Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Chemistry and Applications of the Quinoxaline Compounds

Author(s): Mousa Soleymani* and Mahdieh Chegeni*

Volume 23, Issue 17, 2019

Page: [1789 - 1827] Pages: 39

DOI: 10.2174/1385272823666190926094348

Price: $65

Abstract

The quinoxaline derivatives are beneficial compounds because of their various medicinal and industrial applications. They are well-known for application in organic light emitting devices, polymers and pharmaceutical agents. The quinoxaline-containing polymers are applicable in optical devices due to their thermal stability and low band gap. There are many reported procedures for the synthesis of bis- and polyquinoxalines and quinoxaline-containing macrocycles. The quinoxaline-based compounds as fascinating structures are important subjects of interest in either basic or applied sciences. This review summarizes the latest progresses related to the quinoxalines, quinoxaline-containing macrocycles, and bis- and poly quinoxalines, including the synthesis, functionalization and modification methods and applications of these compounds.

Keywords: Quinoxaline, bisquinoxaline, polyquinoxaline, quinoxaline-containing macrocycles, solar cells, electronic devices.

Next »
Graphical Abstract
[1]
Sakanta, G.; Makino, K.; Kurasawa, Y. Recent progress in the quinoline chemistry. Synthesis and biological activity. Heterocycles, 1998, 27, 2481-2515.
[2]
Budakoti, A.; Bhat, A.R.; Azam, A. Synthesis of new 2-(5-substituted-3-phenyl-2-pyrazolinyl)-1,3-thiazolino[5,4-b]quinoxaline derivatives and evaluation of their antiamoebic activity. Eur. J. Med. Chem., 2009, 44(3), 1317-1325.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.002] [PMID: 18378360]
[3]
Ishikawa, H.; Sugiyama, T.; Kurita, K.; Yokoyama, A. Synthesis and antimicrobial activity of 2,3-bis(bromomethyl)quinoxaline derivatives. Bioorg. Chem., 2012, 41-42, 1-5.
[http://dx.doi.org/10.1016/j.bioorg.2011.12.002] [PMID: 22245018]
[4]
Ries, U.J.; Priepke, H.W.M.; Hauel, N.H.; Handschuh, S.; Mihm, G.; Stassen, J.M.; Wienen, W.; Nar, H. Heterocyclic thrombin inhibitors. Part 2: Quinoxalinone derivatives as novel, potent antithrombotic agents. Bioorg. Med. Chem. Lett., 2003, 13(14), 2297-2302.
[http://dx.doi.org/10.1016/S0960-894X(03)00443-8] [PMID: 12824021]
[5]
Balzarini, J.; Karlsson, A.; Meichsner, C.; Paessens, A.; Riess, G.; De Clercq, E.; Kleim, J.P. Resistance pattern of human immunodeficiency virus type 1 reverse transcriptase to quinoxaline S-2720. J. Virol., 1994, 68(12), 7986-7992.
[PMID: 7525984]
[6]
Tandon, V.K.; Yadav, D.B.; Maurya, H.K.; Chaturvedi, A.K.; Shukla, P.K. Design, synthesis, and biological evaluation of 1,2,3-trisubstituted-1,4-dihydrobenzo[g]quinoxaline-5,10-diones and related compounds as antifungal and antibacterial agents. Bioorg. Med. Chem., 2006, 14(17), 6120-6126.
[http://dx.doi.org/10.1016/j.bmc.2006.04.029] [PMID: 16806945]
[7]
Issa, D.A.E.; Habib, N.S.; Abdel Wahab, A.E. Design, synthesis and biological evaluation of novel 1,2,4-triazolo and 1,2,4-triazino[4,3-a]quinoxalines as potential anticancer and antimicrobial agents. MedChemComm, 2015, 6, 202-211.
[http://dx.doi.org/10.1039/C4MD00257A]
[8]
Obrien, D.; Weaver, M.S.; Lidzey, D.G.; Bradley, D.D.C. Use of poly(phenyl quinoxaline) as an electron transport material in polymer light-emitting diodes. Appl. Phys. Lett., 1996, 69, 881-883.
[http://dx.doi.org/10.1063/1.117975]
[9]
Mizuno, T.; Wei, W.H.; Eller, L.R.; Sessler, J.L. Phenanthroline complexes bearing fused dipyrrolylquinoxaline anion recognition sites: Efficient fluoride anion receptors. J. Am. Chem. Soc., 2002, 124(7), 1134-1135.
[http://dx.doi.org/10.1021/ja017298t] [PMID: 11841258]
[10]
Justin Thomas, K.R.; Velusamy, M.; Lin, J.T.; Chuen, C.H.; Tao, Y.T. Chromophore-labeled quinoxaline derivatives as efficient electroluminescent materials. Chem. Mater., 2005, 17, 1860-1866.
[http://dx.doi.org/10.1021/cm047705a]
[11]
Moshkina, T.N.; Nosova, E.V.; Lipunova, G.N.; Valova, M.S.; Charushin, V.N. New 2,3-bis(5-arylthiophen-2-yl)quinoxaline derivatives: Synthesis and photophysical properties. Asian J. Org. Chem., 2018, 7, 1080-1084.
[http://dx.doi.org/10.1002/ajoc.201800217]
[12]
Etzkorn, M.; Timmerman, J.C.; Brooker, M.D.; Yu, X.; Gerken, M. Preparation, structures and preliminary host-guest studies of fluorinated syn-bis-quinoxaline molecular tweezers. Beilstein J. Org. Chem., 2010, 6(39), 39.
[http://dx.doi.org/10.3762/bjoc.6.39] [PMID: 20502656]
[13]
Ishi-i, T.; Moriyama, Y. Bis(thiadiazole)quinoxaline- and bis(thiadiazole) phenanthroquinoxaline-based donor–acceptor type dyes showing simultaneous emission efficiency and color changes from molecular aggregation and twisted intramolecular charge transfer. Tetrahedron, 2017, 73(8), 1157-1164.
[http://dx.doi.org/10.1016/j.tet.2017.01.011]
[14]
Kawanishi, N.; Sugimoto, T.; Shibata, J.; Nakamura, K.; Masutani, K.; Ikuta, M.; Hirai, H. Structure-based drug design of a highly potent CDK1,2,4,6 inhibitor with novel macrocyclic quinoxalin-2-one structure. Bioorg. Med. Chem. Lett., 2006, 16(19), 5122-5126.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.026] [PMID: 16876403]
[15]
Ballistreri, F.P.; Brancatelli, G.; Demitri, N.; Geremia, S.; Guldi, D.M.; Melchionna, M.; Pappalardo, A.; Prato, M.; Tomaselli, G.A.; Trusso Sfrazzetto, G. Recognition of C60 by tetra- and tri-quinoxaline cavitands. Supramol. Chem., 2016, 28(5-6), 601-607.
[http://dx.doi.org/10.1080/10610278.2016.1150594]
[16]
Vachon, J.; Harthong, S.; Dubessy, B.; Dutasta, J-P.; Vanthuyne, N.; Roussel, Ch.; Naubron, J-V. The absolute configuration of an inherently chiral phosphonatocavitand and its use toward the enantioselective recognition of L-adrenaline. Tetrahedron Asymmetry, 2010, 21, 1534-1541.
[http://dx.doi.org/10.1016/j.tetasy.2010.03.028]
[17]
Lee, J.Y.; Heo, S.W.; Choi, H.; Kwon, Y.J.; Haw, J.R.; Moon, D.K. Synthesis and characterization of 2,1,3-benzothiadiazol e-thieno [3,2-b] thiophene- based charge transferred-type polymers for photovoltaic application. Sol. Energy Mater. Sol. Cells, 2009, 93, 1932-1938.
[http://dx.doi.org/10.1016/j.solmat.2009.07.006]
[18]
Yun, D.H.; Yoo, H-S.; Heo, S.W.; Song, H.J.; Moon, D.K.; Woo, J.W.; Park, Y.S. Synthesis and photovoltaic characterization of D/A structure compound based on N-substituted phenothiazine and benzothiadiazole. J. Ind. Eng. Chem., 2013, 19(2), 421-426.
[http://dx.doi.org/10.1016/j.jiec.2012.08.033]
[19]
Wang, E.; Hou, L.; Wang, Z.; Hellström, S.; Zhang, F.; Inganäs, O.; Andersson, M.R. An easily synthesized blue polymer for high-performance polymer solar cells. Adv. Mater., 2010, 22(46), 5240-5244.
[http://dx.doi.org/10.1002/adma.201002225] [PMID: 20827685]
[20]
Frizon, T.E.A.; Duarte, R.C.; Westrup, J.L.; Perez, J.M.; Menosso, G.; Duarte, L.G.T.A.; Germino, J.C.; Faleiros, M.M.; Zambon Atvars, T.D.; Zapp, E.; Rodembusch, F.S.; Dal-Bo, A.G. Synthesis, electrochemical, thermal and photophysical characterization of quinoxaline-based π-extended electroluminescent heterocycles. Dyes Pigm., 2018, 157, 218-229.
[http://dx.doi.org/10.1016/j.dyepig.2018.04.059]
[21]
Jeon, J.; Jhon, H.; Kang, M.; Song, H.J.; An, T.K. Quinacridone-quinoxaline-based copolymer for organic field-effect transistors and its high-voltage logic circuit operations. Org. Electron., 2018, 56, 1-4.
[http://dx.doi.org/10.1016/j.orgel.2018.01.019]
[22]
Kumar, A. kumar, S.; Saxena, A.; Mozumdar, S. Ni-nanoparticles: An efficient catalyst for the synthesis of quinoxalines. Catal. Commun., 2008, 9, 778-784.
[http://dx.doi.org/10.1016/j.catcom.2007.08.021]
[23]
Shaabani, A.; Maleki, A. An efficient solid acid promoted synthesis of quinoxaline derivatives at room temperature. Chin. J. Chem., 2007, 25, 818-821.
[http://dx.doi.org/10.1002/cjoc.200790150]
[24]
Teimouri, A.; Chermahini, A.N.; Salavati, H.; Ghorbanian, L. An efficient and one-pot synthesis of benzimidazoles, benzoxazoles, benzothiazoles and quinoxalines catalyzed via nano-solid acid catalysts. J. Mol. Catal. Chem., 2013, 373, 38-45.
[http://dx.doi.org/10.1016/j.molcata.2013.02.030]
[25]
Ayaz, M.; Dietrich, J.; Hulme, C. A novel route to synthesize libraries of quinoxalines via Petasis methodology in two synthetic operations. Tetrahedron Lett., 2011, 52(38), 4821-4823.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.115] [PMID: 21987596]
[26]
Jain, R.; Sharma, K.; Kumar, D. A greener, facile and scalable synthesis of indole derivatives in water: Reactions of indole-2,3-diones with 1,2-difunctionalized benzene. Tetrahedron Lett., 2012, 53, 6236-6240.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.013]
[27]
Meshram, H.M.; Ramesh, P.; Santosh Kumar, G.; Chennakesava Reddy, B. One-pot synthesis of quinoxaline-2-carboxylate derivatives using ionic liquid as reusable reaction media. Tetrahedron Lett., 2010, 51, 4313-4316.
[http://dx.doi.org/10.1016/j.tetlet.2010.05.099]
[28]
Xu, Y.; Wan, X. Ruthenium-catalyzed oxidation of alkynes to 1,2-diketones under room temperature and one-pot synthesis of quinoxalines. Tetrahedron Lett., 2013, 54, 642-645.
[http://dx.doi.org/10.1016/j.tetlet.2012.11.142]
[29]
Pignedoli, A.; Peyronel, G.; Antolini, L. Crystal and molecular structure of bis(quinoxaline)-2,2′,3,3′-disulfide. J. Cryst. Mol. Struct., 1977, 7(4), 173-182.
[http://dx.doi.org/10.1007/BF01371469]
[30]
Imahori, H.; Iijima, H.; Hayashi, H.; Toude, Y.; Umeyama, T.; Matano, Y.; Ito, S. Bisquinoxaline-fused porphyrins for dye-sensitized solar cells. ChemSusChem, 2011, 4(6), 797-805.
[http://dx.doi.org/10.1002/cssc.201100029] [PMID: 21591269]
[31]
Mercuri, M.L.; Deplano, P.; Pilia, L.; Serpe, A.; Artizzu, F. Interactions modes and physical properties in transition metal chalcogenolene-based molecular materials. Coord. Chem. Rev., 2010, 254(13), 1419-1433.
[http://dx.doi.org/10.1016/j.ccr.2009.10.002]
[32]
Deplano, P.; Pilia, L.; Espa, D.; Mercuri, M.L.; Serpe, A. Square-planar d8 metal mixed-ligand dithiolene complexes as second order nonlinear optical chromophores: Structure/property relationship. Coord. Chem. Rev., 2010, 254, 1434-1447.
[http://dx.doi.org/10.1016/j.ccr.2009.12.022]
[33]
Naik, I.K.; Sarkar, R.; Das, S.K. Bis(quinoxaline-dithiolato) nickel(III) complexes [Bu4N][NiIII(6,7-qdt)2] and [Ph4P][NiIII(Ph26,7-qdt)2]·CHCl3 (6,7-qdt = Quinoxaline-6,7-dithiolate; Ph26,7-qdt = Diphenylquinoxaline-6,7-dithiolate): Synthesis, spectroscopy, electrochemistry, DFT calculations, crystal structures and hirshfeld surface analysis. Eur. J. Inorg. Chem., 2015, 2015(33), 5523-5533.
[http://dx.doi.org/10.1002/ejic.201500739]
[34]
van Heerden, L.; Cloete, T.T.; Breytenbach, J.W.; de Kock, C.; Smith, P.J.; Breytenbach, J.C.; N’Da, D.D. Synthesis and in vitro antimalarial activity of a series of bisquinoline and bispyrrolo[1,2a] quinoxaline compounds. Eur. J. Med. Chem., 2012, 55, 335-345.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.037] [PMID: 22889556]
[35]
Reddy, M.A.; Thomas, A.; Mallesham, G.; Sridhar, B.; Rao, V.J.; Bhanuprakash, K. Synthesis of novel twisted carbazole–quinoxaline derivatives with 1,3,5-benzene core: Bipolar molecules as hosts for phosphorescent OLEDs. Tetrahedron Lett., 2011, 52, 6942-6947.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.074]
[36]
Suksai, C.; Tuntulani, T. Chromogenic anion sensors. Chem. Soc. Rev., 2003, 32(4), 192-202.
[http://dx.doi.org/10.1039/b209598j] [PMID: 12875025]
[37]
Martínez-Máñez, R.; Sancenón, F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev., 2003, 103(11), 4419-4476.
[http://dx.doi.org/10.1021/cr010421e] [PMID: 14611267]
[38]
Elwahy, A.H.M. Synthesis of new benzo-substituted macrocyclic ligands containing quinoxaline subunits. Tetrahedron, 2000, 56, 897-907.
[http://dx.doi.org/10.1016/S0040-4020(99)01072-8]
[39]
Yamato, T.; Fujita, K.; Okuyama, K.; Tsuzuki, H. Medium-sized cyclophanes. Part 52: Synthesis and structures of [ 2.n] metacyclophane-1,2-diones. New J. Chem., 2000, 24, 221-228.
[http://dx.doi.org/10.1039/b001145m]
[40]
Castro, P.P.; Zhao, G.; Masangkay, G.A.; Hernandez, C.; Gutierrez-Tunstad, L.M. Quinoxaline excision: A novel approach to tri- and diquinoxaline cavitands. Org. Lett., 2004, 6(3), 333-336.
[http://dx.doi.org/10.1021/ol036045x] [PMID: 14748586]
[41]
Pe’rez-Sacau, E.; Soto-Delgado, J.; Este’vez-Brauna, A.; Ravelo, A.G. Synthesis of 9- and 10-membered macrolactones by selective ozonolysis of 1,4-diazaphenanthrene derivatives. Tetrahedron, 2005, 61, 437-445.
[http://dx.doi.org/10.1016/j.tet.2004.10.075]
[42]
Singh, N.J.; Jun, E.J.; Chellappan, K.; Thangadurai, D.; Chandran, R.P.; Hwang, I-Ch.; Yoon, J.; Kim, K.S. Quinoxaline-imidazolium receptors for unique sensing of pyrophosphate and acetate by charge transfer. Org. Lett., 2007, 9(3), 485-488.
[http://dx.doi.org/10.1021/ol062849b] [PMID: 17249793]
[43]
Mamedov, V.A.; Kalinin, A.A.; Balandina, A.A.; Rizvanov, I.Kh.; Latypov, S.K. An efficient method for the synthesis of imidazo[1,5-a]quinoxalines from 3-acylquinoxalinones and benzylamines via a novel imidazoannulation. Tetrahedron, 2009, 65, 9412-9420.
[http://dx.doi.org/10.1016/j.tet.2009.08.081]
[44]
Mamedov, V.A.; Kalinin, A.A.; Gubaidullin, A.T.; Katsuba, S.A.; Syakaev, V.V.; Rizvanov, I.K.; Latypov, Sh.K. Efficient synthesis and structure peculiarity of macrocycles with bi-indolizinylquinoxalinone moieties. Tetrahedron, 2013, 69, 10675-10687.
[http://dx.doi.org/10.1016/j.tet.2013.09.014]
[45]
Silva, R.S.F. Pinto, Mdo.C.; Goulart, M.O.F.; de Souza Filho, J.D.; Neves, I., Jr; Lourenço, M.C.; Pinto, A.V. A macrolactone from benzo[a]phenazine with potent activity against Mycobacterium tuberculosis. Eur. J. Med. Chem., 2009, 44(5), 2334-2337.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.014] [PMID: 18662840]
[46]
Li, Y-P.; Yang, H-R.; Zhao, Q.; Song, W-Ch.; Han, J.; Bu, X-H. Ratiometric and selective fluorescent sensor for Zn2+ as an “off-on-off” switch and logic gate. Inorg. Chem., 2012, 51(18), 9642-9648.
[http://dx.doi.org/10.1021/ic300738e] [PMID: 22950947]
[47]
Ukhin, L.Y.; Suponitsky, K.Y.; Shepelenko, E.N.; Belousova, L.V.; Borodkin, G.S. Novel synthesis of oxonine derivatives from 3-[(2-aminophenyl)amino]-5,5-dimethyl-2-cyclohexene-1-one and o-quinones. Tetrahedron Lett., 2012, 53, 67-70.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.147]
[48]
Marin, L.; Kudrjasova, J.; Verstappen, P.; Penxten, H.; Robeyns, K.; Lutsen, L.; Vanderzande, D.J.M.; Maes, W. Quinoxaline-Based Cyclo(oligo-phenylenes). J. Org. Chem., 2015, 80(4), 2425-2430.
[http://dx.doi.org/10.1021/jo502771a] [PMID: 25611254]
[49]
Cee, V.J.; Chavez, F., Jr; Herberich, B.; Lanman, B.A.; Pettus, L.H.; Reed, A.B.; Wu, B.; Wurz, R.P.; Andrews, K.L.; Chen, J.; Hickman, D.; Laszlo, J., III; Lee, M.R.; Guerrero, N.; Mattson, B.K.; Nguyen, Y.; Mohr, C.; Rex, K.; Sastri, C.E.; Wang, P.; Wu, Q.; Wu, T.; Xu, Y.; Zhou, Y.; Winston, J.T.; Lipford, J.R.; Tasker, A.S.; Wang, H-L. Discovery and optimization of macrocyclic quinoxaline-pyrrolodihydropiperidinones as potent pim-1/2 kinase inhibitors. ACS Med. Chem. Lett., 2016, 7(4), 408-412.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00403] [PMID: 27096050]
[50]
Xu, F.; Kim, J.; Waldman, J.; Wang, T.; Devine, P. Synthesis of grazoprevir, a potent NS3/4a protease inhibitor for the treatment of hepatitis C virus. Org. Lett., 2018, 20(22), 7261-7265.
[http://dx.doi.org/10.1021/acs.orglett.8b03173] [PMID: 30388018]
[51]
Kandhadi, J.; Yan, W-C.; Cheng, F.; Wang, H.; Liu, H-Y. Trans-A2B-corrole bearing 2,3-di(2- pyridyl) quinoxaline(DPQ)/phenothiazine moiety’s: synthesis, characterization, electrochemistry and photophysics. New J. Chem., 2018, 42, 9987-9999.
[http://dx.doi.org/10.1039/C8NJ00606G]
[52]
Brown, D. J. Quinoxalines,” in The Chemistry of Heterocyclic Compounds, John Wiley & Sons 2004, 61, 1-510.
[http://dx.doi.org/10.1002/0471533408]
[53]
Chang, I.F. Electrochromic and electrochemichromic displays. Displays, 1981, 2, 275-278.
[http://dx.doi.org/10.1016/0141-9382(81)90001-9]
[54]
Elce, E.; Hay, A.S. A new synthesis of bisbenzils and novel poly(phenylquinoxaline)s therefrom. Polymer (Guildf.), 1996, 37(9), 1745-1749.
[http://dx.doi.org/10.1016/0032-3861(96)83728-1]
[55]
O’Brien, D.; Bleyer, A.; Bradley, D.D.C.; Meng, S. Electroluminescence applications of a poly (phenyl quinoxaline). Synth. Met., 1996, 76(1), 105-108.
[http://dx.doi.org/10.1016/0379-6779(95)03428-M]
[56]
Bruma, M.; Hamciuc, E.; Schulz, B.; Köpnick, T.; Stiller, B.; Mercer, F. Synthesis of fluorinated poly(phenylquinoxaline-amides) and study of thin films made therefrom. Polymer (Guildf.), 1999, 40(24), 6865-6871.
[http://dx.doi.org/10.1016/S0032-3861(99)00020-8]
[57]
Kim, B.S.; Korleski, J.E.; Zhang, Y.; Klein, D.J.; Harris, F.W. Development of a new poly(phenylquinoxaline) for adhesive and composite applications. Polymer (Guildf.), 1999, 40(16), 4553-4562.
[http://dx.doi.org/10.1016/S0032-3861(99)00065-8]
[58]
Klein, D.J.; Modarelli, D.A.; Harris, F.W. Synthesis of poly(phenylquinoxalines) via self-Polymerizable quinoxaline monomers. Macromolecules, 2001, 34(8), 2427-2437.
[http://dx.doi.org/10.1021/ma0011082]
[59]
Jandke, M.; Kreger, K.; Strohriegl, P. Poly(phenylquinoxalines) by vapor deposition polymerization. Synth. Met., 2000, 111-112, 221-223.
[http://dx.doi.org/10.1016/S0379-6779(99)00351-3]
[60]
Wadsworth, W. Synthetic applications of phosphoryl-stabilized anions. Org. React., 1977, 25, 73.
[61]
Lee, B.H.; Jaung, J.Y.; Cho, J-W.; Yoon, K.J. Synthesis and characterization of poly (p-phenylene vinylene) polymers containing the quinoxaline group. Polym. Bull., 2003, 50(1), 9-16.
[http://dx.doi.org/10.1007/s00289-003-0142-3]
[62]
Bruma, M.; Hamciuc, E.; Sava, I.; Belomoina, N.M. Polymers containing phenylquinoxaline rings. Russ. Chem. Bull., 2004, 53(9), 1813-1823.
[http://dx.doi.org/10.1007/s11172-005-0041-x]
[63]
Rusanov, A.L.; Bulycheva, E.G.; Belomoina, N.M.; Askadskii, A.A.; Leikin, A.Y.; Likhachev, D.Y. Poly(4-nitrophenyl) quinoxalines. Polym. Sci. Ser. B, 2006, 48(3), 134-137.
[http://dx.doi.org/10.1134/S1560090406050071]
[64]
Beyazyildirim, S.; Camurlu, P.; Yilmaz, D.; Gullu, M.; Toppare, L. Synthesis and electrochromic properties of conducting copolymers of dioxocino- and dithiocino-quinoxalines with bithiophene. J. Electroanal. Chem. (Lausanne Switz.), 2006, 587(2), 235-246.
[http://dx.doi.org/10.1016/j.jelechem.2005.11.018]
[65]
Ak, M.S.; Ak, M.; Güllü, M.; Toppare, L. Synthesis and electropolymerization of 5,12-dihydrothieno[3′,4′:2,3][1,4]dioxocino[6,7-b]quinoxaline and its electrochromic properties. Eur. Polym. J., 2007, 43(8), 3452-3460.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.05.029]
[66]
Celebi, S.; Baran, D.; Balan, A.; Toppare, L. Enhancing electrochromic and kinetic properties of poly(2,3-bis(4-tert-butylphenyl)-5,8-di(1H-pyrrol-2-yl) quinoxaline) by copolymerization. Electrochim. Acta, 2010, 55(7), 2373-2376.
[http://dx.doi.org/10.1016/j.electacta.2009.12.010]
[67]
Kivrak, A.; Carbas, B.B.; Zora, M.; Önal, A.M. Synthesis and electropolymerization of an ion sensing and fluorescent fluorene derivative bearing a quinoxaline moiety and its analogues with different donor units. React. Funct. Polym., 2012, 72, 613-620.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2012.06.007]
[68]
Upadhyay, A.; Karpagam, S. Synthesis and photo physical properties of carbazole based quinoxaline conjugated polymer for fluorescent detection of Ni2+. Dyes Pigments, 2017, 139, 50-64.
[http://dx.doi.org/10.1016/j.dyepig.2016.12.019]
[69]
Wolfe, P.J.; Jack Li, J. Chapter 1 An introduction to palladium catalysis. In: Tetrahedron Organic Chemistry Series; Li, J.J.; Gribble, G. W., Eds.; Elsevier, 2007; 26, pp. 1-35.
[70]
Ito, Y.; Miyake, T.; Hatano, S.; Shima, R.; Ohara, T.; Suginome, M. Asymmetric synthesis of helical poly(quinoxaline-2,3-diyl)s by palladium-Mediated polymerization of 1,2-diisocyanobenzenes: Effective control of the screw-sense by a binaphthyl group at the chain-end. J. Am. Chem. Soc., 1998, 120(46), 11880-11893.
[http://dx.doi.org/10.1021/ja982500m]
[71]
Stille, J.K. The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles [New Synthetic Methods (58)]. Angew. Chem. Int. Ed. Engl., 1986, 25(6), 508-524.
[http://dx.doi.org/10.1002/anie.198605081]
[72]
Jonforsen, M.; Johansson, T.; Spjuth, L.; Inganäs, O.; Andersson, M.R. Synthesis and characterization of poly(quinoxaline vinylene)s and poly(pyridopyrazine vinylene)s with phenyl substituted side-groups. Synth. Met., 2002, 131(1), 53-59.
[http://dx.doi.org/10.1016/S0379-6779(02)00137-6]
[73]
Moore, J.S. Shape-persistent molecular architectures of nanoscale dimension. Acc. Chem. Res., 1997, 30(10), 402-413.
[http://dx.doi.org/10.1021/ar950232g]
[74]
Bunz, U.H.F. Poly(aryleneethynylene)s: Syntheses, properties, structures, and applications. Chem. Rev., 2000, 100(4), 1605-1644.
[http://dx.doi.org/10.1021/cr990257j] [PMID: 11749277]
[75]
Bangcuyo, C.G.; Ellsworth, J.M.; Evans, U.; Myrick, M.L.; Bunz, U.H.F. Quinoxaline-based poly(aryleneethynylene)s. Macromolecules, 2003, 36(3), 546-548.
[http://dx.doi.org/10.1021/ma0257200]
[76]
Hameurlaine, A.; Dehaen, W.; Peng, H.; Xie, Z.; Tang, Z.B. Synthesis and light-emitting properties of a new conjugated polymer containing carbazole and quinoxaline moieties. J. Macromol. Sci. A., 2004, 41(3), 295-303.
[http://dx.doi.org/10.1081/MA-120028208]
[77]
Zhan, X.W.; Liu, Y.Q.; Zhu, D.B.; Xu, G.; Liu, X.C.; Ye, P.X. Highly efficient, thermally stable and optically transparent third-order nonlinear optical copolymers consisting of fluorene and quinoxaline/quinoline units. Appl. Phys., A Mater. Sci. Process., 2003, 77(3), 375-378.
[http://dx.doi.org/10.1007/s00339-003-2185-6]
[78]
Barberis, V.P.; Mikroyannidis, J.A.; Spiliopoulos, I.K. Synthesis and optical properties of quinoxaline-containing poly(aryl ether)s. Synth. Met., 2007, 157(10), 475-480.
[http://dx.doi.org/10.1016/j.synthmet.2007.05.002]
[79]
Ozyurt, F.; Gunbas, E.G.; Durmus, A.; Toppare, L. Processable and multichromic polymer of bis-3-hexylthiophene substituted 4-tert-butylphenyl quinoxaline. Org. Electron., 2008, 9(3), 296-302.
[http://dx.doi.org/10.1016/j.orgel.2007.11.006]
[80]
Shi, W.; Wang, L.; Zhen, H.; Zhu, D.; Awut, T.; Mi, H.; Nurulla, I. Novel luminescent polymers containing backbone triphenylamine groups and pendant quinoxaline groups. Dyes Pigm., 2009, 83(1), 102-110.
[http://dx.doi.org/10.1016/j.dyepig.2009.03.016]
[81]
Ying, L.; Zou, J.; Yang, W.; Zhang, A.; Wu, Z.; Zhao, W.; Cao, Y. Novel blue light-emitting polyfluorenes containing a fluorinated quinoxaline unit. Dyes Pigm., 2009, 82(3), 251-257.
[http://dx.doi.org/10.1016/j.dyepig.2009.01.009]
[82]
Zhang, L.; Zhang, Q.; Yan, H.; Zhang, J.; Gu, J.; Zhang, H.; Guo, F. Synthesis and optical properties of novel donor–acceptor poly(phenylene-ethynylene)s containing quinoxaline. Synth. Met., 2009, 159(19), 2038-2042.
[http://dx.doi.org/10.1016/j.synthmet.2009.07.020]
[83]
Woody, K.B.; Henry, E.M.; Jagtap, S.; Collard, D.M. Synthesis and characterization of poly(5,8-quinoxaline ethynylene)s. Macromolecules, 2011, 44, 9118-9124.
[http://dx.doi.org/10.1021/ma201347z]
[84]
Kroon, R.; Gehlhaar, R.; Steckler, T.T.; Henriksson, P.; Muller, Ch.; Bergqvist, J.; Hadipour, A.; Heremans, P.; Andersson, M.R. New quinoxaline and pyridopyrazine-based polymers for solution-processable photovoltaics. Sol. Energy Mater. Sol. Cells, 2012, 105, 280-286.
[http://dx.doi.org/10.1016/j.solmat.2012.06.029]
[85]
Bathula, Ch.; Song, Ch.E.; Lee, W-H.; Lee, J.; Badgujar, S.; Koti, R.; Kang, I-N.; Shin, W.S.; Ahn, T.; Lee, J-Ch.; Moon, S-J.; Lee, S.K. Synthesis and characterization of quinoxaline-based polymers for bulk-heterojunction polymer solar cells. Thin Solid Films, 2013, 537, 231-238.
[http://dx.doi.org/10.1016/j.tsf.2013.04.137]
[86]
Kim, M-J.; Kim, J-H.; Ahn, J.J.; Hwang, D-H. Photovoltaic properties of a new quinoxaline-based copolymer with thieno[3,2-b]thiophene side chain for organic photovoltaic cell applications. Dyes Pigments, 2016, 133, 324-332.
[http://dx.doi.org/10.1016/j.dyepig.2016.06.011]
[87]
Hasegawa, H.; Nagata, Y.; Terao, K.; Suginome, M. Synthesis and solution properties of a rigid helical star polymer: Three-arm star poly(quinoxaline-2,3-diyl). Macromolecules, 2017, 50(19), 7491-7497.
[http://dx.doi.org/10.1021/acs.macromol.7b01797]
[88]
Yoshinaga, Y.; Yamamoto, T.; Suginome, M. Chirality-switchable 2,2′-bipyridine ligands attached to helical poly(quinoxaline-2,3-diyl)s for copper-catalyzed asymmetric cyclopropanation of alkenes. ACS Macro Lett., 2017, 6, 705-710.
[http://dx.doi.org/10.1021/acsmacrolett.7b00352]
[89]
Wang, W.; Zhao, B.; Wu, H.; Liu, Sh.; Liu, H.; Guo, Zh.; Wei, W.; Gao, Ch. Alternating polymers based on alkoxy-phenyl substituted indacenodithiophene and fluorinated quinoxaline derivatives for photovoltaic cells. Dyes Pigments, 2017, 145, 345-353.
[http://dx.doi.org/10.1016/j.dyepig.2017.06.023]
[90]
Handoko, Sh.L.; Jin, H.Ch.; Whang, D.R.; Putri, S.K.; Kim, J.H.; Chang, D.W. Synthesis of quinoxaline-based polymers with multiple electron-withdrawing groups for polymer solar cells. J. Ind. Eng. Chem., 2019, 73, 192-197.
[http://dx.doi.org/10.1016/j.jiec.2019.01.024]
[91]
Putri, S.K.; Jin, H.Ch.; Whang, D.R.; Kim, J.H.; Chang, D.W. Enhanced open-circuit voltages of trifluoromethylated quinoxaline-based polymer solar cells. Org. Electron., 2019, 65, 363-369.
[http://dx.doi.org/10.1016/j.orgel.2018.11.022]
[92]
Lee, J.Y.; Han, S-Y.; Lim, B.; Nah, Y-Ch. A novel quinoxaline-based donor-acceptor type electrochromic polymer. J. Ind. Eng. Chem., 2019, 70, 380-384.
[http://dx.doi.org/10.1016/j.jiec.2018.10.039]
[93]
Semmelhack, M.F.; Ryono, L.S. Nickel-promoted synthesis of cyclic biphenyls. Total synthesis of alnusone dimethyl ether. J. Am. Chem. Soc., 1975, 97, 3873-3875.
[http://dx.doi.org/10.1021/ja00846a084]
[94]
Monnier, F.; Turtaut, F.; Duroure, L.; Taillefer, M. Copper-catalyzed sonogashira-type reactions under mild palladium-free conditions. Org. Lett., 2008, 10(15), 3203-3206.
[http://dx.doi.org/10.1021/ol801025u] [PMID: 18588308]
[95]
Kanbara, T.; Yamamoto, T. Preparation and properties of new pi-conjugated poly(quinoxaline-5,8-diyl) and poly(2,3-diethylquinoxaline-5,8-diyl). Enhancement of electron-accepting properties of poly(arylenes) by introduction of imine nitrogen. Macromolecules, 1993, 26(13), 3464-3466.
[http://dx.doi.org/10.1021/ma00065a037]
[96]
Klein, D.J.; Kim, B-S.; Harris, F.W. Synthesis of poly(aryl ether phenylquinoxaline) via Ullmann ether condensation of chlorine-substituted A-B quinoxaline monomers. Polym. Bull., 2001, 47(3), 217-221.
[http://dx.doi.org/10.1007/s289-001-8174-x]
[97]
Yamamoto, T.; Adachi, T.; Suginome, M. Complementary induction of right- and left-handed helical structures by the positioning of chiral groups on the monomer units: Introduction of (−)-menthol as side chains of poly(quinoxaline-2,3-diyl)s. ACS Macro Lett., 2013, 2, 790-793.
[http://dx.doi.org/10.1021/mz4003326]
[98]
Nishikawa, T.; Nagata, Y.; Suginome, M. Poly(quinoxaline-2,3-diyl) as a multifunctional chiral scaffold for circularly polarized luminescent materials: Color tuning, energy transfer, and switching of the CPL handedness. ACS Macro Lett., 2017, 6, 431-435.
[http://dx.doi.org/10.1021/acsmacrolett.7b00131]
[99]
Wadsworth, W.S. Synthetic applications of phosphoryl stabilized anions. Org. React., 1977, 25, 73-253.
[100]
Vilsmeier, A.; Haack, A. On the reaction of phosphorus halides with alkyl formanilides. A new method for the preparation of secondary and tertiary p-alkylaminobenzaldehydes. Eur. J. Org. Chem., 1927, 60, 119-122.
[101]
Chawla, A.; Kaur, R.; Goyal, A. Importance of microwave reactions in the synthesis of novel benzimidazole derivatives: A review. J. Chem. Pharm. Res., 2011, 3, 925-944.
[102]
Günes, S.; Baran, D.; Günbas, G.; Özyurt, F.; Fuchsbauer, A.; Sariciftci, N.S.; Toppare, L. Photovoltaic and photophysical properties of a novel bis-3-hexylthiophene substituted quinoxaline derivative. Sol. Energy Mater. Sol. Cells, 2008, 92(9), 1162-1169.
[http://dx.doi.org/10.1016/j.solmat.2008.04.004]
[103]
Gong, F.; Li, N.; Zhang, S. Synthesis and properties of novel sulfonated poly(phenylquinoxaline)s as proton exchange membranes. Polymer (Guildf.), 2009, 50(25), 6001-6008.
[http://dx.doi.org/10.1016/j.polymer.2009.10.033]
[104]
Patil, V.B.; Medhi, M.; Bhairamadgi, N.S.; Wadgaonkar, P.P.; Maldar, N.N. Synthesis and characterization of polyesters from 2,3-bis (4_-hydroxy phenyl) quinoxaline and 2,3-bis (2_-hydroxynaphthalene-6_-yl) quinoxaline. Mater. Sci. Eng. B, 2010, 168, 186-192.
[http://dx.doi.org/10.1016/j.mseb.2009.12.036]
[105]
Li, J.; Song, X.; Feng, Y.; Wang, Zh.; Zhang, X.; Shen, F.; Lu, P. Microwave assisted synthesis of fluorene-based copolymers with different conjugate degreed quinoxaline segments from reactive polymer. Thin Solid Films, 2013, 545, 188-193.
[http://dx.doi.org/10.1016/j.tsf.2013.07.080]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy