Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Use of Surface Plasmon Resonance to Study the Interactions of Proteins Involved in Conformational Diseases: Experimental Approaches for New Therapeutical Perspectives

Author(s): Gabriele Antonio Zingale, Alessia Distefano and Giuseppe Grasso*

Volume 30, Issue 36, 2023

Published on: 03 March, 2023

Page: [4072 - 4095] Pages: 24

DOI: 10.2174/0929867330666230116162646

Price: $65

Abstract

In recent years, the scientific community has been trying to tackle different diseases by using unifying and holistic approaches based on the concept that it is possible to target apparently very different diseases under a comprehensive general scheme. In other words, various different diseases have been grouped together under the label of “conformational diseases”, because the triggering cause for each malady is the misfolding of a specific protein, whose dyshomeostasis and accumulation cause all the other downhill biomolecular events characteristic of each different disease. In a parallel manner, analytical techniques have developed to investigate protein misfolding and accumulation, so as to give a valid technical support to the investigation of conformational diseases. In this scenario, surface plasmon resonance (SPR) has widely contributed to study many different aspects correlated to conformational diseases, offering the advantages of real time investigations, use of small amounts of biological materials and possibility to mimic the cellular environments without recurring to the use of fluorescent tags. In this review, after a brief introduction about conformational diseases and the SPR technique, a thorough description of the various uses of SPR to investigate the biomolecular mechanisms involved in these diseases is given in order to provide the reader with an exhaustive list as well as a critical perspective of the use of SPR for such topic. The case of Alzheimer’s disease is discussed at a deeper level. We hope that this work will make the reader aware of all the possible SPR experimental approaches, which can be used to develop new possible therapeutic strategies to tackle conformational diseases.

Keywords: Plasmonics, Alzheimer’s disease, Parkinson’s disease, protein misfolding, kinetics, enzymes, insulin-degrading enzyme.

[1]
Lee, V.M.Y.; Goedert, M.; Trojanowski, J.Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci., 2001, 24(1), 1121-1159.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.1121] [PMID: 11520930]
[2]
Dickson, D.W.; Kouri, N.; Murray, M.E.; Josephs, K.A. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J. Mol. Neurosci., 2011, 45(3), 384-389.
[http://dx.doi.org/10.1007/s12031-011-9589-0] [PMID: 21720721]
[3]
Spillantini, M.G.; Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol., 2013, 12(6), 609-622.
[http://dx.doi.org/10.1016/S1474-4422(13)70090-5] [PMID: 23684085]
[4]
Kovacs, G.G. Invited review: Neuropathology of tauopathies: Principles and practice. Neuropathol. Appl. Neurobiol., 2015, 41(1), 3-23.
[http://dx.doi.org/10.1111/nan.12208] [PMID: 25495175]
[5]
Uéda, K.; Fukushima, H.; Masliah, E.; Xia, Y.; Iwai, A.; Yoshimoto, M.; Otero, D.A.; Kondo, J.; Ihara, Y.; Saitoh, T. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1993, 90(23), 11282-11286.
[http://dx.doi.org/10.1073/pnas.90.23.11282] [PMID: 8248242]
[6]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease and Down’s syndrome: Sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun., 1984, 122(3), 1131-1135.
[http://dx.doi.org/10.1016/0006-291X(84)91209-9] [PMID: 6236805]
[7]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120(3), 885-890.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[8]
Brion, J.P.; Couck, A.M.; Passareiro, E.; Flament-Durand, J. Neurofibrillary tangles of Alzheimer’s disease: An immunohistochemical study. J. Submicrosc. Cytol., 1985, 17(1), 89-96.
[PMID: 3973960]
[9]
Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein (tau ) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA, 1986, 83(13), 4913-4917.
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[10]
Kosik, K.S.; Joachim, C.L.; Selkoe, D.J. Microtubule-associated protein tau is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1986, 83(11), 4044-4048.
[http://dx.doi.org/10.1073/pnas.83.11.4044] [PMID: 2424016]
[11]
Pollock, N.; Mirra, S.; Binder, L.; Hansen, L.; Wood, J. Filamentous aggregates in Pick’s disease, progressive supranuclear palsy, and Alzheimer’s disease share antigenic determinants with microtubule-associated protein, tau . Lancet, 1986, 328(8517), 1211.
[http://dx.doi.org/10.1016/S0140-6736(86)92212-9] [PMID: 2430155]
[12]
Selkoe, D.J. Alzheimer disease: Mechanistic understanding predicts novel therapies. Ann. Intern. Med., 2004, 140(8), 627-638.
[http://dx.doi.org/10.7326/0003-4819-140-8-200404200-00047] [PMID: 15096334]
[13]
Querfurth, H.W.; LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med., 2010, 362(4), 329-344.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[14]
Liu, Y.; Vollrath, D. Reversal of mutant myocilin non-secretion and cell killing: Implications for glaucoma. Hum. Mol. Genet., 2004, 13(11), 1193-1204.
[http://dx.doi.org/10.1093/hmg/ddh128] [PMID: 15069026]
[15]
Guo, L.; Salt, T.E.; Luong, V.; Wood, N.; Cheung, W.; Maass, A.; Ferrari, G.; Russo-Marie, F.; Sillito, A.M.; Cheetham, M.E.; Moss, S.E.; Fitzke, F.W.; Cordeiro, M.F. Targeting amyloid-β in glaucoma treatment. Proc. Natl. Acad. Sci. USA, 2007, 104(33), 13444-13449.
[http://dx.doi.org/10.1073/pnas.0703707104] [PMID: 17684098]
[16]
McLean, C.A.; Cherny, R.A.; Fraser, F.W.; Fuller, S.J.; Smith, M.J.; Konrad Vbeyreuther; Bush, A.I.; Masters, C.L. Soluble pool of A? amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol., 1999, 46(6), 860-866.
[http://dx.doi.org/10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M] [PMID: 10589538]
[17]
Grasso, G.; Bonnet, S. Metal complexes and metalloproteases: Targeting conformational diseases. Metallomics, 2014, 6(8), 1346-1357.
[http://dx.doi.org/10.1039/C4MT00076E] [PMID: 24870829]
[18]
Harris, M.E.; Hensley, K.; Butterfield, D.A.; Leedle, R.A.; Carney, J.M. Direct evidence of oxidative injury produced by the Alzheimer’s β-Amyloid peptide (1–40) in cultured hippocampal neurons. Exp. Neurol., 1995, 131(2), 193-202.
[http://dx.doi.org/10.1016/0014-4886(95)90041-1] [PMID: 7895820]
[19]
Kumar, D.K.V.; Choi, S.H.; Washicosky, K.J.; Eimer, W.A.; Tucker, S.; Ghofrani, J.; Lefkowitz, A.; McColl, G.; Goldstein, L.E.; Tanzi, R.E.; Moir, R.D. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci. Transl. Med., 2016, 8(340), 340ra72.
[http://dx.doi.org/10.1126/scitranslmed.aaf1059] [PMID: 27225182]
[20]
Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; van der Lee, S.J.; Amlie-Wolf, A.; Bellenguez, C.; Frizatti, A.; Chouraki, V.; Martin, E.R.; Sleegers, K.; Badarinarayan, N.; Jakobsdottir, J.; Hamilton-Nelson, K.L.; Moreno-Grau, S.; Olaso, R.; Raybould, R.; Chen, Y.; Kuzma, A.B.; Hiltunen, M.; Morgan, T.; Ahmad, S.; Vardarajan, B.N.; Epelbaum, J.; Hoffmann, P.; Boada, M.; Beecham, G.W.; Garnier, J-G.; Harold, D.; Fitzpatrick, A.L.; Valladares, O.; Moutet, M-L.; Gerrish, A.; Smith, A.V.; Qu, L.; Bacq, D.; Denning, N.; Jian, X.; Zhao, Y.; Del Zompo, M.; Fox, N.C.; Choi, S-H.; Mateo, I.; Hughes, J.T.; Adams, H.H.; Malamon, J.; Sanchez-Garcia, F.; Patel, Y.; Brody, J.A.; Dombroski, B.A.; Naranjo, M.C.D.; Daniilidou, M.; Eiriksdottir, G.; Mukherjee, S.; Wallon, D.; Uphill, J.; Aspelund, T.; Cantwell, L.B.; Garzia, F.; Galimberti, D.; Hofer, E.; Butkiewicz, M.; Fin, B.; Scarpini, E.; Sarnowski, C.; Bush, W.S.; Meslage, S.; Kornhuber, J.; White, C.C.; Song, Y.; Barber, R.C.; Engelborghs, S.; Sordon, S.; Voijnovic, D.; Adams, P.M.; Vandenberghe, R.; Mayhaus, M.; Cupples, L.A.; Albert, M.S.; De Deyn, P.P.; Gu, W.; Himali, J.J.; Beekly, D.; Squassina, A.; Hartmann, A.M.; Orellana, A.; Blacker, D.; Rodriguez-Rodriguez, E.; Lovestone, S.; Garcia, M.E.; Doody, R.S.; Munoz-Fernadez, C.; Sussams, R.; Lin, H.; Fairchild, T.J.; Benito, Y.A.; Holmes, C.; Karamujić-Čomić, H.; Frosch, M.P.; Thonberg, H.; Maier, W.; Roshchupkin, G.; Ghetti, B.; Giedraitis, V.; Kawalia, A.; Li, S.; Huebinger, R.M.; Kilander, L.; Moebus, S.; Hernández, I.; Kamboh, M.I.; Brundin, R.; Turton, J.; Yang, Q.; Katz, M.J.; Concari, L.; Lord, J.; Beiser, A.S.; Keene, C.D.; Helisalmi, S.; Kloszewska, I.; Kukull, W.A.; Koivisto, A.M.; Lynch, A.; Tarraga, L.; Larson, E.B.; Haapasalo, A.; Lawlor, B.; Mosley, T.H.; Lipton, R.B.; Solfrizzi, V.; Gill, M.; Longstreth, W.T., Jr; Montine, T.J.; Frisardi, V.; Diez-Fairen, M.; Rivadeneira, F.; Petersen, R.C.; Deramecourt, V.; Alvarez, I.; Salani, F.; Ciaramella, A.; Boerwinkle, E.; Reiman, E.M.; Fievet, N.; Rotter, J.I.; Reisch, J.S.; Hanon, O.; Cupidi, C.; Andre Uitterlinden, A.G.; Royall, D.R.; Dufouil, C.; Maletta, R.G.; de Rojas, I.; Sano, M.; Brice, A.; Cecchetti, R.; George-Hyslop, P.S.; Ritchie, K.; Tsolaki, M.; Tsuang, D.W.; Dubois, B.; Craig, D.; Wu, C-K.; Soininen, H.; Avramidou, D.; Albin, R.L.; Fratiglioni, L.; Germanou, A.; Apostolova, L.G.; Keller, L.; Koutroumani, M.; Arnold, S.E.; Panza, F.; Gkatzima, O.; Asthana, S.; Hannequin, D.; Whitehead, P.; Atwood, C.S.; Caffarra, P.; Hampel, H.; Quintela, I.; Carracedo, Á.; Lannfelt, L.; Rubinsztein, D.C.; Barnes, L.L.; Pasquier, F.; Frölich, L.; Barral, S.; McGuinness, B.; Beach, T.G.; Johnston, J.A.; Becker, J.T.; Passmore, P.; Bigio, E.H.; Schott, J.M.; Bird, T.D.; Warren, J.D.; Boeve, B.F.; Lupton, M.K.; Bowen, J.D.; Proitsi, P.; Boxer, A.; Powell, J.F.; Burke, J.R.; Kauwe, J.S.K.; Burns, J.M.; Mancuso, M.; Buxbaum, J.D.; Bonuccelli, U.; Cairns, N.J.; McQuillin, A.; Cao, C.; Livingston, G.; Carlson, C.S.; Bass, N.J.; Carlsson, C.M.; Hardy, J.; Carney, R.M.; Bras, J.; Carrasquillo, M.M.; Guerreiro, R.; Allen, M.; Chui, H.C.; Fisher, E.; Masullo, C.; Crocco, E.A.; DeCarli, C.; Bisceglio, G.; Dick, M.; Ma, L.; Duara, R.; Graff-Radford, N.R.; Evans, D.A.; Hodges, A.; Faber, K.M.; Scherer, M.; Fallon, K.B.; Riemenschneider, M.; Fardo, D.W.; Heun, R.; Farlow, M.R.; Kölsch, H.; Ferris, S.; Leber, M.; Foroud, T.M.; Heuser, I.; Galasko, D.R.; Giegling, I.; Gearing, M.; Hüll, M.; Geschwind, D.H.; Gilbert, J.R.; Morris, J.; Green, R.C.; Mayo, K.; Growdon, J.H.; Feulner, T.; Hamilton, R.L.; Harrell, L.E.; Drichel, D.; Honig, L.S.; Cushion, T.D.; Huentelman, M.J.; Hollingworth, P.; Hulette, C.M.; Hyman, B.T.; Marshall, R.; Jarvik, G.P.; Meggy, A.; Abner, E.; Menzies, G.E.; Jin, L-W.; Leonenko, G.; Real, L.M.; Jun, G.R.; Baldwin, C.T.; Grozeva, D.; Karydas, A.; Russo, G.; Kaye, J.A.; Kim, R.; Jessen, F.; Kowall, N.W.; Vellas, B.; Kramer, J.H.; Vardy, E.; LaFerla, F.M.; Jöckel, K-H.; Lah, J.J.; Dichgans, M.; Leverenz, J.B.; Mann, D.; Levey, A.I.; Pickering-Brown, S.; Lieberman, A.P.; Klopp, N.; Lunetta, K.L.; Wichmann, H-E.; Lyketsos, C.G.; Morgan, K.; Marson, D.C.; Brown, K.; Martiniuk, F.; Medway, C.; Mash, D.C.; Nöthen, M.M.; Masliah, E.; Hooper, N.M.; McCormick, W.C.; Daniele, A.; McCurry, S.M.; Bayer, A.; McDavid, A.N.; Gallacher, J.; McKee, A.C.; van den Bussche, H.; Mesulam, M.; Brayne, C.; Miller, B.L.; Riedel-Heller, S.; Miller, C.A.; Miller, J.W.; Al-Chalabi, A.; Morris, J.C.; Shaw, C.E.; Myers, A.J.; Wiltfang, J.; O’Bryant, S.; Olichney, J.M.; Alvarez, V.; Parisi, J.E.; Singleton, A.B.; Paulson, H.L.; Collinge, J.; Perry, W.R.; Mead, S.; Peskind, E.; Cribbs, D.H.; Rossor, M.; Pierce, A.; Ryan, N.S.; Poon, W.W.; Nacmias, B.; Potter, H.; Sorbi, S.; Quinn, J.F.; Sacchinelli, E.; Raj, A.; Spalletta, G.; Raskind, M.; Caltagirone, C.; Bossù, P.; Orfei, M.D.; Reisberg, B.; Clarke, R.; Reitz, C.; Smith, A.D.; Ringman, J.M.; Warden, D.; Roberson, E.D.; Wilcock, G.; Rogaeva, E.; Bruni, A.C.; Rosen, H.J.; Gallo, M.; Rosenberg, R.N.; Ben-Shlomo, Y.; Sager, M.A.; Mecocci, P.; Saykin, A.J.; Pastor, P.; Cuccaro, M.L.; Vance, J.M.; Schneider, J.A.; Schneider, L.S.; Slifer, S.; Seeley, W.W.; Smith, A.G.; Sonnen, J.A.; Spina, S.; Stern, R.A.; Swerdlow, R.H.; Tang, M.; Tanzi, R.E.; Trojanowski, J.Q.; Troncoso, J.C.; Van Deerlin, V.M.; Van Eldik, L.J.; Vinters, H.V.; Vonsattel, J.P.; Weintraub, S.; Welsh-Bohmer, K.A.; Wilhelmsen, K.C.; Williamson, J.; Wingo, T.S.; Woltjer, R.L.; Wright, C.B.; Yu, C-E.; Yu, L.; Saba, Y.; Pilotto, A.; Bullido, M.J.; Peters, O.; Crane, P.K.; Bennett, D.; Bosco, P.; Coto, E.; Boccardi, V.; De Jager, P.L.; Lleo, A.; Warner, N.; Lopez, O.L.; Ingelsson, M.; Deloukas, P.; Cruchaga, C.; Graff, C.; Gwilliam, R.; Fornage, M.; Goate, A.M.; Sanchez-Juan, P.; Kehoe, P.G.; Amin, N.; Ertekin-Taner, N.; Berr, C.; Debette, S.; Love, S.; Launer, L.J.; Younkin, S.G.; Dartigues, J-F.; Corcoran, C.; Ikram, M.A.; Dickson, D.W.; Nicolas, G.; Campion, D.; Tschanz, J.; Schmidt, H.; Hakonarson, H.; Clarimon, J.; Munger, R.; Schmidt, R.; Farrer, L.A.; Van Broeckhoven, C.; C O’Donovan, M.; DeStefano, A.L.; Jones, L.; Haines, J.L.; Deleuze, J.F.; Owen, M.J.; Gudnason, V.; Mayeux, R.; Escott-Price, V.; Psaty, B.M.; Ramirez, A.; Wang, L.S.; Ruiz, A.; van Duijn, C.M.; Holmans, P.A.; Seshadri, S.; Williams, J.; Amouyel, P.; Schellenberg, G.D.; Lambert, J.C.; Pericak-Vance, M.A. Alzheimer Disease Genetics Consortium (ADGC)European Alzheimer’s Disease Initiative (EADI)Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE). Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Consortium (GERAD/PERADES). Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau , immunity and lipid processing. Nat. Genet., 2019, 51(3), 414-430.
[http://dx.doi.org/10.1038/s41588-019-0358-2] [PMID: 30820047]
[21]
Bis, J.C.; Jian, X.; Kunkle, B.W.; Chen, Y.; Hamilton-Nelson, K.L.; Bush, W.S.; Salerno, W.J.; Lancour, D.; Ma, Y.; Renton, A.E.; Marcora, E.; Farrell, J.J.; Zhao, Y.; Qu, L.; Ahmad, S.; Amin, N.; Amouyel, P.; Beecham, G.W.; Below, J.E.; Campion, D.; Cantwell, L.; Charbonnier, C.; Chung, J.; Crane, P.K.; Cruchaga, C.; Cupples, L.A.; Dartigues, J.F.; Debette, S.; Deleuze, J.F.; Fulton, L.; Gabriel, S.B.; Genin, E.; Gibbs, R.A.; Goate, A.; Grenier-Boley, B.; Gupta, N.; Haines, J.L.; Havulinna, A.S.; Helisalmi, S.; Hiltunen, M.; Howrigan, D.P.; Ikram, M.A.; Kaprio, J.; Konrad, J.; Kuzma, A.; Lander, E.S.; Lathrop, M.; Lehtimäki, T.; Lin, H.; Mattila, K.; Mayeux, R.; Muzny, D.M.; Nasser, W.; Neale, B.; Nho, K.; Nicolas, G.; Patel, D.; Pericak-Vance, M.A.; Perola, M.; Psaty, B.M.; Quenez, O.; Rajabli, F.; Redon, R.; Reitz, C.; Remes, A.M.; Salomaa, V.; Sarnowski, C.; Schmidt, H.; Schmidt, M.; Schmidt, R.; Soininen, H.; Thornton, T.A.; Tosto, G.; Tzourio, C.; van der Lee, S.J.; van Duijn, C.M.; Valladares, O.; Vardarajan, B.; Wang, L.S.; Wang, W.; Wijsman, E.; Wilson, R.K.; Witten, D.; Worley, K.C.; Zhang, X.; Bellenguez, C.; Lambert, J.C.; Kurki, M.I.; Palotie, A.; Daly, M.; Boerwinkle, E.; Lunetta, K.L.; Destefano, A.L.; Dupuis, J.; Martin, E.R.; Schellenberg, G.D.; Seshadri, S.; Naj, A.C.; Fornage, M.; Farrer, L.A. Whole exome sequencing study identifies novel rare and common Alzheimer’s-Associated variants involved in immune response and transcriptional regulation. Mol. Psychiatry, 2020, 25(8), 1859-1875.
[http://dx.doi.org/10.1038/s41380-018-0112-7] [PMID: 30108311]
[22]
Jang, S.S.; Chung, H.J. Emerging link between alzheimer’s disease and homeostatic synaptic plasticity. Neural Plast., 2016, 2016, 7969272.
[http://dx.doi.org/10.1155/2016/7969272] [PMID: 27019755]
[23]
Stellwagen, D.; Malenka, R.C. Synaptic scaling mediated by glial TNF-α. Nature, 2006, 440(7087), 1054-1059.
[http://dx.doi.org/10.1038/nature04671] [PMID: 16547515]
[24]
Trapp, B.D.; Wujek, J.R.; Criste, G.A.; Jalabi, W.; Yin, X.; Kidd, G.J.; Stohlman, S.; Ransohoff, R. Evidence for synaptic stripping by cortical microglia. Glia, 2007, 55(4), 360-368.
[http://dx.doi.org/10.1002/glia.20462] [PMID: 17136771]
[25]
Henstridge, C.M.; Tzioras, M.; Paolicelli, R.C. Glial contribution to excitatory and inhibitory synapse loss in neurodegeneration. Front. Cell. Neurosci., 2019, 13, 63.
[http://dx.doi.org/10.3389/fncel.2019.00063] [PMID: 30863284]
[26]
Sala Frigerio, C.; Wolfs, L.; Fattorelli, N.; Thrupp, N.; Voytyuk, I.; Schmidt, I.; Mancuso, R.; Chen, W.T.; Woodbury, M.E.; Srivastava, G.; Möller, T.; Hudry, E.; Das, S.; Saido, T.; Karran, E.; Hyman, B.; Perry, V.H.; Fiers, M.; De Strooper, B. The major risk factors for alzheimer’s disease: Age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep., 2019, 27(4), 1293-1306.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.03.099] [PMID: 31018141]
[27]
Grasso, G.; Giuffrida, M.L.; Rizzarelli, E. Metallostasis and amyloid β-degrading enzymes. Metallomics, 2012, 4(9), 937-949.
[http://dx.doi.org/10.1039/c2mt20105d] [PMID: 22832870]
[28]
Grasso, G.; Salomone, F.; Tundo, G.R.; Pappalardo, G.; Ciaccio, C.; Spoto, G.; Pietropaolo, A.; Coletta, M.; Rizzarelli, E. Metal ions affect insulin-degrading enzyme activity. J. Inorg. Biochem., 2012, 117, 351-358.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.06.010] [PMID: 22819648]
[29]
Bush, A.I.; Tanzi, R.E. Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics, 2008, 5(3), 421-432.
[http://dx.doi.org/10.1016/j.nurt.2008.05.001] [PMID: 18625454]
[30]
Ross, C.A.; Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med., 2004, 10(S7)(Suppl.), S10-S17.
[http://dx.doi.org/10.1038/nm1066] [PMID: 15272267]
[31]
Wolfe, L.S.; Calabrese, M.F.; Nath, A.; Blaho, D.V.; Miranker, A.D.; Xiong, Y. Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proc. Natl. Acad. Sci. USA, 2010, 107(39), 16863-16868.
[http://dx.doi.org/10.1073/pnas.1002867107] [PMID: 20826442]
[32]
Bartels, T.; Selkoe, D.J. Bartels & Selkoe reply. Nature, 2013, 498(7453), E6-E7.
[http://dx.doi.org/10.1038/nature12126]
[33]
De Simone, A.; Naldi, M.; Tedesco, D.; Milelli, A.; Bartolini, M.; Davani, L.; Widera, D.; Dallas, M.L.; Andrisano, V. Investigating in vitro amyloid peptide 1–42 aggregation: Impact of higher molecular weight stable adducts. ACS Omega, 2019, 4(7), 12308-12318.
[http://dx.doi.org/10.1021/acsomega.9b01531] [PMID: 31460348]
[34]
Hassan, R.; Abedin, F.; Tatulian, S.A. Interaction of Aβ1-42 and Aβ1-40 with lipid membranes studied by circular dichroism and fluorescence spectroscopy. Biophys. J., 2022, 121(3)(Suppl. 1), 226a.
[http://dx.doi.org/10.1016/j.bpj.2021.11.1612]
[35]
Kuret, J.; Chirita, C.N.; Congdon, E.E.; Kannanayakal, T.; Li, G.; Necula, M.; Yin, H.; Zhong, Q. Pathways of tau fibrillization. Biochim. Biophys. Acta Mol. Basis Dis., 2005, 1739(2-3), 167-178.
[http://dx.doi.org/10.1016/j.bbadis.2004.06.016] [PMID: 15615636]
[36]
Mensch, C.; Konijnenberg, A.; Van Elzen, R.; Lambeir, A.M.; Sobott, F.; Johannessen, C. Raman optical activity of human α -synuclein in intrinsically disordered, micelle-bound α -helical, molten globule and oligomeric β -sheet state. J. Raman Spectrosc., 2017, 48(7), 910-918.
[http://dx.doi.org/10.1002/jrs.5149]
[37]
Sinopoli, A.; Magrì, A.; Milardi, D.; Pappalardo, M.; Pucci, P.; Flagiello, A.; Titman, J.J.; Nicoletti, V.G.; Caruso, G.; Pappalardo, G.; Grasso, G. The role of copper( II ) in the aggregation of human amylin. Metallomics, 2014, 6(10), 1841-1852.
[http://dx.doi.org/10.1039/C4MT00130C] [PMID: 25080969]
[38]
Grasso, G.; Titman, J.J. Chain folding and diffusion in monodisperse long n -alkanes by solid-state NMR. Macromolecules, 2009, 42(12), 4175-4180.
[http://dx.doi.org/10.1021/ma801049j]
[39]
Leshem, G.; Richman, M.; Lisniansky, E.; Antman-Passig, M.; Habashi, M.; Gräslund, A.; Wärmländer, S.K.T.S.; Rahimipour, S. Photoactive chlorin e6 is a multifunctional modulator of amyloid-β aggregation and toxicity via specific interactions with its histidine residues. Chem. Sci. (Camb.), 2019, 10(1), 208-217.
[http://dx.doi.org/10.1039/C8SC01992D] [PMID: 30713632]
[40]
Sekhar, A.; Rumfeldt, J.A.O.; Broom, H.R.; Doyle, C.M.; Sobering, R.E.; Meiering, E.M.; Kay, L.E. Probing the free energy landscapes of ALS disease mutants of SOD1 by NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 2016, 113(45), E6939-E6945.
[http://dx.doi.org/10.1073/pnas.1611418113] [PMID: 27791136]
[41]
Kotler, S.A.; Tugarinov, V.; Schmidt, T.; Ceccon, A.; Libich, D.S.; Ghirlando, R.; Schwieters, C.D.; Clore, G.M. Probing initial transient oligomerization events facilitating Huntingtin fibril nucleation at atomic resolution by relaxation-based NMR. Proc. Natl. Acad. Sci. USA, 2019, 116(9), 3562-3571.
[http://dx.doi.org/10.1073/pnas.1821216116] [PMID: 30808748]
[42]
Konermann, L.; Pan, J.; Liu, Y.H. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev., 2011, 40(3), 1224-1234.
[http://dx.doi.org/10.1039/C0CS00113A] [PMID: 21173980]
[43]
Heck, A.J.R. Native mass spectrometry: A bridge between interactomics and structural biology. Nat. Methods, 2008, 5(11), 927-933.
[http://dx.doi.org/10.1038/nmeth.1265] [PMID: 18974734]
[44]
Ruotolo, B.T.; Benesch, J.L.P.; Sandercock, A.M.; Hyung, S.J.; Robinson, C.V. Ion mobility–mass spectrometry analysis of large protein complexes. Nat. Protoc., 2008, 3(7), 1139-1152.
[http://dx.doi.org/10.1038/nprot.2008.78] [PMID: 18600219]
[45]
Ganguly, P.; Do, T.D.; Larini, L.; LaPointe, N.E.; Sercel, A.J.; Shade, M.F.; Feinstein, S.C.; Bowers, M.T.; Shea, J.E. Tau assembly: The dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3. J. Phys. Chem. B, 2015, 119(13), 4582-4593.
[http://dx.doi.org/10.1021/acs.jpcb.5b00175] [PMID: 25775228]
[46]
Lesné, S.; Koh, M.T.; Kotilinek, L.; Kayed, R.; Glabe, C.G.; Yang, A.; Gallagher, M.; Ashe, K.H. A specific amyloid-β protein assembly in the brain impairs memory. Nature, 2006, 440(7082), 352-357.
[http://dx.doi.org/10.1038/nature04533] [PMID: 16541076]
[47]
Illes-Toth, E.; Ramos, M.R.; Cappai, R.; Dalton, C.; Smith, D.P. Distinct higher-order α-synuclein oligomers induce intracellular aggregation. Biochem. J., 2015, 468(3), 485-493.
[http://dx.doi.org/10.1042/BJ20150159] [PMID: 25851527]
[48]
Arndt, J.R.; Kondalaji, S.G.; Maurer, M.M.; Parker, A.; Legleiter, J.; Valentine, S.J. Huntingtin N-terminal monomeric and multimeric structures destabilized by covalent modification of heteroatomic residues. Biochemistry, 2015, 54(28), 4285-4296.
[http://dx.doi.org/10.1021/acs.biochem.5b00478] [PMID: 26098795]
[49]
Murphy, C.J.; Gole, A.M.; Stone, J.W.; Sisco, P.N.; Alkilany, A.M.; Goldsmith, E.C.; Baxter, S.C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res., 2008, 41(12), 1721-1730.
[http://dx.doi.org/10.1021/ar800035u] [PMID: 18712884]
[50]
Siddique, S.; Chow, J.C.L. Gold nanoparticles for drug delivery and cancer therapy. Appl. Sci. (Basel), 2020, 10(11), 3824.
[http://dx.doi.org/10.3390/app10113824]
[51]
Baptista, P.; Fernandes, A.; Figueiredo, S.; Vinhas, R.; Cordeiro, M.; Carlos, F.; Mendo, S. Gold nanoparticle-based theranostics: Disease diagnostics and treatment using a single nanomaterial. Nanobiosens. dis. diagn., 2015, 4, 11-23.
[http://dx.doi.org/10.2147/NDD.S60285]
[52]
Chen, P.C.; Roy, P.; Chen, L.Y.; Ravindranath, R.; Chang, H.T. Gold and silver nanomaterial-based optical sensing systems. Part. Part. Syst. Charact., 2014, 31(9), 917-942.
[http://dx.doi.org/10.1002/ppsc.201400043]
[53]
Wood, R.W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1902, 4(21), 396-402.
[http://dx.doi.org/10.1080/14786440209462857]
[54]
Ritchie, R.H. Plasma losses by fast electrons in thin films. Phys. Rev., 1957, 106(5), 874-881.
[http://dx.doi.org/10.1103/PhysRev.106.874]
[55]
Powell, C.J.; Swan, J.B. Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Phys. Rev., 1960, 118(3), 640-643.
[http://dx.doi.org/10.1103/PhysRev.118.640]
[56]
Liedberg, B.; Nylander, C.; Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators, 1983, 4, 299-304.
[http://dx.doi.org/10.1016/0250-6874(83)85036-7]
[57]
Guo, X. Surface plasmon resonance based biosensor technique: A review. J. Biophotonics, 2012, 5(7), 483-501.
[http://dx.doi.org/10.1002/jbio.201200015] [PMID: 22467335]
[58]
Yesudasu, V.; Pradhan, H.S.; Pandya, R.J. Recent progress in surface plasmon resonance based sensors: A comprehensive review. Heliyon, 2021, 7(3), e06321.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06321] [PMID: 33869818]
[59]
Sharma, A.K.; Jha, R.; Gupta, B.D. Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. IEEE Sens. J., 2007, 7(8), 1118-1129.
[http://dx.doi.org/10.1109/JSEN.2007.897946]
[60]
Kurihara, K.; Suzuki, K. Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory. Anal. Chem., 2002, 74(3), 696-701.
[http://dx.doi.org/10.1021/ac010820+] [PMID: 11838698]
[61]
Neff, H.; Zong, W.; Lima, A.M.N.; Borre, M.; Holzhüter, G. Optical properties and instrumental performance of thin gold films near the surface plasmon resonance. Thin Solid Films, 2006, 496(2), 688-697.
[http://dx.doi.org/10.1016/j.tsf.2005.08.226]
[62]
Cardona, M. Fresnel reflection and surface plasmons. Am. J. Phys., 1971, 39(10), 1277-1277.
[http://dx.doi.org/10.1119/1.1976627]
[63]
Malmqvist, M. Biospecific interaction analysis using biosensor technology. Nature, 1993, 361(6408), 186-187.
[http://dx.doi.org/10.1038/361186a0] [PMID: 7678451]
[64]
Tumolo, T.; Angnes, L.; Baptista, M.S. Determination of the refractive index increment of molecule and macromolecule solutions by surface plasmon resonance. Anal. Biochem., 2004, 333(2), 273-279.
[http://dx.doi.org/10.1016/j.ab.2004.06.010] [PMID: 15450802]
[65]
Campbell, C.; Kim, G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials, 2007, 28(15), 2380-2392.
[http://dx.doi.org/10.1016/j.biomaterials.2007.01.047] [PMID: 17337300]
[66]
Andersson, K.; Hämäläinen, M.; Malmqvist, M. Identification and optimization of regeneration conditions for affinity-based biosensor assays. A multivariate cocktail approach. Anal. Chem., 1999, 71(13), 2475-2481.
[http://dx.doi.org/10.1021/ac981271j] [PMID: 10405611]
[67]
Pratt, K.C.; Wakeham, W.A.; Ubbelohde, A.R.J.P. The mutual diffusion coefficient of ethanol–water mixtures: Determination by a rapid, new method. Proc. R. Soc. Lond. A Math. Phys. Sci., 1974, 336(1606), 393-406.
[http://dx.doi.org/10.1098/rspa.1974.0026]
[68]
Quinn, J.G. Evaluation of Taylor dispersion injections: Determining kinetic/affinity interaction constants and diffusion coefficients in label-free biosensing. Anal. Biochem., 2012, 421(2), 401-410.
[http://dx.doi.org/10.1016/j.ab.2011.11.023] [PMID: 22197422]
[69]
Quinn, J.G. Modeling Taylor dispersion injections: Determination of kinetic/affinity interaction constants and diffusion coefficients in label-free biosensing. Anal. Biochem., 2012, 421(2), 391-400.
[http://dx.doi.org/10.1016/j.ab.2011.11.024] [PMID: 22197421]
[70]
Loureiro, F.C.C.L.; Barreto Neto, A.G.S.; Moreira, C.S.; Lima, A.M.N.; Neff, H. A method for determining the mutual diffusion coefficient of molecular solutes based on surface plasmon resonance sensing. Sens. Actuators B Chem., 2011, 154(2), 129-136.
[http://dx.doi.org/10.1016/j.snb.2010.02.023]
[71]
Iwasaki, Y.; Seyama, M.; Matsuura, N.; Inoue, S.; Hayashi, K.; Koizumi, H. Direct measurement of near-wall molecular transport rate in a microchannel and its dependence on diffusivity. Langmuir, 2021, 37(29), 8687-8695.
[http://dx.doi.org/10.1021/acs.langmuir.1c00561] [PMID: 34270898]
[72]
G.A. Zingale, I. Pandino, A. Distefano, N. Tuccitto, G. Grasso. A novel SPR based method for measuring diffusion coefficients: From small molecules to supramolecular aggregates. Biosensors & Bioelectronics: X (2023) 13, 100306.
[73]
Distefano, A.; Caruso, G.; Oliveri, V.; Bellia, F.; Sbardella, D.; Zingale, G.A.; Caraci, F.; Grasso, G. Neuroprotective effect of carnosine is mediated by insulin-degrading enzyme. ACS Chem. Neurosci., 2022, 13(10), 1588-1593.
[http://dx.doi.org/10.1021/acschemneuro.2c00201] [PMID: 35471926]
[74]
Wittenberg, N.J.; Wootla, B.; Jordan, L.R.; Denic, A.; Warrington, A.E.; Oh, S-H.; Rodriguez, M. Applications of surface plasmon resonance for characterization of molecules important in the pathogenesis and treatment of neurodegenerative diseases. Expert Rev. Neurother., 2014, 14(4), 449-463.
[http://dx.doi.org/10.1586/14737175.2014.896199] [PMID: 24625008]
[75]
Ciaccio, C.; Tundo, G.R.; Grasso, G.; Spoto, G.; Marasco, D.; Ruvo, M.; Gioia, M.; Rizzarelli, E.; Coletta, M. Somatostatin: A novel substrate and a modulator of insulin-degrading enzyme activity. J. Mol. Biol., 2009, 385(5), 1556-1567.
[http://dx.doi.org/10.1016/j.jmb.2008.11.025] [PMID: 19073193]
[76]
Grasso, G.; D’Agata, R.; Zanoli, L.; Spoto, G. Microfluidic networks for surface plasmon resonance imaging real-time kinetics experiments. Microchem. J., 2009, 93(1), 82-86.
[http://dx.doi.org/10.1016/j.microc.2009.05.001]
[77]
Mariani, S.; Minunni, M. Surface plasmon resonance applications in clinical analysis. Anal. Bioanal. Chem., 2014, 406(9-10), 2303-2323.
[http://dx.doi.org/10.1007/s00216-014-7647-5] [PMID: 24566759]
[78]
Sota, H.; Hasegawa, Y.; Iwakura, M. Detection of conformational changes in an immobilized protein using surface plasmon resonance. Anal. Chem., 1998, 70(10), 2019-2024.
[http://dx.doi.org/10.1021/ac9713666] [PMID: 9608841]
[79]
Dell’Orco, D.; Koch, K.W. Fingerprints of calcium-binding protein conformational dynamics monitored by surface plasmon resonance. ACS Chem. Biol., 2016, 11(9), 2390-2397.
[http://dx.doi.org/10.1021/acschembio.6b00470] [PMID: 27380526]
[80]
Dell’Orco, D.; Müller, M.; Koch, K.W. Quantitative detection of conformational transitions in a calcium sensor protein by surface plasmon resonance. Chem. Commun. (Camb.), 2010, 46(39), 7316-7318.
[http://dx.doi.org/10.1039/c0cc02086a] [PMID: 20835460]
[81]
Riedel, T.; Majek, P.; Rodriguez-Emmenegger, C.; Brynda, E. Surface plasmon resonance: Advances of label-free approaches in the analysis of biological samples. Bioanalysis, 2014, 6(24), 3325-3336.
[http://dx.doi.org/10.4155/bio.14.246] [PMID: 25534789]
[82]
Paynter, S.; Russell, D.A. Surface plasmon resonance measurement of pH-induced responses of immobilized biomolecules: Conformational change or electrostatic interaction effects? Anal. Biochem., 2002, 309(1), 85-95.
[http://dx.doi.org/10.1016/S0003-2697(02)00255-5] [PMID: 12381366]
[83]
Grasso, G.; Satriano, C.; Milardi, D. A neglected modulator of insulin-degrading enzyme activity and conformation: The pH. Biophys. Chem., 2015, 203-204, 33-40.
[http://dx.doi.org/10.1016/j.bpc.2015.05.010] [PMID: 26025789]
[84]
Yao, F.; He, J.; Li, X.; Zou, H.; Yuan, Z. Studies of interaction of copper and zinc ions with Alzheimer’s Aβ(1–16) using surface plasmon resonance spectrometer. Sens. Actuators B Chem., 2012, 161(1), 886-891.
[http://dx.doi.org/10.1016/j.snb.2011.11.057]
[85]
Grasso, G.; Pietropaolo, A.; Spoto, G.; Pappalardo, G.; Tundo, G.R.; Ciaccio, C.; Coletta, M.; Rizzarelli, E. Copper(I) and copper(II) inhibit Aβ peptides proteolysis by insulin-degrading enzyme differently: Implications for metallostasis alteration in Alzheimer’s disease. Chemistry, 2011, 17(9), 2752-2762.
[http://dx.doi.org/10.1002/chem.201002809] [PMID: 21274957]
[86]
Grasso, G.; Spoto, G. Plasmonics for the study of metal ion–protein interactions. Anal. Bioanal. Chem., 2013, 405(6), 1833-1843.
[http://dx.doi.org/10.1007/s00216-012-6421-9] [PMID: 23052866]
[87]
Gestwicki, J.E.; Hsieh, H.V.; Pitner, J.B. Using receptor conformational change to detect low molecular weight analytes by surface plasmon resonance. Anal. Chem., 2001, 73(23), 5732-5737.
[http://dx.doi.org/10.1021/ac0105888] [PMID: 11774914]
[88]
Grasso, G. Ubiquitin binds the amyloid /beta peptide and interferes with its clearance pathways. Chem. Sci., 2019, 10(9), 2732-2742.
[http://dx.doi.org/10.1039/C8SC03394C]
[89]
Grasso, G.; Rizzarelli, E.; Spoto, G. How the binding and degrading capabilities of insulin degrading enzyme are affected by ubiquitin. Biochim. Biophys. Acta. Proteins Proteomics, 2008, 1784(7-8), 1122-1126.
[http://dx.doi.org/10.1016/j.bbapap.2008.04.011] [PMID: 18489915]
[90]
Gioia, M.; Monaco, S.; Van Den Steen, P.E.; Sbardella, D.; Grasso, G.; Marini, S.; Overall, C.M.; Opdenakker, G.; Coletta, M. The collagen binding domain of gelatinase A modulates degradation of collagen IV by gelatinase B. J. Mol. Biol., 2009, 386(2), 419-434.
[http://dx.doi.org/10.1016/j.jmb.2008.12.021] [PMID: 19109975]
[91]
Lund-Katz, S.; Nguyen, D.; Dhanasekaran, P.; Kono, M.; Nickel, M.; Saito, H.; Phillips, M.C. Surface plasmon resonance analysis of the mechanism of binding of apoA-I to high density lipoprotein particles. J. Lipid Res., 2010, 51(3), 606-617.
[http://dx.doi.org/10.1194/jlr.M002055] [PMID: 19786567]
[92]
Yamaguchi, S.; Mannen, T.; Zako, T.; Kamiya, N.; Nagamune, T. Measuring adsorption of a hydrophobic probe with a surface plasmon resonance sensor to monitor conformational changes in immobilized proteins. Biotechnol. Prog., 2003, 19(4), 1348-1354.
[http://dx.doi.org/10.1021/bp034015n] [PMID: 12892501]
[93]
Grasso, G.; Bush, A.I.; D’Agata, R.; Rizzarelli, E.; Spoto, G. Enzyme solid-state support assays: A surface plasmon resonance and mass spectrometry coupled study of immobilized insulin degrading enzyme. Eur. Biophys. J., 2009, 38(4), 407-414.
[http://dx.doi.org/10.1007/s00249-008-0384-y] [PMID: 19048247]
[94]
Myszka, D.G.; Wood, S.J.; Biere, A.L. Analysis of fibril elongation using surface plasmon resonance biosensors. Methods Enzymol., 1999, 309, 386-402.
[http://dx.doi.org/10.1016/S0076-6879(99)09027-8] [PMID: 10507037]
[95]
Distefano, A.; Antonio Zingale, G.; Grasso, G. An SPR-based method for Hill coefficient measurements: The case of insulin-degrading enzyme. Anal. Bioanal. Chem., 2022, 414(17), 4793-4802.
[http://dx.doi.org/10.1007/s00216-022-04122-3] [PMID: 35577931]
[96]
Robinson, P.K. Enzymes: Principles and biotechnological applications. Essays Biochem., 2015, 59, 1-41.
[http://dx.doi.org/10.1042/bse0590001] [PMID: 26504249]
[97]
Majka, J.; Speck, C. Analysis of protein-DNA interactions using surface plasmon resonance. Adv. Biochem. Eng. Biotechnol., 2007, 104, 13-36.
[http://dx.doi.org/10.1007/10_026] [PMID: 17290817]
[98]
Lang Hrtska, S.C.; Kemp, M.M.; Muñoz, E.M.; Azizad, O.; Banerjee, M.; Raposo, C.; Kumaran, J.; Ghosh, P.; Linhardt, R.J. Investigation of the mechanism of binding between internalin B and heparin using surface plasmon resonance. Biochemistry, 2007, 46(10), 2697-2706.
[http://dx.doi.org/10.1021/bi062021x] [PMID: 17305366]
[99]
Della Pia, E.A.; Martinez, K.L. Single domain antibodies as a powerful tool for high quality surface plasmon resonance studies. PLoS One, 2015, 10(3), e0124303.
[http://dx.doi.org/10.1371/journal.pone.0124303] [PMID: 25822527]
[100]
Sarcina, L.; Mangiatordi, G.F.; Torricelli, F.; Bollella, P.; Gounani, Z.; Österbacka, R.; Macchia, E.; Torsi, L. Surface Plasmon Resonance Assay for Label-Free and Selective Detection of HIV-1 p24 Protein. Biosensors (Basel), 2021, 11(6), 180.
[http://dx.doi.org/10.3390/bios11060180] [PMID: 34204930]
[101]
Ramakrishnan, M.; Kandimalla, K.K.; Wengenack, T.M.; Howell, K.G.; Poduslo, J.F. Surface plasmon resonance binding kinetics of Alzheimer’s disease amyloid beta peptide-capturing and plaque-binding monoclonal antibodies. Biochemistry, 2009, 48(43), 10405-10415.
[http://dx.doi.org/10.1021/bi900523q] [PMID: 19775170]
[102]
Aguilar, M.I.; Small, D.H. Surface plasmon resonance for the analysis of β-amyloid interactions and fibril formation in Alzheimer’s disease research. Neurotox. Res., 2005, 7(1-2), 17-27.
[http://dx.doi.org/10.1007/BF03033773] [PMID: 15639795]
[103]
Kraziński, B.E.; Radecki, J.; Radecka, H. Surface plasmon resonance based biosensors for exploring the influence of alkaloids on aggregation of amyloid-β peptide. Sensors (Basel), 2011, 11(4), 4030-4042.
[http://dx.doi.org/10.3390/s110404030] [PMID: 22163834]
[104]
Cheng, X.R.; Hau, B.Y.H.; Veloso, A.J.; Martic, S.; Kraatz, H.B.; Kerman, K. Surface plasmon resonance imaging of amyloid-β aggregation kinetics in the presence of epigallocatechin gallate and metals. Anal. Chem., 2013, 85(4), 2049-2055.
[http://dx.doi.org/10.1021/ac303181q] [PMID: 23276205]
[105]
Kobayashi, S.; Tanaka, Y.; Kiyono, M.; Chino, M.; Chikuma, T.; Hoshi, K.; Ikeshima, H. Dependence pH and proposed mechanism for aggregation of Alzheimer’s disease-related amyloid-β(1–42) protein. J. Mol. Struct., 2015, 1094, 109-117.
[http://dx.doi.org/10.1016/j.molstruc.2015.03.023]
[106]
Hortschansky, P.; Schroeckh, V.; Christopeit, T.; Zandomeneghi, G.; Fändrich, M. The aggregation kinetics of Alzheimer’s β-amyloid peptide is controlled by stochastic nucleation. Protein Sci., 2005, 14(7), 1753-1759.
[http://dx.doi.org/10.1110/ps.041266605] [PMID: 15937275]
[107]
Xue, C.; Lin, T.Y.; Chang, D.; Guo, Z. Thioflavin T as an amyloid dye: Fibril quantification, optimal concentration and effect on aggregation. R. Soc. Open Sci., 2017, 4(1), 160696.
[http://dx.doi.org/10.1098/rsos.160696] [PMID: 28280572]
[108]
Groenning, M. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status. J. Chem. Biol., 2010, 3(1), 1-18.
[http://dx.doi.org/10.1007/s12154-009-0027-5] [PMID: 19693614]
[109]
Forloni, G.; Balducci, C. Alzheimer’s disease, oligomers, and inflammation. J. Alzheimers Dis., 2018, 62(3), 1261-1276.
[http://dx.doi.org/10.3233/JAD-170819] [PMID: 29562537]
[110]
Jameson, L.P.; Smith, N.W.; Dzyuba, S.V. Dye-binding assays for evaluation of the effects of small molecule inhibitors on amyloid (aβ) self-assembly. ACS Chem. Neurosci., 2012, 3(11), 807-819.
[http://dx.doi.org/10.1021/cn300076x] [PMID: 23173064]
[111]
Grasso, G. The use of mass spectrometry to study amyloid-β peptides. Mass Spectrom. Rev., 2011, 30(3), 347-365.
[http://dx.doi.org/10.1002/mas.20281] [PMID: 21500241]
[112]
Grasso, G. Mass spectrometry is a multifaceted weapon to be used in the battle against Alzheimer’s disease: Amyloid beta peptides and beyond. Mass Spectrom. Rev., 2019, 38(1), 34-48.
[http://dx.doi.org/10.1002/mas.21566]
[113]
Grasso, G. Theuse of mass spectrometry to study zn-metalloprotease-substrate interactions. Mass Spectrom. Rev., 2020, 39(5-6), 574-585.
[http://dx.doi.org/10.1002/mas.21621] [PMID: 31898821]
[114]
Ryu, J.; Joung, H.A.; Kim, M.G.; Park, C.B. Surface plasmon resonance analysis of Alzheimer’s β-amyloid aggregation on a solid surface: From monomers to fully-grown fibrils. Anal. Chem., 2008, 80(7), 2400-2407.
[http://dx.doi.org/10.1021/ac7019514] [PMID: 18303863]
[115]
Palladino, P.; Aura, A.M.; Spoto, G. Surface plasmon resonance for the label-free detection of Alzheimer’s β-amyloid peptide aggregation. Anal. Bioanal. Chem., 2016, 408(3), 849-854.
[http://dx.doi.org/10.1007/s00216-015-9172-6] [PMID: 26558762]
[116]
Lee, J.; Lee, K.; Lim, C.T. Surface plasmon resonance assay for identification of small molecules capable of inhibiting Aβ aggregation. ACS Appl. Mater. Interfaces, 2021, 13(24), 27845-27855.
[http://dx.doi.org/10.1021/acsami.1c04833] [PMID: 34110774]
[117]
Liu, L.; Xia, N.; Wang, J. Potential applications of SPR in early diagnosis and progression of Alzheimer’s disease. RSC Advances, 2012, 2(6), 2200-2204.
[http://dx.doi.org/10.1039/c2ra00667g]
[118]
Špringer, T.; Hemmerová, E.; Finocchiaro, G.; Krištofiková, Z.; Vyhnálek, M.; Homola, J. Surface plasmon resonance biosensor for the detection of tau -amyloid β complex. Sens. Actuat. B Chem., 2020, 316, 128146.
[http://dx.doi.org/10.1016/j.snb.2020.128146]
[119]
Rezabakhsh, A.; Rahbarghazi, R.; Fathi, F. Surface plasmon resonance biosensors for detection of Alzheimer’s biomarkers; an effective step in early and accurate diagnosis. Biosens. Bioelectron., 2020, 167, 112511.
[http://dx.doi.org/10.1016/j.bios.2020.112511] [PMID: 32858422]
[120]
Chan, H.N.; Xu, D.; Ho, S.L.; Wong, M.S.; Li, H.W. Ultra-sensitive detection of protein biomarkers for diagnosis of Alzheimer’s disease. Chem. Sci. (Camb.), 2017, 8(5), 4012-4018.
[http://dx.doi.org/10.1039/C6SC05615F] [PMID: 30155210]
[121]
Karki, H.P.; Jang, Y.; Jung, J.; Oh, J. Advances in the development paradigm of biosample‐based biosensors for early ultrasensitive detection of alzheimer’s disease. J. Nanobiotechnology, 2021, 19(1), 72.
[http://dx.doi.org/10.1186/s12951-021-00814-7] [PMID: 33750392]
[122]
Anoop, A.; Singh, P.K.; Jacob, R.S.; Maji, S.K. CSF biomarkers for Alzheimer’s disease diagnosis. Int. J. Alzheimers Dis., 2010, 2010, 606802.
[http://dx.doi.org/10.4061/2010/606802] [PMID: 20721349]
[123]
Blennow, K.; Zetterberg, H. Biomarkers for Alzheimer’s disease: Current status and prospects for the future. J. Intern. Med., 2018, 284(6), 643-663.
[http://dx.doi.org/10.1111/joim.12816] [PMID: 30051512]
[124]
Xia, N.; Liu, L.; Harrington, M.G.; Wang, J.; Zhou, F. Regenerable and simultaneous surface plasmon resonance detection of aβ(1-40) and aβ(1-42) peptides in cerebrospinal fluids with signal amplification by streptavidin conjugated to an N-terminus-specific antibody. Anal. Chem., 2010, 82(24), 10151-10157.
[http://dx.doi.org/10.1021/ac102257m] [PMID: 21073166]
[125]
Sengupta, U.; Nilson, A.N.; Kayed, R. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine, 2016, 6, 42-49.
[http://dx.doi.org/10.1016/j.ebiom.2016.03.035] [PMID: 27211547]
[126]
Stravalaci, M.; Bastone, A.; Beeg, M.; Cagnotto, A.; Colombo, L.; Di Fede, G.; Tagliavini, F.; Cantù, L.; Del Favero, E.; Mazzanti, M.; Chiesa, R.; Salmona, M.; Diomede, L.; Gobbi, M. Specific recognition of biologically active amyloid-β oligomers by a new surface plasmon resonance-based immunoassay and an in vivo assay in caenorhabditis elegans. J. Biol. Chem., 2012, 287(33), 27796-27805.
[http://dx.doi.org/10.1074/jbc.M111.334979] [PMID: 22736768]
[127]
Yi, X.; Feng, C.; Hu, S.; Li, H.; Wang, J. Surface plasmon resonance biosensors for simultaneous monitoring of amyloid-beta oligomers and fibrils and screening of select modulators. Analyst (Lond.), 2016, 141(1), 331-336.
[http://dx.doi.org/10.1039/C5AN01864A] [PMID: 26613550]
[128]
Dehghani, M.; Jalal, R.; Rashidi, M.R. Kinetic and thermodynamic insights into the interaction of Aβ1–42 with astaxanthin and aggregation behavior of Aβ1–42: Surface plasmon resonance, microscopic, and molecular docking studies. Biophys. Chem., 2021, 275, 106612.
[http://dx.doi.org/10.1016/j.bpc.2021.106612] [PMID: 33984664]
[129]
Arndt, J.W.; Qian, F.; Smith, B.A.; Quan, C.; Kilambi, K.P.; Bush, M.W.; Walz, T.; Pepinsky, R.B.; Bussière, T.; Hamann, S.; Cameron, T.O.; Weinreb, P.H. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci. Rep., 2018, 8(1), 6412.
[http://dx.doi.org/10.1038/s41598-018-24501-0] [PMID: 29686315]
[130]
Parnetti, L.; Gaetani, L.; Eusebi, P.; Paciotti, S.; Hansson, O.; El-Agnaf, O.; Mollenhauer, B.; Blennow, K.; Calabresi, P. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol., 2019, 18(6), 573-586.
[http://dx.doi.org/10.1016/S1474-4422(19)30024-9] [PMID: 30981640]
[131]
Ganguly, U.; Singh, S.; Pal, S.; Prasad, S.; Agrawal, B.K.; Saini, R.V.; Chakrabarti, S. Alpha-synuclein as a biomarker of parkinson’s disease: Good, but not good enough. Front. Aging Neurosci., 2021, 13, 702639.
[http://dx.doi.org/10.3389/fnagi.2021.702639] [PMID: 34305577]
[132]
Gao, H.; Zhao, Z.; He, Z.; Wang, H.; Liu, M.; Hu, Z.; Cheng, O.; Yang, Y.; Zhu, L. Detection of Parkinson’s disease through the peptoid recognizing α-synuclein in serum. ACS Chem. Neurosci., 2019, 10(3), 1204-1208.
[http://dx.doi.org/10.1021/acschemneuro.8b00540] [PMID: 30682886]
[133]
Zuckermann, R.N. Peptoid origins. Biopolymers, 2011, 96(5), 545-555.
[http://dx.doi.org/10.1002/bip.21573] [PMID: 21184486]
[134]
Mandala, S.H.S.; Liu, T.J.; Chen, C.M.; Liu, K.K.; Januar, M.; Chang, Y.F.; Lai, C.S.; Chang, K.H.; Liu, K.C. Enhanced plasmonic biosensor utilizing paired antibody and label-free Fe3O4 nanoparticles for highly sensitive and selective detection of Parkinson’s α-synuclein in serum. Biosensors (Basel), 2021, 11(10), 402.
[http://dx.doi.org/10.3390/bios11100402] [PMID: 34677358]
[135]
Singh, A.P.; Ramana, G.; Bajaj, T.; Singh, V.; Dwivedi, S.; Behari, M.; Dey, A.B.; Dey, S. Elevated serum SIRT 2 may differentiate Parkinson’s disease from atypical parkinsonian syndromes. Front. Mol. Neurosci., 2019, 12, 129.
[http://dx.doi.org/10.3389/fnmol.2019.00129] [PMID: 31244600]
[136]
Chen, X.; Wales, P.; Quinti, L.; Zuo, F.; Moniot, S.; Herisson, F.; Rauf, N.A.; Wang, H.; Silverman, R.B.; Ayata, C.; Maxwell, M.M.; Steegborn, C.; Schwarzschild, M.A.; Outeiro, T.F.; Kazantsev, A.G. The sirtuin-2 inhibitor AK7 is neuroprotective in models of Parkinson’s disease but not amyotrophic lateral sclerosis and cerebral ischemia. PLoS One, 2015, 10(1), e0116919.
[http://dx.doi.org/10.1371/journal.pone.0116919] [PMID: 25608039]
[137]
Zoey, F.L.; Palanivel, M.; Padmanabhan, P.; Gulyás, B. Parkinson’s disease: A nanotheranostic approach targeting alpha-synuclein aggregation. Front. Cell Dev. Biol., 2021, 9, 707441.
[http://dx.doi.org/10.3389/fcell.2021.707441] [PMID: 34490255]
[138]
Sun, K.; Xia, N.; Zhao, L.; Liu, K.; Hou, W.; Liu, L. Aptasensors for the selective detection of alpha-synuclein oligomer by colorimetry, surface plasmon resonance and electrochemical impedance spectroscopy. Sens. Actuators B Chem., 2017, 245, 87-94.
[http://dx.doi.org/10.1016/j.snb.2017.01.171]
[139]
Kumar, J.; Eraña, H.; López-Martínez, E.; Claes, N.; Martín, V.F.; Solís, D.M.; Bals, S.; Cortajarena, A.L.; Castilla, J.; Liz-Marzán, L.M. Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc. Natl. Acad. Sci. USA, 2018, 115(13), 3225-3230.
[http://dx.doi.org/10.1073/pnas.1721690115] [PMID: 29531058]
[140]
Fink, A.L. The aggregation and fibrillation of α-synuclein. Acc. Chem. Res., 2006, 39(9), 628-634.
[http://dx.doi.org/10.1021/ar050073t] [PMID: 16981679]
[141]
Dubackic, M.; Linse, S.; Sparr, E.; Olsson, U. Comparing α-synuclein fibrils formed in the absence and presence of a model lipid membrane: A small and wide-angle X-ray scattering study. Front. Soft Matter., 2022, 1, 741996.
[http://dx.doi.org/10.3389/frsfm.2021.741996]
[142]
Honarmand, S.; Dabirmanesh, B.; Amanlou, M.; Khajeh, K. The interaction of several herbal extracts with α-synuclein: Fibril formation and surface plasmon resonance analysis. PLoS One, 2019, 14(6), e0217801.
[http://dx.doi.org/10.1371/journal.pone.0217801] [PMID: 31185031]
[143]
Tóth, G.; Neumann, T.; Berthet, A.; Masliah, E.; Spencer, B.; Tao, J.; Jobling, M.F.; Gardai, S.J.; Bertoncini, C.W.; Cremades, N.; Bova, M.; Ballaron, S.; Chen, X.H.; Mao, W.; Nguyen, P.; Tabios, M.C.; Tambe, M.A.; Rochet, J.C.; Junker, H.D.; Schwizer, D.; Sekul, R.; Ott, I.; Anderson, J.P.; Szoke, B.; Hoffman, W.; Christodoulou, J.; Yednock, T.; Agard, D.A.; Schenk, D.; McConlogue, L. Novel small molecules targeting the intrinsically disordered structural ensemble of α-synuclein protect against diverse α-synuclein mediated dysfunctions. Sci. Rep., 2019, 9(1), 16947.
[http://dx.doi.org/10.1038/s41598-019-52598-4] [PMID: 31740740]
[144]
Zhang, S.; Liu, Y.Q.; Jia, C.; Lim, Y.J.; Feng, G.; Xu, E.; Long, H.; Kimura, Y.; Tao, Y.; Zhao, C.; Wang, C.; Liu, Z.; Hu, J.J.; Ma, M.R.; Liu, Z.; Jiang, L.; Li, D.; Wang, R.; Dawson, V.L.; Dawson, T.M.; Li, Y.M.; Mao, X.; Liu, C. Mechanistic basis for receptor-mediated pathological α-synuclein fibril cell-to-cell transmission in Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 2021, 118(26), e2011196118.
[http://dx.doi.org/10.1073/pnas.2011196118] [PMID: 34172566]
[145]
Copeland, R.A.; Pompliano, D.L.; Meek, T.D. Drug–target residence time and its implications for lead optimization. Nat. Rev. Drug Discov., 2006, 5(9), 730-739.
[http://dx.doi.org/10.1038/nrd2082] [PMID: 16888652]
[146]
Leclerc, E.; Peretz, D.; Ball, H.; Sakurai, H.; Legname, G.; Serban, A.; Prusiner, S.B.; Burton, D.R.; Williamson, R.A. Immobilized prion protein undergoes spontaneous rearrangement to a conformation having features in common with the infectious form. EMBO J., 2001, 20(7), 1547-1554.
[http://dx.doi.org/10.1093/emboj/20.7.1547] [PMID: 11285219]
[147]
Leclerc, E.; Vetter, S. Conformational changes and development of proteinase K resistance in surface-immobilized PrP. Arch. Virol., 2008, 153(4), 683-691.
[http://dx.doi.org/10.1007/s00705-008-0049-2] [PMID: 18278426]
[148]
Kim, S.Y.; Zhang, F.; Harris, D.A.; Linhardt, R.J. Structuralfeatures of heparin and its interactions with cellular prion protein measured by surface plasmon resonance. Front. Mol. Biosci., 2020, 7, 594497.
[http://dx.doi.org/10.3389/fmolb.2020.594497] [PMID: 33324681]
[149]
Lu, H.; Dong Le, W.; Xie, Y.Y.; Wang, X.P. Current therapy of drugs in amyotrophic lateral sclerosis. Curr. Neuropharmacol., 2016, 14(4), 314-321.
[http://dx.doi.org/10.2174/1570159X14666160120152423] [PMID: 26786249]
[150]
Xu, X.; Denic, A.; Jordan, L.R.; Wittenberg, N.J.; Warrington, A.E.; Wootla, B.; Papke, L.M.; Zoecklein, L.J.; Yoo, D.; Shaver, J.; Oh, S.H.; Pease, L.R.; Rodriguez, M. A natural human IgM that binds to gangliosides is therapeutic in murine models of amyotrophic lateral sclerosis. Dis. Model. Mech., 2015, 8(8), dmm.020727.
[http://dx.doi.org/10.1242/dmm.020727] [PMID: 26035393]
[151]
Shvil, N.; Banerjee, V.; Zoltsman, G.; Shani, T.; Kahn, J.; Abu-Hamad, S.; Papo, N.; Engel, S.; Bernhagen, J.; Israelson, A. MIF inhibits the formation and toxicity of misfolded SOD1 amyloid aggregates: Implications for familial ALS. Cell Death Dis., 2018, 9(2), 107.
[http://dx.doi.org/10.1038/s41419-017-0130-4] [PMID: 29371591]
[152]
Hong, S.; Lee, S.; Choi, I.; Yang, Y.I.; Kang, T.; Yi, J. Real-time analysis and direct observations of different superoxide dismutase (SOD1) molecules bindings to aggregates in temporal evolution step. Colloids Surf. B Biointerfaces, 2013, 101, 266-271.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.014] [PMID: 23010029]
[153]
Kang, T.; Hong, S.; Choi, I.; Sung, J.J.; Kim, Y.; Hahn, J.S.; Yi, J. Reversible pH-driven conformational switching of tethered superoxide dismutase with gold nanoparticle enhanced surface plasmon resonance spectroscopy. J. Am. Chem. Soc., 2006, 128(39), 12870-12878.
[http://dx.doi.org/10.1021/ja0632198] [PMID: 17002381]
[154]
Bar-Tana, J. Type 2 diabetes – unmet need, unresolved pathogenesis, mTORC1-centric paradigm. Rev. Endocr. Metab. Disord., 2020, 21(4), 613-629.
[http://dx.doi.org/10.1007/s11154-020-09545-w] [PMID: 32128655]
[155]
Bellia, F.; Grasso, G. The role of copper(II) and zinc(II) in the degradation of human and murine IAPP by insulin-degrading enzyme. J. Mass Spectrom., 2014, 49(4), 274-279.
[http://dx.doi.org/10.1002/jms.3338] [PMID: 24719342]
[156]
Hay, D.L.; Chen, S.; Lutz, T.A.; Parkes, D.G.; Roth, J.D. Amylin: Pharmacology, physiology, and clinical potential. Pharmacol. Rev., 2015, 67(3), 564-600.
[http://dx.doi.org/10.1124/pr.115.010629] [PMID: 26071095]
[157]
Pillay, K.; Govender, P. Novel insights into amylin aggregation. Biotechnol. Biotechnol. Equip., 2014, 28(1), 123-135.
[http://dx.doi.org/10.1080/13102818.2014.901680] [PMID: 26019498]
[158]
Xu, Y.; Maya-Martinez, R.; Guthertz, N.; Heath, G.R.; Manfield, I.W.; Breeze, A.L.; Sobott, F.; Foster, R.; Radford, S.E. Tuning the rate of aggregation of hIAPP into amyloid using small-molecule modulators of assembly. Nat. Commun., 2022, 13(1), 1040.
[http://dx.doi.org/10.1038/s41467-022-28660-7] [PMID: 35210421]
[159]
Schneider, C.S.; Bhargav, A.G.; Perez, J.G.; Wadajkar, A.S.; Winkles, J.A.; Woodworth, G.F.; Kim, A.J. Surface plasmon resonance as a high throughput method to evaluate specific and non-specific binding of nanotherapeutics. J. Control. Release, 2015, 219, 331-344.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.048] [PMID: 26415854]
[160]
Banerjee, I.; Pangule, R.C.; Kane, R.S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater., 2011, 23(6), 690-718.
[http://dx.doi.org/10.1002/adma.201001215] [PMID: 20886559]
[161]
Blaszykowski, C.; Sheikh, S.; Thompson, M. Surface chemistry to minimize fouling from blood-based fluids. Chem. Soc. Rev., 2012, 41(17), 5599-5612.
[http://dx.doi.org/10.1039/c2cs35170f] [PMID: 22772072]
[162]
Mauriz, E.; Dey, P.; Lechuga, L.M. Advances in nanoplasmonic biosensors for clinical applications. Analyst (Lond.), 2019, 144(24), 7105-7129.
[http://dx.doi.org/10.1039/C9AN00701F] [PMID: 31663527]
[163]
Unsworth, L.D.; Tun, Z.; Sheardown, H.; Brash, J.L. Chemisorption of thiolated poly(ethylene oxide) to gold: Surface chain densities measured by ellipsometry and neutron reflectometry. J. Colloid Interface Sci., 2005, 281(1), 112-121.
[http://dx.doi.org/10.1016/j.jcis.2004.08.022] [PMID: 15567386]
[164]
Vaisocherová, H.; Brynda, E.; Homola, J. Functionalizable low-fouling coatings for label-free biosensing in complex biological media: Advances and applications. Anal. Bioanal. Chem., 2015, 407(14), 3927-3953.
[http://dx.doi.org/10.1007/s00216-015-8606-5] [PMID: 25821150]
[165]
Ederth, T.; Lerm, M.; Orihuela, B.; Rittschof, D. Resistance of zwitterionic peptide monolayers to biofouling. Langmuir, 2019, 35(5), 1818-1827.
[http://dx.doi.org/10.1021/acs.langmuir.8b01625] [PMID: 30103609]
[166]
Harris, J.M. Poly(Ethylene Glycol) Chemistry. Topics in Applied Chemistry (TAPP), (1st ed.. ), 1992,
[http://dx.doi.org/10.1007/978-1-4899-0703-5]
[167]
Blackman, L.D.; Gunatillake, P.A.; Cass, P.; Locock, K.E.S. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem. Soc. Rev., 2019, 48(3), 757-770.
[http://dx.doi.org/10.1039/C8CS00508G] [PMID: 30548039]
[168]
Liu, X.; Huang, R.; Su, R.; Qi, W.; Wang, L.; He, Z. Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors. ACS Appl. Mater. Interfaces, 2014, 6(15), 13034-13042.
[http://dx.doi.org/10.1021/am502921z] [PMID: 25026640]
[169]
Jia, J.; Coyle, R.C.; Richards, D.J.; Berry, C.L.; Barrs, R.W.; Biggs, J.; James Chou, C.; Trusk, T.C.; Mei, Y. Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications. Acta Biomater., 2016, 45, 110-120.
[http://dx.doi.org/10.1016/j.actbio.2016.09.006] [PMID: 27612960]
[170]
Prime, K.L.; Whitesides, G.M. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): A model system using self-assembled monolayers. J. Am. Chem. Soc., 1993, 115(23), 10714-10721.
[http://dx.doi.org/10.1021/ja00076a032]
[171]
Liu, B.; Liu, X.; Shi, S.; Huang, R.; Su, R.; Qi, W.; He, Z. Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomater., 2016, 40, 100-118.
[http://dx.doi.org/10.1016/j.actbio.2016.02.035] [PMID: 26921775]
[172]
Qu, J.H.; Dillen, A.; Saeys, W.; Lammertyn, J.; Spasic, D. Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing. Anal. Chim. Acta, 2020, 1104, 10-27.
[http://dx.doi.org/10.1016/j.aca.2019.12.067] [PMID: 32106939]
[173]
D’Agata, R.; Bellassai, N.; Giuffrida, M.C.; Aura, A.M.; Petri, C.; Kögler, P.; Vecchio, G.; Jonas, U.; Spoto, G. A new ultralow fouling surface for the analysis of human plasma samples with surface plasmon resonance. Talanta, 2021, 221, 121483.
[http://dx.doi.org/10.1016/j.talanta.2020.121483] [PMID: 33076094]
[174]
Schasfoort, R.B.M. Introduction to Surface Plasmon Resonance. In: Handbook of Surface Plasmon Resonance, 2nd ed.; Royal Society of Chemistry: London: UK, 2010; 87, pp. (7)742-746.
[http://dx.doi.org/10.1039/9781788010283-00001]
[175]
Tang, Y.; Zeng, X.; Liang, J. Surface plasmon resonance: An introduction to a surface spectroscopy technique. J. Chem. Educ., 2010, 87(7), 742-746.
[http://dx.doi.org/10.1021/ed100186y] [PMID: 21359107]
[176]
Mohammadzadeh-Asl, S.; Keshtkar, A.; Ezzati Nazhad Dolatabadi, J.; de la Guardia, M. Nanomaterials and phase sensitive based signal enhancment in surface plasmon resonance. Biosens. Bioelectron., 2018, 110, 118-131.
[http://dx.doi.org/10.1016/j.bios.2018.03.051] [PMID: 29604520]
[177]
Chang, C.C. Recent advancements in aptamer-based surface plasmon resonance biosensing strategies. Biosensors (Basel), 2021, 11(7), 233.
[http://dx.doi.org/10.3390/bios11070233] [PMID: 34356703]
[178]
Alex, S.; Tiwari, A. Functionalized gold nanoparticles: Synthesis, properties and applications-a review. J. Nanosci. Nanotechnol., 2015, 15(3), 1869-1894.
[http://dx.doi.org/10.1166/jnn.2015.9718] [PMID: 26413604]
[179]
Melaine, F.; Roupioz, Y.; Buhot, A. Gold nanoparticles surface plasmon resonance enhanced signal for the detection of small molecules on split-aptamer microarrays (small molecules detection from split-aptamers). Microarrays (Basel), 2015, 4(1), 41-52.
[http://dx.doi.org/10.3390/microarrays4010041] [PMID: 27600212]
[180]
Wang, Y.; Partridge, A.; Wu, Y. Improving nanoparticle-enhanced surface plasmon resonance detection of small molecules by reducing steric hindrance via molecular linkers. Talanta, 2019, 198, 350-357.
[http://dx.doi.org/10.1016/j.talanta.2019.02.035] [PMID: 30876572]
[181]
Cao, Y.; Griffith, B.; Bhomkar, P.; Wishart, D.S.; McDermott, M.T. Functionalized gold nanoparticle-enhanced competitive assay for sensitive small-molecule metabolite detection using surface plasmon resonance. Analyst (Lond.), 2018, 143(1), 289-296.
[http://dx.doi.org/10.1039/C7AN01680H] [PMID: 29184920]
[182]
Tagliavini, F.; Giaccone, G.; Frangione, B.; Bugiani, O. Preamyloid deposits in the cerebral cortex of patients with Alzheimer’s disease and nondemented individuals. Neurosci. Lett., 1988, 93(2-3), 191-196.
[http://dx.doi.org/10.1016/0304-3940(88)90080-8] [PMID: 3241644]
[183]
Masters, C.L.; Simms, G.; Weinman, N.A.; Multhaup, G.; McDonald, B.L.; Beyreuther, K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA, 1985, 82(12), 4245-4249.
[http://dx.doi.org/10.1073/pnas.82.12.4245] [PMID: 3159021]
[184]
Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol., 1991, 82(4), 239-259.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[185]
Thal, D.R.; Rüb, U.; Orantes, M.; Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology, 2002, 58(12), 1791-1800.
[http://dx.doi.org/10.1212/WNL.58.12.1791] [PMID: 12084879]
[186]
Hsiao, K.K.; Cass, C.; Schellenberg, G.D.; Bird, T.; Devine-Gage, E.; Wisniewski, H.; Prusiner, S.B. A prion protein variant in a family with the telencephalic form of Gerstmann-Straussler-Scheinker syndrome. Neurology, 1991, 41(5), 681-684.
[http://dx.doi.org/10.1212/WNL.41.5.681] [PMID: 1674116]
[187]
Ghetti, B.; Dlouhy, S.R.; Giaccone, G.; Bugiani, O.; Frangione, B.; Farlow, M.R.; Tagliavini, F. Gerstmann-Sträussler-Scheinker disease and the Indiana kindred. Brain Pathol., 1995, 5(1), 61-75.
[http://dx.doi.org/10.1111/j.1750-3639.1995.tb00578.x] [PMID: 7767492]
[188]
Goldfarb, L.G.; Brown, P.; McCombie, W.R.; Goldgaber, D.; Swergold, G.D.; Wills, P.R.; Cervenakova, L.; Baron, H.; Gibbs, C.J., Jr; Gajdusek, D.C. Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc. Natl. Acad. Sci. USA, 1991, 88(23), 10926-10930.
[http://dx.doi.org/10.1073/pnas.88.23.10926] [PMID: 1683708]
[189]
Budka, H.; Aguzzi, A.; Brown, P.; Brucher, J.M.; Bugiani, O.; Gullotta, F.; Haltia, M.; Hauw, J.J.; Ironside, J.W.; Jellinger, K.; Kretzschmar, H.A.; Lantos, P.L.; Masullo, C.; Schlote, W.; Tateishi, J.; Weller, R.O. Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol., 1995, 5(4), 459-466.
[http://dx.doi.org/10.1111/j.1750-3639.1995.tb00625.x] [PMID: 8974629]
[190]
McKee, A.C.; Stein, T.D.; Nowinski, C.J.; Stern, R.A.; Daneshvar, D.H.; Alvarez, V.E.; Lee, H.S.; Hall, G.; Wojtowicz, S.M.; Baugh, C.M.; Riley, D.O.; Kubilus, C.A.; Cormier, K.A.; Jacobs, M.A.; Martin, B.R.; Abraham, C.R.; Ikezu, T.; Reichard, R.R.; Wolozin, B.L.; Budson, A.E.; Goldstein, L.E.; Kowall, N.W.; Cantu, R.C. The spectrum of disease in chronic traumatic encephalopathy. Brain, 2013, 136(1), 43-64.
[http://dx.doi.org/10.1093/brain/aws307] [PMID: 23208308]
[191]
Crary, J.F.; Trojanowski, J.Q.; Schneider, J.A.; Abisambra, J.F.; Abner, E.L.; Alafuzoff, I.; Arnold, S.E.; Attems, J.; Beach, T.G.; Bigio, E.H.; Cairns, N.J.; Dickson, D.W.; Gearing, M.; Grinberg, L.T.; Hof, P.R.; Hyman, B.T.; Jellinger, K.; Jicha, G.A.; Kovacs, G.G.; Knopman, D.S.; Kofler, J.; Kukull, W.A.; Mackenzie, I.R.; Masliah, E.; McKee, A.; Montine, T.J.; Murray, M.E.; Neltner, J.H.; Santa-Maria, I.; Seeley, W.W.; Serrano-Pozo, A.; Shelanski, M.L.; Stein, T.; Takao, M.; Thal, D.R.; Toledo, J.B.; Troncoso, J.C.; Vonsattel, J.P.; White, C.L., III; Wisniewski, T.; Woltjer, R.L.; Yamada, M.; Nelson, P.T. Primary age-related tauopathy (PART): A common pathology associated with human aging. Acta Neuropathol., 2014, 128(6), 755-766.
[http://dx.doi.org/10.1007/s00401-014-1349-0] [PMID: 25348064]
[192]
Constantinidis, J.; Richard, J.; Tissot, R. Pick’s Disease. Eur. Neurol., 1974, 11(4), 208-217.
[http://dx.doi.org/10.1159/000114320] [PMID: 4137107]
[193]
Rebeiz, J.J.; Kolodny, E.H.; Richardson, E.P., Jr. Corticodentatonigral degeneration with neuronal achromasia. Arch. Neurol., 1968, 18(1), 20-33.
[http://dx.doi.org/10.1001/archneur.1968.00470310034003] [PMID: 5634369]
[194]
Braak, H.; Tredici, K.D.; Rüb, U.; de Vos, R.A.I.; Jansen Steur, E.N.H.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging, 2003, 24(2), 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[195]
McKinnon, S.J.; Lehman, D.M.; Kerrigan-Baumrind, L.A.; Merges, C.A.; Pease, M.E.; Kerrigan, D.F.; Ransom, N.L.; Tahzib, N.G.; Reitsamer, H.A.; Levkovitch-Verbin, H.; Quigley, H.A.; Zack, D.J. Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest. Ophthalmol. Vis. Sci., 2002, 43(4), 1077-1087. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2200155
[PMID: 11923249]
[196]
Kasetti, R.B.; Patel, P.D.; Maddineni, P.; Patil, S.; Kiehlbauch, C.; Millar, J.C.; Searby, C.C.; Raghunathan, V.; Sheffield, V.C.; Zode, G.S. ATF4 leads to glaucoma by promoting protein synthesis and ER client protein load. Nat. Commun., 2020, 11(1), 5594.
[http://dx.doi.org/10.1038/s41467-020-19352-1] [PMID: 33154371]
[197]
Kaushal, S.; Khorana, H.G. Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry, 1994, 33(20), 6121-6128.
[http://dx.doi.org/10.1021/bi00186a011] [PMID: 8193125]
[198]
Regenmortel, M.H.V.; Choulier, L. Recognition of peptides by antibodies and investigations of affinity using biosensor technology. Comb. Chem. High Throughput Screen., 2001, 4(5), 385-395.
[http://dx.doi.org/10.2174/1386207013330940] [PMID: 11472227]
[199]
Jordan, C. E.; Frutos, A. G.; Thiel, A. J.; Corn, R. M. Surface plasmon resonance imaging measurements of dna hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal. Chem., 1997, 69(24), 4939-4947.
[http://dx.doi.org/10.1021/ac9709763]
[200]
Danelian, E.; Karlén, A.; Karlsson, R.; Winiwarter, S.; Hansson, A.; Löfås, S.; Lennernäs, H.; Hämäläinen, M.D. SPR biosensor studies of the direct interaction between 27 drugs and a liposome surface: Correlation with fraction absorbed in humans. J. Med. Chem., 2000, 43(11), 2083-2086.
[http://dx.doi.org/10.1021/jm991156g] [PMID: 10841786]
[201]
Frostell-Karlsson, Å.; Remaeus, A.; Roos, H.; Andersson, K.; Borg, P.; Hämäläinen, M.; Karlsson, R. Biosensor analysis of the interaction between immobilized human serum albumin and drug compounds for prediction of human serum albumin binding levels. J. Med. Chem., 2000, 43(10), 1986-1992.
[http://dx.doi.org/10.1021/jm991174y] [PMID: 10821711]
[202]
Van Regenmortel, M.H.V. Analysing structure-function relationships with biosensors. Cell. Mol. Life Sci., 2001, 58(5), 794-800.
[http://dx.doi.org/10.1007/PL00000900] [PMID: 11437238]
[203]
Kaganer, E.; Pogreb, R.; Davidov, D.; Willner, I. Surfaceplasmon resonance characterization of photoswitchable antigen−antibody interactions. Langmuir, 1999, 15(11), 3920-3923.
[http://dx.doi.org/10.1021/la981147v]
[204]
Rosman, C.; Prasad, J.; Neiser, A.; Henkel, A.; Edgar, J.; Sönnichsen, C. Multiplexed plasmon sensor for rapid label-free analyte detection. Nano Lett., 2013, 13(7), 3243-3247.
[http://dx.doi.org/10.1021/nl401354f] [PMID: 23789876]
[205]
Jebelli, A.; Oroojalian, F.; Fathi, F.; Mokhtarzadeh, A.; Guardia, M. Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosens. Bioelectron., 2020, 169, 112599.
[http://dx.doi.org/10.1016/j.bios.2020.112599] [PMID: 32931990]
[206]
Bouguelia, S.; Roupioz, Y.; Slimani, S.; Mondani, L.; Casabona, M.G.; Durmort, C.; Vernet, T.; Calemczuk, R.; Livache, T. On-chip microbial culture for the specific detection of very low levels of bacteria. Lab Chip, 2013, 13(20), 4024-4032.
[http://dx.doi.org/10.1039/c3lc50473e] [PMID: 23912527]
[207]
Gorodkiewicz, E.; Ostrowska, H.; Sankiewicz, A. SPR imaging biosensor for the 20S proteasome: Sensor development and application to measurement of proteasomes in human blood plasma. Mikrochim. Acta, 2011, 175(1-2), 177-184.
[http://dx.doi.org/10.1007/s00604-011-0656-6] [PMID: 21966027]
[208]
Wang, Q.; Liu, Z. Recent progress of surface plasmon resonance in the development of coronavirus disease-2019 drug candidates. Eur. J. Med. Chem. Reports, 2021, 1, 100003.
[http://dx.doi.org/10.1016/j.ejmcr.2021.100003] [PMID: 36304139]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy