethyl, p-methoxybenzyl, silyl ethers, trityl, tert-butyl carbamate, and other functional groups are widely used in modern organic synthesis. In carbohydrate chemistry, the commonly used protecting functionality of isopropylidene and cyclohexylidene ketals necessitates effective methods for selective cleavage. This review summarises different methods for deblocking isopropylidene and cyclohexylidene ketals using inorganic acids, Lewis acid, silica- supported inorganic acids, Amberlite-120 (H+) resin, phosphotungstic acid, Nafion-H, NaBArF4.2H2O, montmorillonite clay, Dowex 50W-X8, camphorsulphonic acid (CSA), ceric ammonium nitrate, molecular iodine, ionic liquids, zeolites and so on.

Keywords: Isopropylidene, cyclohexylidene, carbohydrate, cleavage, orthogonality, selectivity.

« Previous
Graphical Abstract
[1]
Green, T.W.; Wuts, P.G.M. Protecting groups in organic synthesis, 3rd ed; John Wiley & Sons: New York, 1999.
[http://dx.doi.org/10.1002/0471220574]
[2]
Kocienski, P.J. Protecting groups; Georg Thieme: New York, 1994, pp. 28-42.
[3]
(a) Merrifield, R.B.; Barany, G.; Cosand, W.L.; Engelhard, M.; Mojsov, S. Some recent developments in solid-phase peptide synthesis. Pept.: Proc. Am. Pept. Symp, 1977, p. 488.
(b) Schelhaas, M.; Waldmann, H. Protecting group strategies in organic synthesis. Angew. Chem. Int. Ed. Engl., 1996, 35(18), 2056-2083.
[http://dx.doi.org/10.1002/anie.199620561]
(c) Bochet, C.G. Chromatic orthogonality in organic synthesis. Synlett, 2004, (13), 2268-2274.
[http://dx.doi.org/10.1055/s-2004-832848]
(d) Blanc, A.; Bochet, C.G. Isotope effects in photochemistry: Application to chromatic orthogonality. Org. Lett., 2007, 9(14), 2649-2651.
[http://dx.doi.org/10.1021/ol070820h] [PMID: 17555322]
(e) Bonilla-Landa, I.; López-Hernández, E.; Barrera-Mndez, F.; Salas, N.C.; Olivares-Romero, J.L. Hafnium (IV) chloride catalyzes highly efficient acetalization of car-bonyl compounds. Curr. Org. Synth., 2019, 16(6), 913-920.
[http://dx.doi.org/10.2174/1570179416666190715100505] [PMID: 31984912]
[4]
Ágoston, K.; Streicher, H.; Fügedi, P. Orthogonal protecting group strategies in carbohydrate chemistry. Tetrahedron Asymmetry, 2016, 27(16), 707-728.
[http://dx.doi.org/10.1016/j.tetasy.2016.06.010]
[5]
Wong, C.H.; Ye, X.S.; Zhang, Z. Assembly of oligosaccharide libraries with a designed building block and an efficient orthogonal protection-deprotection strategy. J. Am. Chem. Soc., 1998, 120(28), 7137-7138.
[http://dx.doi.org/10.1021/ja9813616]
[6]
Veeneman, G.H.; Notermans, S.; Liskamp, R.M.J.; van der Marel, G.A.; van Boom, J.H. Solid-phase synthesis of a naturally occurring β-(1→5)-linked D-galactofuranosyl heptamer containing the artificial linkage arm L-homoserine. Tetrahedron Lett., 1987, 28(52), 6695-6698.
[http://dx.doi.org/10.1016/S0040-4039(00)96948-X]
[7]
(a) Jung, M.E.; Koch, P. Mild, selective deprotection of PMB ethers with triflic acid/1,3-dimethoxybenzene. Tetrahedron Lett., 2011, 52(46), 6051-6054.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.102]
(b) Bartoli, G.; Dalpozzo, R.; Nino, A.D.; Maiuolo, L.; Nardi, M.; Procopio, A.; Tagarelli, A. Cerium (III) Triflate versus Cerium (III) Chloride: Anion dependence of lewis acid behaviour in the deprotection of PMB ethers. Eur. J. Org. Chem., 2004, 10(10), 2176-2180.
[http://dx.doi.org/10.1002/ejoc.200400039]
(c) Sharma, G.V.M.; Reddy, ChG.; Krishna, P.R. Zirconium(IV) chloride catalyzed new and efficient protocol for the selective cleavage of p-methoxybenzyl ethers. J. Org. Chem., 2003, 68(11), 4574-4575.
[http://dx.doi.org/10.1021/jo026897v] [PMID: 12762775]
(d) Ikeuchi, K.; Murasawa, K.; Ohara, K.; Yamada, H. p-Methylbenzyl group: Oxidative removal and orthogonal alcohol deprotection. Org. Lett., 2019, 21(17), 6638-6642.
[http://dx.doi.org/10.1021/acs.orglett.9b02144] [PMID: 31437002]
[8]
(a) Götze, S.; Azzouz, N.; Tsai, Y-H.; Groß, U.; Reinhardt, A.; Anish, C.; Seeberger, P.H.; Varón Silva, D. Diagnosis of toxoplasmosis using a synthetic glycosylphospha-tidylinositol glycan. Angew. Chem. Int. Ed. Engl., 2014, 53(50), 13701-13705.
[http://dx.doi.org/10.1002/anie.201406706] [PMID: 25323101]
(b) Den Hartog, J.A.J.; Wille, G.; van Boom, J.H. Synthesis of oligoribonucleotides with sequences identical to the nucleation region of Tobacco Mosaic Virus RNA: Preparation of AAG, AAGAAG and AAGAAGUUG via phosphotriester methods. Recl. Trav. Chim. Pays Bas, 2010, 100(9), 320-330.
[http://dx.doi.org/10.1002/recl.19811000907]
[9]
(a) Yan, H.; Oh, J-S.; Song, C.E. A mild and efficient method for the selective deprotection of silyl ethers using KF in the presence of tetraethylene glycol. Org. Biomol. Chem., 2011, 9(23), 8119-8121.
[http://dx.doi.org/10.1039/c1ob06300f] [PMID: 21986770]
(b) Westman, E.; Strömberg, R. Removal of t-butyldimethylsilyl protection in RNA-synthesis. Triethylamine trihydrofluoride (TEA, 3HF) is a more reliable alternative to tetrabutylammonium fluoride (TBAF). Nucleic Acids Res., 1994, 22(12), 2430-2431.
[http://dx.doi.org/10.1093/nar/22.12.2430] [PMID: 7518583]
[10]
(a) Gregg, B.T.; Golden, K.C.; Quinn, J.F. Indium(III) trifluoromethanesulfonate as an efficient catalyst for the deprotection of acetals and ketals. J. Org. Chem., 2007, 72(15), 5890-5893.
[http://dx.doi.org/10.1021/jo0707075] [PMID: 17595139]
(b) Bera, S.; Mondal, D.; Martin, J.T.; Singh, M. Potential effect of ultrasound on carbohydrates. Carbohydr. Res., 2015, 410, 15-35.
[http://dx.doi.org/10.1016/j.carres.2015.02.008] [PMID: 25954862]
[11]
(a) Kojima, M.; Nakamura, Y.; Takeuchi, S. A practical fluorous benzylidene acetal protecting group for a quick synthesis of disaccharides. Tetrahedron Lett., 2007, 48(25), 4431-4436.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.106]
(b) Tanaka, N.; Ogawa, I.; Yoshigase, S.; Nokami, J. Regioselective ring opening of benzylidene acetal protecting group(s) of hexopyranoside derivatives by DIBAL-H. Carbohydr. Res., 2008, 343(15), 2675-2679.
[http://dx.doi.org/10.1016/j.carres.2008.07.017] [PMID: 18718576]
(c) Banerjee, A.; Senthilkumar, S.; Baskaran, S. Benzylidene acetal protecting group as carboxylic acid surrogate: Synthesis of functionalized uronic acids and sugar amino acids. Chemistry, 2016, 22(3), 902-906.
[http://dx.doi.org/10.1002/chem.201503998] [PMID: 26572799]
[12]
(a) Han, J.H.; Kwon, Y.E.; Sohn, J.H.; Ryu, D.H. A facile method for the rapid and selective deprotection of methoxymethyl (MOM) ethers. Tetrahedron, 2010, 66(9), 1673-1677.
[http://dx.doi.org/10.1016/j.tet.2010.01.007]
(b) Ramesh, C.; Ravindranath, N.; Das, B. Simple, efficient, and selective deprotection of phenolic methoxymethyl ethers using silica-supported sodium hydrogen sulfate as a heterogeneous catalyst. J. Org. Chem., 2003, 68(18), 7101-7103.
[http://dx.doi.org/10.1021/jo030088+] [PMID: 12946158]
(c) Sabitha, G.; Babu, R.S.; Rajkumar, M.; Srividya, R.; Yadav, J.S. A highly efficient, mild, and selective cleavage of -methoxyethoxymethyl (MEM) ethers by ceri-um(III) chloride in acetonitrile. Org. Lett., 2001, 3(8), 1149-1151.
[http://dx.doi.org/10.1021/ol015585w] [PMID: 11348181]
[13]
(a) Jones, G.B.; Hynd, G.; Wright, J.M.; Sharma, A. On the selective deprotection of trityl ethers. J. Org. Chem., 2000, 65, 263.
(b) Malik, S.; Kartha, K.P.R. A mild, highly efficient, and chemoselective deprotection of trityl ethers of carbohydrates and nucleosides using iodine monobromide. Synlett, 2009, 11, 1809.
[14]
(a) Isidro-Llobet, A.; Alvarez, M.; Albericio, F. Amino acid-protecting groups., Chem. Rev., 2009, 109(6), 2455-2504.
[http://dx.doi.org/10.1021/cr800323s] [PMID: 19364121]
(b) Shi, S.; Szostak, M. Nickel-catalyzed diaryl ketone synthesis by N–C cleavage: Direct Negishi cross-coupling of primary amides by site-selective N, N-Di-Boc activa-tion. Org. Lett., 2016, 18(22), 5872-5875.
[http://dx.doi.org/10.1021/acs.orglett.6b02952] [PMID: 27934487]
(c) Shendage, D.M.; Fröhlich, R.; Haufe, G. Highly efficient stereoconservative amidation and deamidation of -amino acids. Org. Lett., 2004, 6(21), 3675-3678.
[http://dx.doi.org/10.1021/ol048771l] [PMID: 15469321]
[15]
(a) Schkeryantz, J.M.; Danishefsky, S.J. Total synthesis of (±)-FR-900482. J. Am. Chem. Soc., 1995, 117(16), 4722-4723.
[http://dx.doi.org/10.1021/ja00121a037]
(b) Masters, J.J.; Link, J.T.; Snyder, L.B.; Young, W.B.; Danishefsky, S.J. A total synthesis of taxol. Angew. Chem. Int. Ed. Engl., 1995, 34(16), 1723-1726.
[http://dx.doi.org/10.1002/anie.199517231]
[16]
Boyce, R.J.; Pattenden, G. Sequential sp2-sp2 coupling reactions in polyene macrolide synthesis. A novel approach to macrolactin A. Tetrahedron Lett., 1996, 37(20), 3501-3504.
[http://dx.doi.org/10.1016/0040-4039(96)00563-1]
[17]
Kim, Y.; Singer, R.A.; Carreira, E.M. Total synthesis of macrolactin A with versatile catalytic, enantioselective dienolate aldol addition reactions. Angew. Chem. Int. Ed. Engl., 1998, 37(9), 1261-1263.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980518)37:9<1261:AID-ANIE1261>3.0.CO;2-2] [PMID: 29711229]
[18]
Leblanc, Y.; Fitzsimmons, B.J.; Adams, J.; Perez, F.; Rokach, J. The total synthesis of 12-HETE and 12,20-DiHETE. J. Org. Chem., 1986, 51, 789.
[http://dx.doi.org/10.1021/jo00356a004]
[19]
Bäurle, S.; Hoppen, S.; Koert, U. Total synthesis of. Mucocin. Angew. Chem. Int. Ed. Engl., 1999, 38(9), 1263-1266.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990503)38:9<1263:AID-ANIE1263>3.0.CO;2-2] [PMID: 29711730]
[20]
Ichihara, A.; Ubukata, M.; Sakamura, S. Stereoselective synthesis of (±)-palitantin. Tetrahedron Lett., 1977, 18(39), 3473-3476.
[http://dx.doi.org/10.1016/S0040-4039(01)83269-X]
[21]
Fischer, E.; Bergmann, M. Emil fischer und max bergmann: tiber das Tannin und die Synthese ahnlicher. Stoffe. V. Ber. Dtsch. Chem. Ges., 1918, 51(2), 1760-1804.
[http://dx.doi.org/10.1002/cber.19180510261]
[22]
(a) Grindley, T.B. Applications of tin-containing intermediates to carbohydrate chemistryAdv. Carbohydr. Chem. Biochem; , 1998, 53, . (17),
(b) Zhang, Z.; Wong, C.H. Regioselective benzoylation of sugars mediated by excessive Bu2SnO: Observation of temperature promoted migration. Tetrahedron, 2002, 58, 6513.
(c) Calinaud, P.; Gelas, J.; Hanessian, S. Synthesis of isopropylidene, benzylidene, and related acetals; New York, 1997, pp. 3-33.
[23]
(a) Lawston, I.W.; Inch, T.D. Asymmetric synthesis. Part 6. Copper salt promoted Grignard reagent additions to ethyl 2,3-dideoxy-4,5:6,7-di-O-isopropylidene-D-arabino-trans-hept-2-enonate and subsequent formation of optically active 2-alkyl (or aryl) butane-1,4-dioic acids and butyro-1,4-lactones. J. Chem. Soc., Perkin Trans. 1, 1983, 1, 2629.
[http://dx.doi.org/10.1039/p19830002629]
(b) Schmidt, O.T. Isopropylidene derivatives. Methods Carbohydr. Chem, 1963, 2, 318.
(c) Merrer, Y.L.; Pelletier, C.G.; Languin, D.M.; Mestre, F.; Dureault, A.; Depezay, J.C. Total synthesis of leukotriene B4 [(+)-LTB4] and homo-LTB4 from D-mannitol. J. Org. Chem., 1989, 54(10), 2409-2416.
[http://dx.doi.org/10.1021/jo00271a032]
[24]
(a) Hanessian, S. Total synthesis of natural products: The ‘Chiron’ Approach; Pergamon Press: New York, 1983, p. 3.
(b) Levy, D. E.; Fugedi, P. The organic chemistry of sugars; CRC Press- Taylor & Francis: Boca Ratonk 2006.
(c) Ernst, B.; Magnani, J.L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov., 2009, 8, 661.
[25]
Freudenberg, K.; Hixon, R.M. Zur kenntnis der aceton;zucker, IV.: Versuche mit galaktose und mannose. Ber. Dtsch. Chem. Ges. B, 1923, 56(9), 2119-2127.
[http://dx.doi.org/10.1002/cber.19230560909]
[26]
Winnik, F.M.; Carver, J.P.; Krepinsky, J.J. Syntheses of model oligosaccharides of biological significance. 2. Synthesis of a tetramannoside and two lyxose-containing trisaccharides. J. Org. Chem., 1982, 47(14), 2701-2707.
[http://dx.doi.org/10.1021/jo00135a004]
[27]
Ault, R.G.; Howarth, W.N.; Hirst, E.L. Acetone derivatives of methylglycosides. J. Chem. Soc., 1935, 0, 1012.
[http://dx.doi.org/10.1039/jr9350001012]
[28]
Wood, H.B.J., Jr; Diehl, H.W.; Fletcher, H.G.J., Jr 1, 2: 4, 6-Di-O-benzylidene--D-glucopyranose and improvements in the preparation of 4, 6-O-benzylidene-D-glucopyranose. J. Am. Chem. Soc., 1957, 79(8), 1986-1988.
[http://dx.doi.org/10.1021/ja01565a062]
[29]
Liptak, A.; Imre, J.; Nanasi, P. Preparation of carbohydrate isopropylidene derivatives with 2,2-dimethoxypropane in the presence of toluene-p-sulphonic acid. Carbohydr. Res., 1981, 92(1), 154-156.
[http://dx.doi.org/10.1016/S0008-6215(00)85991-1]
[30]
(a) Boulineau, F.P.; Wei, A. Stereoselective synthesis of [13C]methyl 2-[15N]amino-2-deoxy--D-glucopyranoside derivatives. Carbohydr. Res., 2001, 334(4), 271-279.
[http://dx.doi.org/10.1016/S0008-6215(01)00203-8] [PMID: 11527528]
(b) Kartha, K.P.R. Iodine, a novel catalyst in carbohydrate reactions I. O-isopropylidination of carbohydrates. Tetrahedron Lett., 1986, 27(29), 3415-3416.
[http://dx.doi.org/10.1016/S0040-4039(00)84810-8]
[31]
(a) Helferich, B. Trityl ethers of carbohydrates. Adv. Carbohydr. Chem., 1948, 3, 79-111.
[http://dx.doi.org/10.1016/S0096-5332(08)60027-2]
(b) Smith, M.; Rammle, D.H.; Goldberg, I.H.; Khorana, H.G. Studies on polynucleotides. XIV.1 specific synthesis of the C3;-C5; interribonucleotide linkage. Syntheses of uridylyl-(3′→5′)-uridine and uridylyl-(3′→5′)-adenosine. J. Am. Chem. Soc., 1969, 84(3), 430-440.
[http://dx.doi.org/10.1021/ja00862a023]
[32]
(a) Haines, A.H. The selective removal of protecting groups in carbohydrate chemistry. Adv. Carbohydr. Chem. Biochem., 1981, 39, 13.
(b) Geles, J. The reactivity of cyclic acetals of aldoses and aldosides. Adv. Carbohydr. Chem. Biochem., 1981, 39, 71.
(c) Belder, A.N. de Cyclic acetals of the aldoses and aldosides highlights of the literature since 1964, and a supplement to the tables. Adv. Carbohydr. Chem. Biochem., 1977, 34, 179.
(d) Brady, R.F.J. Cyclic acetals of ketoses. Adv. Carbohydr. Chem. Biochem., 1971, 26, 197.
(e) Narouz, M.R.; Soliman, S.E.; Bassily, R.W.; El-Sokkary, R.I.; Nasr, A.Z.; Nashed, M.A. Regioselective synthesis of novel mono-substituted d-lactose fatty acid ester derivatives. Lett. Org. Chem., 2013, 10, 502.
[33]
(a) Barbot, F.; Miginiac, P. Preparation of 3-alkenals and 3-alkynals by hydrolysis of the corresponding acetals. Synthesis, 1983, 1983(8), 651-654.
[http://dx.doi.org/10.1055/s-1983-30461]
(b) Sterzycki, R. Pyridinium tosylate, a mild catalyst for formation and cleavage of dioxolane-type acetals. Synthesis, 1979, 1979(9), 724-725.
[http://dx.doi.org/10.1055/s-1979-28814]
(c) Kantam, M.L.; Swapna, V.; Santhi, P.L. MoO2(acac)2-A mild and efficient catalyst for the deprotection of acetals. Synth. Commun., 1995, 25(17), 2529-2532.
[http://dx.doi.org/10.1080/00397919508011796]
(d) Ma, S.; Venanzi, L.M. The efficient deprotection of acetals and tetrahydropyranyl derivatives of phenols using [Ru(CH3CN)3 (triphos)](OTf)2 as a catalyst. Tetrahedron Lett., 1993, 34(50), 8071-8074.
[http://dx.doi.org/10.1016/S0040-4039(00)61453-3]
(e) Ford, K.L.; Roskamp, E.J. An improved procedure for the deprotection of acetals with tin dichloride dihydrate. J. Org. Chem., 1993, 58(15), 4142-4143.
[http://dx.doi.org/10.1021/jo00067a059]
(f) Chang, C.; Chu, K.C.; Yue, S. Anhydrous deprotection of dimethyl acetals with acetyl chloride/ZnCl2. Synth. Commun., 1992, 22(8), 1217-1220.
[http://dx.doi.org/10.1080/00397919208021108]
(g) Sarmah, P.; Barua, N.C. A facile procedure for selective conversion of ketals to carbonyl compounds. Tetrahedron Lett., 1989, 30(35), 4703-4704.
[http://dx.doi.org/10.1016/S0040-4039(01)80779-6]
(h) Lipshutz, B.H.; Pollart, D.; Monforte, J.; Kotsuki, H. Pd (II)-catalyzed acetal/ketal hydrolysis/exchange reactions. Tetrahedron Lett., 1985, 26(6), 705-708.
[http://dx.doi.org/10.1016/S0040-4039(00)89114-5]
[34]
Szarek, W.A.; Zamojski, A.; Tiwari, K.N.; Ison, E.R. A new, facile method for cleavage of acetals and dithioacetals in carbohydrate derivatives. Tetrahedron Lett., 1986, 33(33), 3827-3830.
[http://dx.doi.org/10.1016/S0040-4039(00)83890-3]
[35]
(a) Tanemura, K.; Suzuki, T.; Horaguchi, T. Deprotection of acetals and silyl ethers using some -acceptors. Bull. Chem. Soc. Jpn., 1994, 67(1), 290-292.
[http://dx.doi.org/10.1246/bcsj.67.290]
(b) Kametani, T.; Kondoh, H.; Honda, T.; Ishizone, H.; Suzuki, Y.; Mori, W. Simple and chemoselective deprotection of acetals using aqueous dimethyl sulfoxide. Chem. Lett., 1989, 18(5), 901-904.
[http://dx.doi.org/10.1246/cl.1989.901]
(c) Maiti, G.; Roy, S.C. A mild and efficient method for selective deprotection of tetrahydropyranyl ethers to alcohols. J. Org. Chem., 1996, 61(17), 6038-6039.
[http://dx.doi.org/10.1021/jo9604898]
(d)Elmory, S.S.; Bhatt, M.V.; Pelter, A. The generation of carbonyl compounds from acetals and ketals by iodotrichlorosilane (ITCS). Tetrahedron Lett., 1992, 33(12), 1657-1660.
[http://dx.doi.org/10.1016/S0040-4039(00)91700-3]
(e) Rao, M.N.; Kumar, P.; Singh, A.P.; Reddy, R.S. A convenient method for the cleavage of acetals using zeolites. Synth. Commun., 1992, 22(9), 1299-1305.
[http://dx.doi.org/10.1080/00397919208019312]
(f) Hoyer, S.; Laszlo, P. Catalysis by acidic clay of the protective tetrahydropyranylation of alcohols and phenols, Synthesis1986, 655. (h) Otera, J.; Nozaki, H. Distan-noxane-catalyzed cleavage of acetals and silyl ethers. Tetrahedron Lett., 1986, 27, 5743.
(g) Coppola, G.M. Synthesis, 1984, 61, 6646.
[36]
Iwata, M.; Ohrui, H. A simple regioselective partial hydrolysis of di-O-isopropylidene monosaccharides with Copper(II). Ion. Bull. Chem. Soc. Jpn., 1981, 54(9), 2837-2838.
[http://dx.doi.org/10.1246/bcsj.54.2837]
[37]
(a) Fleet, G.W.J.; Nicholas, S.J.; Smith, P.W.; Evans, S.V.; Fellow, L.E.; Nash, R.J. Potent competitive inhibition of -galactosidase and -glucosidase activity by 1,4-dideoxy-1,4-iminopentitols: Syntheses of 1,4-dideoxy-1,4-imino-D-lyxitol and of both enantiomers of 1,4-dideoxy-1,4-iminoarabinitol. Tetrahedron Lett., 1985, 26(26), 3127-3130.
[http://dx.doi.org/10.1016/S0040-4039(00)98636-2]
(b) Zhang, P.; Ling, C-C. A mild acetolysis procedure for the regioselective removal of isopropylidene in di-O-isopropylidene-protected pyranoside systems. Carbohydr. Res., 2017, 445, 7-13.
[http://dx.doi.org/10.1016/j.carres.2017.03.021] [PMID: 28376356]
[38]
Albert, R.; Dax, K.; Plaschko, R.; Stlitz, A. Tetrafluoroboric acid, an efficient catalyst in carbohydrate protection and deprotection reactions. Carbohydr. Res., 1985, 137, 282-290.
[http://dx.doi.org/10.1016/0008-6215(85)85171-5]
[39]
Manna, S.; Viala, J.; Yadagiri, P.; Falck, J.R.; Viala, J.; Yadagiri, P.; Falck, J.R. Synthesis of 12 (S), 20-, 12 (S), 19 (R)-, and 12 (S), 19 (S)-dihydroxyeicosa-cis-5, 8, 14-trans-10-tetraenoic acids, metabolites of 12 (S)-hete. Tetrahedron Lett., 1986, 27(24), 2679-2682.
[http://dx.doi.org/10.1016/S0040-4039(00)84615-8]
[40]
Kim, K.S.; Song, Y.H.; Lee, B.H.; Hahn, C.S. Efficient and selective cleavage of acetals and ketals using ferric chloride adsorbed on silica gel. J. Org. Chem., 1986, 51(3), 404-407.
[http://dx.doi.org/10.1021/jo00353a027]
[41]
(a) Fleet, G.W.J.; Witty, D.R. Synthesis of homochiral β-hydroxy-α-aminoacids [(2S,3R,4R)-3,4-dihydroxyproline and (2S,3R,4R)-3,4-dihydroxypipecolic aicd and of 1,4-dideoxy-1,4-imino-D-arabinitol [DAB1] and fagomine. Tetrahedron Asymmetry, 1990, 1(2), 119-136.
[http://dx.doi.org/10.1016/S0957-4166(00)86337-5]
(b) Yu, H.; Cao, H.; Tiwari, V.K.; Li, Y.; Chen, X. Chemoenzymatic synthesis of C8-modified sialic acids and related α2-3- and α2-6-linked sialosides. Bioorg. Med. Chem. Lett., 2011, 21(17), 5037-5040.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.083] [PMID: 21592790]
(c) Furuhata, K.; Ogura, H. Synthesis of 2,7- anhydrosialic acids. Chem. Pharm. Bull. (Tokyo), 1992, 40, 3197.
[http://dx.doi.org/10.1248/cpb.40.3197]
[42]
Patil, R.S.; Ahire, K.M.; Ramana, C.V. Stereospecific synthesis of C-arabinofuranosides and carba-disaccharide analogues of Motif C of cell wall AG complex of Mtb. Tetrahedron Lett., 2012, 53(47), 6347-6350.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.015]
[43]
Gerspacher, M.; Rapoport, H. 2-Amino-2-deoxyhexoses as chiral educts for hydroxylated indolizidines. Synthesis of (+)-Castanospermine and (+)-6-Epicastanospermine. J. Org. Chem., 1991, 56(11), 3700-3706.
[http://dx.doi.org/10.1021/jo00011a047]
[44]
Park, K.H.; Yoon, Y.J.; Lee, S.G. Efficient cleavage of terminal acetonide group: Chirospecific synthesis of 2, 5-dideoxy-2, 5-imino-D-mannitol. Tetrahedron Lett., 1994, 35(52), 9737-9740.
[http://dx.doi.org/10.1016/0040-4039(94)88373-4]
[45]
García Fernández, J.M.; Ortiz Mellet, C.; Moreno Marín, A.; Fuentes, J. A mild and efficient procedure to remove acetal and dithioacetal protecting groups in carbohydrate derivatives using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Carbohydr. Res., 1995, 274, 263-268.
[http://dx.doi.org/10.1016/0008-6215(95)00065-2] [PMID: 7585709]
[46]
Ramiz, P.; Ronco, A.; Mackenzie, G.; Villa, G.P. Synthesis of novel bis (glycosyl) ethers as bolaamphiphile surfactants. Carbohydr. Res., 1995, 266(2), 171-189.
[http://dx.doi.org/10.1016/0008-6215(94)00269-L]
[47]
Chen, Y.H.; Tseng, Y.T.; Luh, T.Y. Selective deprotection of an acetal group in monosaccharide derivatives and related compounds using Me3SiCH2MgCl. Chem. Commun. (Camb.), 1996, (3), 327.
[http://dx.doi.org/10.1039/cc9960000327]
[48]
Sen, S.E.; Roach, S.L.; Boggs, J.K.; Ewing, G.J.; Magranth, J. Ferric chloride hexahydrate: A mild hydrolytic agent for the deprotection of acetals. J. Org. Chem., 1997, 62(19), 6684-6686.
[http://dx.doi.org/10.1021/jo970509l]
[49]
Taniguchi, T.; Kadota, K.; ElAzab, A.S.; Ogasawara, K. Deprotection of tetrahydropyranyl ethers with montmorillonite K-10 clay in methanol. Synlett, 1999, 1999(8), 1247-1248.
[http://dx.doi.org/10.1055/s-1999-2822]
[50]
Majumdar, S.; Bhattacharjya, A. Thiourea: A novel cleaving agent for 1, 3-dioxolanes. J. Org. Chem., 1999, 64(15), 5682-5685.
[http://dx.doi.org/10.1021/jo981115c] [PMID: 11674640]
[51]
Duynstee, H.I.; Koning, M.C.; Ovaa, H.; Van der Marel, G.A.; Boom, J.H.V. Synthesis of Verbascoside: A dihydroxyphenylethyl glycoside with diverse bioactivity. Eur. J. Org. Chem., 1999, 1999(10), 2623-2632.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199910)1999:10<2623:AID-EJOC2623>3.0.CO;2-K]
[52]
Meshram, H.M.; Sumithra, G.; Reddy, G.S.; Ganesh, Y.S.S.; Yadav, J.S. Microwave thermolysis V: A rapid and selective method for the cleavage of THP ethers, acetals and acetonides using clay supported ammonium nitrate “Clayan” in dry media. Synth. Commun., 1999, 29(16), 2807-2815.
[http://dx.doi.org/10.1080/00397919908086448]
[53]
Vijayasaradhi, S.; Singh, J.; Aidhena, I.S. An efficient, selective hydrolysis of terminal isopropylidene acetal protection by Zn(NO3)2·6H2O in acetonitrile. Synlett, 2000, 1, 110.
[54]
Takao, K.; Ishihara, J.; Tadano, K. Total syntheses of (+)-eremantholide A and (-)- verrucarol: From d-glucose to biologically intriguing sesquiterpenes. studies in natural products chemistry; , 2000, 24, pp. (PART E)3-51
[http://dx.doi.org/10.1016/S1572-5995(00)80043-5]
[55]
Yadav, J.S.; Reddy, B.V.S.; Reddy, K.S. Yb(Otf)3·H2O: A novel reagent for the chemoselective hydrolysis of isopropylidene acetals. Chem. Lett., 2001, 30(5), 430-431.
[http://dx.doi.org/10.1246/cl.2001.430]
[56]
Benito-Alifonso, D.; Jones, R.A.; Tran, A.T.; Woodward, H.; Smith, N.; Galan, M.C. Synthesis of mucin-type O-glycan probes as aminopropyl glycosides. Beilstein J. Org. Chem., 2013, 9, 1867-1872.
[http://dx.doi.org/10.3762/bjoc.9.218] [PMID: 24062854]
[57]
Barone, G.; Bedini, E.; Iadonisi, A.; Manzo, E.; Parrilli, M. Ceric ammonium nitrate/pyridine: A mild reagent for the selective deprotection of cyclic acetals and ketals in the presence of acid labile protecting groups. Synlett, 2002, 10, 1645.
[58]
Swamy, N.R.; Venkateswarlu, Y. A mild and efficient method for chemoselective deprotection of acetonides by bismuth (III) trichloride. Tetrahedron Lett., 2002, 43(42), 7549-7552.
[http://dx.doi.org/10.1016/S0040-4039(02)01809-9]
[59]
Gurjar, M.K.; Bera, S. Carbohydrate-based synthesis of naturally occurring marine metabolites slagenins B and C. Org. Lett., 2002, 4(21), 3569-3570.
[http://dx.doi.org/10.1021/ol020112q] [PMID: 12375889]
[60]
Ates, A.; Gautier, A.; Leroy, B.; Plancher, J.M.; Quesnel, Y.; Vanherck, J.C.; Marko, I.E. Mild and chemoselective catalytic deprotection of ketals and acetals using ceri-um(IV) ammonium nitrate. Tetrahedron, 2003, 59(45), 8989-8999.
[http://dx.doi.org/10.1016/j.tet.2003.03.002]
[61]
Mahender, G.; Ramu, R.; Ramesh, C.; Das, B. A simple and facile chemo-and regioselective deprotection of acetonides using silica supported sodium hydrogen sulfate as a heterogeneous catalyst. Chem. Lett., 2003, 32(8), 734-735.
[http://dx.doi.org/10.1246/cl.2003.734]
[62]
Sala, M.; Jakse, R.; Svete, J.; Golobic, A.; Golic, L.; Stanovnik, B. Synthesis of 3-(- and -D-arabinofuranosyl)-6-chloro-1,2,4-triazolo[4,3-b]pyridazine. Carbohydr. Res., 2003, 338(20), 2057-2066.
[http://dx.doi.org/10.1016/S0008-6215(03)00347-1] [PMID: 14505872]
[63]
Chari, P, M.; Syamasundar, K. Polymer-supported ferric chloride as a heterogeneous catalyst for chemoselective deprotection of acetonides. Synthesis, 2005, 5, 0708.,
[64]
Mahalingam, S.M.; Aidhen, I.S.Z. Efficient and rapid regioselective deprotection of isopropylidene ketals. Z. Naturforsch. B. J. Chem. Sci., 2005, 60(9), 962-966.
[http://dx.doi.org/10.1515/znb-2005-0909]
[65]
Sabitha, G.; Reddy, G.S.K.K.; Reddy, K.B.; Reddy, N.M.; Yadav, J.S. Vanadium (III) chloride: A mild and efficient catalyst for the chemoselective deprotection of ace-tonides. J. Mol. Catal. Chem., 2005, 238(1-2), 229-232.
[http://dx.doi.org/10.1016/j.molcata.2005.05.028]
[66]
Agarwal, A.; Vankar, Y.D. Selective deprotection of terminal isopropylidene acetals and trityl ethers using HClO4 supported on silica gel. Carbohydr. Res., 2005, 340(9), 1661-1667.
[http://dx.doi.org/10.1016/j.carres.2005.04.005] [PMID: 15890321]
[67]
Yadav, J.S.; Raghavendra, S.; Satyanarayana, M.; Balanarsaiah, E. Phosphomolybdic acid supported on silica gel: An efficient, mild and reusable catalyst for the chemoselective hydrolysis of acetonides. Synlett, 2005, 16(16), 2461-2464.
[http://dx.doi.org/10.1055/s-2005-872701]
[68]
Reddy, S.M.; Reddy, Y.V.; Venkateswarlu, Y. A mild and efficient method for the chemoselective deprotection of acetonides with lanthanum (III) nitrate hexahydrate. Tetrahedron Lett., 2005, 46(43), 7439-7441.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.081]
[69]
Yadav, J.S.; Satyanarayana, M.; Raghavendra, S.; Balanarsaiah, E. Chemoselective hydrolysis of terminal isopropylidene acetals in acetonitrile using molecular iodine as a mild and efficient catalyst. Tetrahedron Lett., 2005, 46(50), 8745-8748.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.043]
[70]
Bera, S. An enantioselective synthesis of 1-azaspiro [5.5] undecane ring system of histrionicotoxin alkaloids from D (+)-glucose. Heterocycles, 2005, 65(12), 2901.
[http://dx.doi.org/10.3987/COM-05-10540]
[71]
Gurjar, M.K.; Mondal, D.; Ravindranadh, S.V.; Chorghade, M.S. Clay;mediated selective hydrolysis of 5′‐O‐acetyl‐2′,3′‐isopropylidene/cyclohexylidene nucleo-sides. Synth. Commun., 2006, 36(16), 2321-2327.
[http://dx.doi.org/10.1080/00397910600639968]
[72]
Gautum, D.; Kumar, N.; Venkateswara, R. Chiron approach for the synthesis of (1S, 2R, 5R, 7S)-2-hydroxy-exo-brevicomin. Tetrahedron Asymmetry, 2006, 17(5), 819-821.
[http://dx.doi.org/10.1016/j.tetasy.2006.02.020]
[73]
Rajput, V.K.; Roy, B.; Mukhopadhyay, B. Sulfuric acid immobilized on silica: An efficient reusable catalyst for selective hydrolysis of the terminal O-isopropylidene group of sugar derivatives. Tetrahedron Lett., 2006, 47(39), 6987-6991.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.125]
[74]
Rawal, G.K.; Rani, S.; Kumar, A.; Vankar, Y.D. Nafion-H mediated selective deprotection of terminal isopropylidene acetals and trityl ethers. Application in the synthe-sis of a substituted piperidone. Tetrahedron Lett., 2006, 47(51), 9117-9120.
[http://dx.doi.org/10.1016/j.tetlet.2006.10.067]
[75]
Wu, Q.; Chen, W.; Wang, Y.; Qu, Y.; Zhang, Q. Mild, efficient and highly selective hydrolysis of acetonides with antimony trichloride. Lett. Org. Chem., 2006, 3(4), 271-274.
[http://dx.doi.org/10.2174/157017806776114630]
[76]
Mohapatra, D.K.; Mondal, D.; Gurjar, M.K. Towards the enantioselective synthesis of anti-HIV agents litseaverticillols C and K from D-glucose. Tetrahedron, 2007, 63(12), 2613-2621.
[http://dx.doi.org/10.1016/j.tet.2007.01.037]
[77]
Chang, C, C.; Liao, B, S.; Li, S, T. Deprotection of acetals and ketals in a colloidal suspension generated by sodium tetrakis (3, 5- trifluoromethylphenyl) borate in water. Synlett, 2007, 2, 0283.
[78]
Yan, M.C.; Chen, Y.N.; Wu, H.T.; Lin, C.C.; Chen, C.T.; Lin, C.C. Removal of acid-labile protecting groups on carbohydrates using water-tolerant and recoverable vanadyl triflate catalyst. J. Org. Chem., 2007, 72(1), 299-302.
[http://dx.doi.org/10.1021/jo061881g] [PMID: 17194117]
[79]
Bhaskar, P.M.; Mathiselvam, M.; Loganathan, D. Zeolite catalyzed selective deprotection of di- and tri-O-isopropylidene sugar acetals. Carbohydr. Res., 2008, 343(10-11), 1801-1807.
[http://dx.doi.org/10.1016/j.carres.2008.05.006] [PMID: 18502410]
[80]
Koyama, M. Hydrocracking of lignin-related model dimers with Fe2O3/montmorillonite catalyst. Mokuzai Gakkaishi, 1995, 41, 1017.
[81]
Pfrengle, F.; Dekaris, V.; Schefzig, L.; Zimmer, R.; Reissig, H.U. Indium trichloride mediated cleavage of acetonides in the presence of acid-labile functional groups - enhancing the synthetic utility of 1,3-dioxolanyl-substituted 1,2-oxazines. Synlett, 2008, 19, 2965.
[82]
Procopio, A.; Gaspari, M.; Nardi, M.; Oliverio, M.; Romeo, R. MW-assisted Er (OTf)3-catalyzed mild cleavage of isopropylidene acetals in Tricky substrates. Tetrahedron Lett., 2008, 49(12), 1961-1964.
[http://dx.doi.org/10.1016/j.tetlet.2008.01.089]
[83]
Golden, K.C.; Gregg, B.T.; Quinn, J.F. Mild, versatile, and chemoselective indium (III) triflate-catalyzed deprotection of acetonides under microwave heating conditions. Tetrahedron Lett., 2010, 51(31), 4010-4013.
[http://dx.doi.org/10.1016/j.tetlet.2010.05.116]
[84]
Vanlaldinpuia, K.; Bez, G. Useful methods for the synthesis of isopropylidenes and their chemoselective cleavage. Tetrahedron Lett., 2011, 52(29), 3759-3764.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.050]
[85]
Maddani, M.A.R.; Prabhu, K.R. Ketal-free deprotection of terminal acetonides by using tert-butyl hydroperoxide in aqueous medium. Synlett, 2011, 6, 0821.,
[86]
Mukherjee, S.; Sengupta, A.; Roy, R.C. Environment friendly chemoselective deprotection of acetonides and cleavage of acetals and ketals in aqueous medium without using any catalyst or organic solvent. J. Chem. Sci., 2013, 125(6), 1493-1496.
[http://dx.doi.org/10.1007/s12039-013-0514-7]
[87]
Xiong, J.; Yan, S.; Ding, N.; Zhang, W.; Li, Y. Ultrasound-assisted selective deprotection of terminal acetonides catalyzed by silica-supported boron trifluoride. J. Carbohydr. Chem., 2013, 32(3), 184-192.
[http://dx.doi.org/10.1080/07328303.2012.762980]
[88]
Stacey, B.E.; Tierney, B. The use of boric and benzeneboronic acids in the partial acetonation of monosaccharides. Carbohydr. Res., 1976, 49, 129-140.
[http://dx.doi.org/10.1016/S0008-6215(00)83131-6]
[89]
Majumdar, S.; Chakraborty, M.; Maiti, D.K.; Chowdhury, S.; Hossain, J. Activation of 1, 3-dioxolane by a protic ionic liquid in aqueous media: A green strategy for the selective hydrolytic cleavage of acetals and ketals. RSC Advances, 2014, 4(32), 16497.
[http://dx.doi.org/10.1039/c4ra00870g]
[90]
Liu, Y.; Zeng, J.; Sun, J.; Cai, L.; Zhao, Y.; Fang, J.; Hu, B.; Shu, P.; Menga, L.; Wan, Q. 1, 4-Dithiothreitol mediated cleavage of the acetal and ketal type of diol protecting groups. Org. Chem. Front., 2018, 5(16), 2427-2431.
[http://dx.doi.org/10.1039/C8QO00247A]
[91]
Seegehall, M.A.; Vinayaka, A.C.; Kanchugarakoppal, R.; Toreshettahally, R.S. Aqueous chloroplatinic acid: A green, chemoselective and reusable catalyst for the depro-tection of acetals, ketals, dioxolanes and oxathiolanes. ChemistrySelect, 2018, 3(7), 1999-2003.
[http://dx.doi.org/10.1002/slct.201800032]
[92]
Nikam, R.; Gore, K.R. A mild and convenient approach for selective acetonide cleavage involved in carbohydrate synthesis using PPA-SiO2. J. Carbohydr. Chem., 2020, 39(2-3), 63-74.
[http://dx.doi.org/10.1080/07328303.2019.1708374]
[93]
Gupta, S.; Bera, S.; Mondal, D. Nascent-HBr-catalyzed removal of orthogonal protecting groups in aqueous surfactants. J. Org. Chem., 2020, 85(4), 2635-2645.
[http://dx.doi.org/10.1021/acs.joc.9b02561] [PMID: 31875403]
[94]
Steiner, A.; Znidar, D.; Ötvös, S.B.; Snead, D.R.; Dallinger, D.; Kappe, C.O. A high;yielding synthesis of EIDD;2801 from uridine. Eur. J. Org. Chem., 2020, 2020(43), 6736-6739.
[http://dx.doi.org/10.1002/ejoc.202001340] [PMID: 33664631]
[95]
Duong, K.H.Y. Duong, K.H.Y.; Goldschmidt Gőz, V.; Pintér, I.; Perczel, A. Synthesis of chimera oligopeptide including furanoid β-sugar amino acid derivatives with free OHs: Mild but successful removal of the 1,2-O-isopropylidene from the building block. Amino Acids, 2021, 53(2), 281-294.
[http://dx.doi.org/10.1007/s00726-020-02923-3] [PMID: 33559000]
[96]
Mehltretter, C.L.; Alexander, B.H.; Mellies, R.L.; Rist, C.E. A practical synthesis of D-glucuronic acid through the catalytic oxidation of 1,2-isopropylidene-D-glucose. J. Am. Chem. Soc., 1951, 73(6), 2424-2427.
[http://dx.doi.org/10.1021/ja01150a005]
[97]
Liu, M.; Li, B.H.; Li, X.B.; Li, B.L. Selective hydrolysis of O-isopropylidene derivatives of sugars and polyhydroxy alcohols catalyzed by sulfonated carbon nanocage. J. Chem. Soc. Pak., 2016, 38, 749.
[98]
Jin, Y.; Biancotto, G.; Just, G. Just, George. A stereoselective synthesis of dinucleotide phosphorothioates, using chiral phosphoramidites as intermediates. Tetrahedron Lett., 1996, 37(7), 973-976.
[http://dx.doi.org/10.1016/0040-4039(95)02355-0]
[99]
Alekseev, Y.E.; Zhdanov, Y.A.; Sudareva, T.P. Cross-linked polystyrene with immobilized glucopodand (coronand) fragments as a polymeric complexone for s-ketal cations. Russ. J. Gen. Chem., 2005, 75(12), 1879-1882.
[http://dx.doi.org/10.1007/s11176-006-0006-2]
[100]
Jamois, F.; Le Goffic, F.; Yvin, J.C.; Plusquelle, D.; Ferrieres, V. How to improve chemical synthesis of laminaribiose on a large scale. Open Glycosci., 2008, 1(1), 19-24.
[http://dx.doi.org/10.2174/1875398100801010019]
[101]
Tomooka, K.; Sakamaki, J.; Harada, M.; Wada, R. Enantioselective [1, 2]-Stevens rearrangement using sugar-derived alkoxides as chiral promoters. Synlett, 2008, 2008(5), 683-686.
[http://dx.doi.org/10.1055/s-2008-1032107]
[102]
Sarpe, V.A.; Kulkarni, S.S. Expeditious synthesis of Mycobacterium tuberculosis sulfolipids SL-1 and Ac2SGL analogues. Org. Lett., 2014, 16(21), 5732-5735.
[http://dx.doi.org/10.1021/ol5027987] [PMID: 25322198]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy