Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Systematic Review Article

The Functions of EphA1 Receptor Tyrosine Kinase in Several Tumors

Author(s): Yinxin Wu, Zhuoying Du, Jie Mou, Xinyan Qiu, Jinlan Chen, Sanjin Cai, Dongming Ren, Fangxiang Xiao, Gang Zhou* and Chengfu Yuan*

Volume 30, Issue 20, 2023

Published on: 20 October, 2022

Page: [2340 - 2353] Pages: 14

DOI: 10.2174/0929867329666220820125638

Price: $65

Abstract

Background: Eph receptors tyrosine kinase (RTK) were identified in 1987 from hepatocellular carcinoma cell lines and were the largest known subfamily of RTK. Eph receptors can be divided into two categories, EphA and EphB, based on their structure and receptor-ligand specificity. EphA can be divided into 10 species (EphA 1-10) and EphB into 6 species (EphB1-6). Similarly, the ligands of Eph receptors are Ephrins. Ephrins also can be divided into Ephrin A and Ephrin B, of which there are five species(Ephrin-A1-5) and three species(Ephrin-B1-3). Among the Eph receptors, EphA1 has been the least studied so far. As far as we know, Eph receptors are involved in multiple pathologies, including cancer progression, tumor angiogenesis, intestinal environmental stability, the lymph node system, neurological disease, and inhibition of nerve regeneration after injury. There is a link between EphA1, integrin and ECM- related signal pathways. Ephrin-A1 is a ligand of the EphA1 receptor. EphA1 and ephrin-A1 functions are related to tumor angiogenesis. EphA1 and ephrin-A1 also play roles in gynecological diseases. Ephrin-A1 and EphA1 receptors regulate the follicular formation, ovulation, embryo transport, implantation and placental formation, which are of great significance for the occurrence of gynecological tumor diseases. EphA1 has been identified as an oncoprotein in various tumors and has been associated with the prognosis of various tumors in recent years. EphA1 is considered a driver gene in tumor genomics. There are significant differences in EphA1 expression levels in different types of normal tissues and tumors and even in different stages of tumor development, suggesting its functional diversity. Changes at the gene level in cell biology are often used as biological indicators of cancer, known as biomarkers, which can be used to provide diagnostic or prognostic information and are valuable for improving the detection, monitoring and treatment of tumors. However, few prognostic markers can selectively predict clinically significant tumors with poor prognosis. These malignancies are more likely to progress and lead to death, requiring more aggressive treatment. Currently available treatments for advanced cancer are often ineffective, and treatment options are mainly palliative. Therefore, early identification and treatment of those at risk of developing malignant tumors are crucial. Although pieces of evidence have shown the role of EphA1 in tumorigenesis and development, its specific mechanism is still unknown to a great extent.

Objective: This review reveals the changes and roles of EphA1 in many tumors and cancers. The change of EphA1 expression can be used as a biological marker of cancer, which is valuable for improving tumor detection, monitoring and treatment and can be applied to imaging. Studies have shown that structural modification of EphA1 could make it an effective new drug. EphA1 is unique in that it can be considered a prognostic marker in many tumors and is of important meaning for clinical diagnosis and operative treatment. At the same time, the study of the specific mechanism of EphA1 in tumors can provide a new way for targeted therapy.

Methods: Relevant studies were retrieved and collected through the PubMed system. After determining EphA1 as the research object, by analyzing research articles on EphA1 in the PubMed system in recent 10 years, we found that EphA1 was closely connected with the occurrence and development of tumors and further determined the references according to the influencing factors for review and analysis.

Results: EphA1 has been identified as a cancer protein in various tumors, such as hepatocellular carcinoma, nasopharyngeal carcinoma, ovarian cancer, gastric cancer, colorectal cancer, clear cell renal cell carcinoma, esophageal squamous cell carcinoma, breast cancer, prostate cancer and uveal melanoma. EphA1 is abnormally expressed in these tumor cells, which mainly plays a role in cancer progression, tumor angiogenesis, intestinal environmental stability, the lymph node system, nervous system diseases and gynecological diseases. In a narrow sense, EphA1 is especially effective in breast cancer in terms of gynecological diseases. However, the specific mechanism of EphA1 leading to the change of cancer cells in some tumors is not clear, which needs further research and exploration.

Conclusion: RTK EphA1 can be used as a biomarker for tumor diagnosis (especially a prognostic marker), an indispensable therapeutic target for new anti-tumor therapies, and a novel anti-tumor drug.

Keywords: RTK, EphA1, tumors, hepatocellular carcinoma, biomarkers, diagnosis, angiogenesis.

« Previous
[1]
Noberini, R.; Rubio de la Torre, E.; Pasquale, E.B. Profiling Eph receptor expression in cells and tissues. Cell Adhes. Migr., 2012, 6(2), 102-156.
[http://dx.doi.org/10.4161/cam.19620] [PMID: 22568954]
[2]
Owshalimpur, D.; Kelley, M.J. Genomic structure of the EPHA1 receptor tyrosinekinase gene. Mol. Cell. Probes, 1999, 13(3), 169-173.
[http://dx.doi.org/10.1006/mcpr.1999.0228] [PMID: 10369740]
[3]
Hirai, H.; Maru, Y.; Hagiwara, K.; Nishida, J.; Takaku, F. A novel putative tyrosine kinase receptor encoded by the eph gene. Science, 1987, 238(4834), 1717-1720.
[http://dx.doi.org/10.1126/science.2825356] [PMID: 2825356]
[4]
Adu-Gyamfi, E.A.; Czika, A.; Liu, T.H.; Gorleku, P.N.; Fondjo, L.A.; Djankpa, F.T.; Ding, Y.B.; Wang, Y.X. Ephrin and Eph receptor signaling in female reproductive physiology and pathology. Biol. Reprod., 2021, 104(1), 71-82.
[http://dx.doi.org/10.1093/biolre/ioaa171] [PMID: 32940657]
[5]
Ieguchi, K.; Maru, Y. Roles of EphA1/A2 and ephrin-A1 in cancer. Cancer Sci., 2019, 110(3), 841-848.
[http://dx.doi.org/10.1111/cas.13942] [PMID: 30657619]
[6]
Wang, H.U.; Chen, Z.F.; Anderson, D.J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell, 1998, 93(5), 741-753.
[http://dx.doi.org/10.1016/S0092-8674(00)81436-1] [PMID: 9630219]
[7]
Hamada, K.; Oike, Y.; Ito, Y.; Maekawa, H.; Miyata, K.; Shimomura, T.; Suda, T. Distinct roles of ephrin-B2 forward and EphB4 reverse signaling in endothelial cells. Arterioscler. Thromb. Vasc. Biol., 2003, 23(2), 190-197.
[http://dx.doi.org/10.1161/01.ATV.0000055440.89758.C2] [PMID: 12588758]
[8]
Wang, Y.; Yu, H.; Shan, Y.; Tao, C.; Wu, F.; Yu, Z.; Guo, P.; Huang, J.; Li, J.; Zhu, Q.; Yu, F.; Song, Q.; Shi, H.; Zhou, M.; Chen, G. EphA1 activation promotes the homing of endothelial progenitor cells to hepatocellular carcinoma for tumor neovascularization through the SDF-1/CXCR4 signaling pathway. J. Exp. Clin. Cancer Res., 2016, 35(1), 65.
[http://dx.doi.org/10.1186/s13046-016-0339-6] [PMID: 27066828]
[9]
Chu, M.; Zhang, C. Inhibition of angiogenesis by leflunomide via targeting the soluble ephrin-A1/EphA2 system in bladder cancer. Sci. Rep., 2018, 8(1), 1539.
[http://dx.doi.org/10.1038/s41598-018-19788-y] [PMID: 29367676]
[10]
Gajdzis, M.; Theocharis, S.; Gajdzis, P.; Cassoux, N.; Gardrat, S.; Donizy, P.; Klijanienko, J.; Kaczmarek, R. Ephrin Receptors (Eph): EphA1, EphA5, and EphA7 expression in uveal melanoma—associations with clinical parameters and patient survival. Life (Basel), 2020, 10(10), 225.
[http://dx.doi.org/10.3390/life10100225] [PMID: 33007931]
[11]
Davy, A.; Gale, N.W.; Murray, E.W.; Klinghoffer, R.A.; Soriano, P.; Feuerstein, C.; Robbins, S.M. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev., 1999, 13(23), 3125-3135.
[http://dx.doi.org/10.1101/gad.13.23.3125] [PMID: 10601038]
[12]
Scadden, D.T. Nice neighborhood: Emerging concepts of the stem cell niche. Cell, 2014, 157(1), 41-50.
[http://dx.doi.org/10.1016/j.cell.2014.02.013] [PMID: 24679525]
[13]
Dai, B.; Zhang, X. SOCS2 affects the proliferation, migration, and invasion of nasopharyngeal carcinoma cells via regulating EphA1. Neoplasma, 2020, 67(4), 794-801.
[http://dx.doi.org/10.4149/neo_2020_190807N724] [PMID: 32266818]
[14]
Cui, Y.; Wu, B.O.; Flamini, V.; Evans, B.A.J.; Zhou, D.; Jiang, W.G. Knockdown of EPHA1 Using CRISPR/CAS9 suppresses aggressive properties of ovarian cancer cells. Anticancer Res., 2017, 37(8), 4415-4424.
[PMID: 28739735]
[15]
Wang, Y.C.; Dai, Y.; Xu, G.L.; Yu, W.; Quan, R.L.; Zhao, Y.J. Association between EphA1 and tumor microenvironment in gastric carcinoma and its clinical significance. Med. Sci. Monit., 2020, 26, e923409.
[http://dx.doi.org/10.12659/MSM.923409] [PMID: 32218416]
[16]
Li, P.; Wang, L.; Li, P.; Hu, F.; Cao, Y.; Tang, D.; Ye, G.; Li, H.; Wang, D. Silencing of long non-coding RNA XIST represses gastric cancer progression through blocking NFκB pathway via inhibiting HNF4A-mediated transcription of EPHA1. Cancer Gene Ther., 2021, 28(3-4), 307-320.
[http://dx.doi.org/10.1038/s41417-020-00220-5] [PMID: 33199830]
[17]
Wu, B.O.; Jiang, W.G.; Zhou, D.; Cui, Y.X. Knockdown of EPHA1 by CRISPR/CAS9 promotes adhesion and motility of HRT18 colorectal carcinoma cells. Anticancer Res., 2016, 36(3), 1211-1219.
[PMID: 26977017]
[18]
Toma, M.I.; Erdmann, K.; Diezel, M.; Meinhardt, M.; Zastrow, S.; Fuessel, S.; Wirth, M.P.; Baretton, G.B. Lack of ephrin receptor A1 is a favorable independent prognostic factor in clear cell renal cell carcinoma. PLoS One, 2014, 9(7), e102262.
[http://dx.doi.org/10.1371/journal.pone.0102262] [PMID: 25025847]
[19]
Wang, J.; Ma, J.; Dong, Y.; Shen, Z.; Ma, H.; Wang, X.; Shi, S.; Wu, J.; Lu, G.; Peng, L.; Zhoud, X. High expression of EphA1 in esophageal squamous cell carcinoma is associated with lymph node metastasis and advanced disease. APMIS, 2013, 121(1), 30-37.
[20]
Liang, Z.; Wang, X.; Dong, K.; Li, X.; Qin, C.; Zhou, H. Expression pattern and prognostic value of EPHA/EFNA in breast cancer by bioinformatics analysis: Revealing its importance in chemotherapy. BioMed Res. Int., 2021, 2021, 1-20.
[http://dx.doi.org/10.1155/2021/5575704] [PMID: 33977106]
[21]
Peng, L.; Wang, H.; Dong, Y.; Ma, J.; Wen, J.; Wu, J.; Wang, X.; Zhou, X.; Wang, J. Increased expression of EphA1 protein in prostate cancers correlates with high Gleason score. Int. J. Clin. Exp. Pathol., 2013, 6(9), 1854-1860.
[PMID: 24040450]
[22]
Yu, L.; Ke, J.; Du, X.; Yu, Z.; Gao, D. Genetic characterization of thymoma. Sci. Rep., 2019, 9(1), 2369.
[http://dx.doi.org/10.1038/s41598-019-38878-z] [PMID: 30787364]
[23]
Theocharis, S.; Klijanienko, J.; Giaginis, C.; Alexandrou, P.; Patsouris, E.; Sastre-Garau, X. Ephrin receptor (Eph) -A1, -A2, -A4 and -A7 expression in mobile tongue squamous cell carcinoma: Associations with clinicopathological parameters and patients survival. Pathol. Oncol. Res., 2014, 20(2), 277-284.
[http://dx.doi.org/10.1007/s12253-013-9692-3] [PMID: 24022400]
[24]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[25]
Liu, J.K.H.; Irvine, A.F.; Jones, R.L.; Samson, A. Immunotherapies for hepatocellular carcinoma. Cancer Med., 2022, 11(3), 571-591.
[http://dx.doi.org/10.1002/cam4.4468] [PMID: 34953051]
[26]
Folkman, J. Angiogenesis: An organizing principle for drug discovery? Nat. Rev. Drug Discov., 2007, 6(4), 273-286.
[http://dx.doi.org/10.1038/nrd2115] [PMID: 17396134]
[27]
Nguyen, M.P.; Lee, D.; Lee, S.H.; Lee, H.E.; Lee, H.Y.; Lee, Y.M. Deguelin inhibits vasculogenic function of endothelial progenitor cells in tumor progression and metastasis via suppression of focal adhesion. Oncotarget, 2015, 6(18), 16588-16600.
[http://dx.doi.org/10.18632/oncotarget.3752] [PMID: 26078334]
[28]
Melero-Martin, J.M.; Dudley, A.C. Concise review: Vascular stem cells and tumor angiogenesis. Stem Cells, 2011, 29(2), 163-168.
[http://dx.doi.org/10.1002/stem.583] [PMID: 21732475]
[29]
Chen, G.; Wang, Y.; Zhou, M.; Shi, H.; Yu, Z.; Zhu, Y.; Yu, F. EphA1 receptor silencing by small interfering RNA has antiangiogenic and antitumor efficacy in hepatocellular carcinoma. Oncol. Rep., 2010, 23(2), 563-570.
[PMID: 20043122]
[30]
Chen, Y.; Huang, Y.; Reiberger, T.; Duyverman, A.M.; Huang, P.; Samuel, R.; Hiddingh, L.; Roberge, S.; Koppel, C.; Lauwers, G.Y.; Zhu, A.X.; Jain, R.K.; Duda, D.G. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology, 2014, 59(4), 1435-1447.
[http://dx.doi.org/10.1002/hep.26790] [PMID: 24242874]
[31]
Pastor, M.; Lopez Pousa, A.; Del Barco, E.; Perez Segura, P.; Astorga, B.G.; Castelo, B.; Bonfill, T.; Martinez Trufero, J.; Grau, J.J.; Mesia, R. SEOM clinical guideline in nasopharynx cancer. Clin. Transl. Oncol., 2018, 20(1), 84-88.
[32]
Ma, F.; Gu, X.; Liu, J.Q.; Mo, L.H.; Yang, G.; Geng, X.R.; Liu, Z.Q.; Liu, Z.G.; Yang, P.C. Inhibition of livin overcomes radioresistance in nasopharyngeal carcinoma cells. PLoS One, 2020, 15(3), e0229272.
[http://dx.doi.org/10.1371/journal.pone.0229272] [PMID: 32119704]
[33]
He, H.; Liao, X.; Yang, Q.; Liu, Y.; Peng, Y.; Zhong, H.; Yang, J.; Zhang, H.; Yu, Z.; Zuo, Y.; Guan, C.; Xu, Z. MicroRNA-494-3p promotes cell growth, migration, and invasion of nasopharyngeal carcinoma by targeting Sox7. Technol. Cancer Res. Treat., 2018, 17, 1533033818809993.
[http://dx.doi.org/10.1177/1533033818809993] [PMID: 30381030]
[34]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[35]
Fan, L.; Chen, J.; Zhang, X.; Liu, Y.; Xu, C. Follicle-stimulating hormone polypeptide modified nanoparticle drug delivery system in the treatment of lymphatic metastasis during ovarian carcinoma therapy. Gynecol. Oncol., 2014, 135(1), 125-132.
[http://dx.doi.org/10.1016/j.ygyno.2014.06.030] [PMID: 25003656]
[36]
Yao, S.; Li, L.; Su, X.; Wang, K.; Lu, Z.; Yuan, C.; Feng, J.; Yan, S.; Kong, B.; Song, K. Development and evaluation of novel tumor-targeting paclitaxel-loaded nano-carriers for ovarian cancer treatment: In vitro and in vivo. J. Exp. Clin. Cancer Res., 2018, 37(1), 29.
[http://dx.doi.org/10.1186/s13046-018-0700-z] [PMID: 29478415]
[37]
Yamamoto, T.; Ebisuya, M.; Ashida, F.; Okamoto, K.; Yonehara, S.; Nishida, E. Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. Curr. Biol., 2006, 16(12), 1171-1182.
[http://dx.doi.org/10.1016/j.cub.2006.04.044] [PMID: 16782007]
[38]
Chambard, J.C.; Lefloch, R.; Pouysségur, J.; Lenormand, P. ERK implication in cell cycle regulation. Biochim. Biophys. Acta Mol. Cell Res., 2007, 1773(8), 1299-1310.
[http://dx.doi.org/10.1016/j.bbamcr.2006.11.010] [PMID: 17188374]
[39]
Jung, M.; Russell, A.J.; Liu, B.; George, J.; Liu, P.Y.; Liu, T.; DeFazio, A.; Bowtell, D.D.L.; Oberthuer, A.; London, W.B.; Fletcher, J.I.; Haber, M.; Norris, M.D.; Henderson, M.J. A Myc activity signature predicts poor clinical outcomes in Myc-associated cancers. Cancer Res., 2017, 77(4), 971-981.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2906] [PMID: 27923830]
[40]
Wu, D.; Zhang, P.; Ma, J.; Xu, J.; Yang, L.; Xu, W.; Que, H.; Chen, M.; Xu, H. Serum biomarker panels for the diagnosis of gastric cancer. Cancer Med., 2019, 8(4), 1576-1583.
[http://dx.doi.org/10.1002/cam4.2055] [PMID: 30873760]
[41]
Song, Z.; Wu, Y.; Yang, J.; Yang, D.; Fang, X. Progress in the treatment of advanced gastric cancer. Tumour Biol., 2017, 39(7), 1010428317714626.
[http://dx.doi.org/10.1177/1010428317714626] [PMID: 28671042]
[42]
Inokuchi, M.; Nakagawa, M.; Baogok, N.; Takagi, Y.; Tanioka, T.; Gokita, K.; Okuno, K.; Kojima, K. Prognostic significance of High EphA1-4 expression levels in locally advanced gastric cancer. Anticancer Res., 2018, 38(3), 1685-1693.
[PMID: 29491103]
[43]
Nakagawa, M.; Inokuchi, M.; Takagi, Y.; Kato, K.; Sugita, H.; Otsuki, S.; Kojima, K.; Uetake, H.; Sugihara, K. Erythropoietin-producing hepatocellular A1 is an independent prognostic factor for gastric cancer. Ann. Surg. Oncol., 2015, 22(7), 2329-2335.
[http://dx.doi.org/10.1245/s10434-014-4231-3] [PMID: 25391265]
[44]
Lazăr, D.C.; Avram, M.F.; Romoșan, I.; Cornianu, M.; Tăban, S.; Goldiș, A. Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer. World J. Gastroenterol., 2018, 24(32), 3583-3616.
[http://dx.doi.org/10.3748/wjg.v24.i32.3583] [PMID: 30166856]
[45]
Landskron, G.; De la Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res., 2014, 2014, 1-19.
[http://dx.doi.org/10.1155/2014/149185] [PMID: 24901008]
[46]
Zhou, X.; Tu, P.; Chen, X.; Guo, S.; Wang, J. Eph receptors: Actors in tumor microenvironment. Crit. Rev. Oncog., 2017, 22(5-6), 499-505.
[http://dx.doi.org/10.1615/CritRevOncog.2017020557] [PMID: 29604927]
[47]
Zhang, Q.; Chen, B.; Liu, P.; Yang, J. XIST promotes gastric cancer (GC) progression through TGF‐β1 via targeting miR‐185. J. Cell. Biochem., 2018, 119(3), 2787-2796.
[http://dx.doi.org/10.1002/jcb.26447] [PMID: 29053187]
[48]
Taniguchi, H.; Fujimoto, A.; Kono, H.; Furuta, M.; Fujita, M.; Nakagawa, H. Loss-of-function mutations in Zn-finger DNA-binding domain of HNF4A cause aberrant transcriptional regulation in liver cancer. Oncotarget, 2018, 9(40), 26144-26156.
[http://dx.doi.org/10.18632/oncotarget.25456] [PMID: 29899848]
[49]
Yang, C.; Zhang, J.; Ding, M.; Xu, K.; Li, L.; Mao, L.; Zheng, J. Ki67 targeted strategies for cancer therapy. Clin. Transl. Oncol., 2018, 20(5), 570-575.
[50]
Majumder, A.; Ray, S.; Banerji, A. Epidermal growth factor receptor-mediated regulation of matrix metalloproteinase-2 and matrix metalloproteinase-9 in MCF-7 breast cancer cells. Mol. Cell. Biochem., 2019, 452(1-2), 111-121.
[http://dx.doi.org/10.1007/s11010-018-3417-6] [PMID: 30074136]
[51]
Guo, J.; Yu, Z.; Das, M.; Huang, L. Nano codelivery of oxaliplatin and folinic acid achieves synergistic chemo-immunotherapy with 5-fluorouracil for colorectal cancer and liver metastasis. ACS Nano, 2020, 14(4), 5075-5089.
[http://dx.doi.org/10.1021/acsnano.0c01676] [PMID: 32283007]
[52]
Herath, N.I.; Spanevello, M.D.; Doecke, J.D.; Smith, F.M.; Pouponnot, C.; Boyd, A.W. Complex expression patterns of Eph receptor tyrosine kinases and their ephrin ligands in colorectal carcinogenesis. Eur. J. Cancer, 2012, 48(5), 753-62.
[53]
Dong, Y.; Wang, J.; Sheng, Z.; Li, G.; Ma, H.; Wang, X.; Zhang, R.; Lu, G.; Hu, Q.; Sugimura, H.; Zhou, X. Downregulation of EphA1 in colorectal carcinomas correlates with invasion and metastasis. Modern Pathol, 2009, 22(1), 151-160.
[54]
Wang, X.; Liu, Y.; Cao, G.; Zhang, X.; Xu, H.; Xu, H.; Wang, J. Expression of the EphA1 protein is associated with Fuhrman nuclear grade in clear cell renal cell carcinomas. Int. J. Clin. Exp. Pathol., 2015, 8(6), 6821-6827.
[PMID: 26261568]
[55]
Rini, B.I.; Atkins, M.B. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol., 2009, 10(10), 992-1000.
[http://dx.doi.org/10.1016/S1470-2045(09)70240-2] [PMID: 19796751]
[56]
Hirano, H.; Kato, K. Systemic treatment of advanced esophageal squamous cell carcinoma: chemotherapy, molecular-targeting therapy and immunotherapy. Jpn. J. Clin. Oncol., 2019, 49(5), 412-420.
[http://dx.doi.org/10.1093/jjco/hyz034] [PMID: 30920626]
[57]
Jemal, A.; Tiwari, R.C.; Murray, T.; Ghafoor, A.; Samuels, A.; Ward, E.; Feuer, E.J.; Thun, M.J. Cancer Statistics, 2004. CA Cancer J. Clin., 2004, 54(1), 8-29.
[http://dx.doi.org/10.3322/canjclin.54.1.8] [PMID: 14974761]
[58]
Matsunuma, R.; Watanabe, T.; Hozumi, Y.; Koizumi, K.; Ito, Y.; Maruyama, S.; Ogura, H.; Goto, K.; Mori, H.; Sawai, N.; Shiiya, N. Preoperative concurrent endocrine therapy with chemotherapy in luminal B-like breast cancer. Breast Cancer, 2020, 27(5), 819-827.
[http://dx.doi.org/10.1007/s12282-020-01077-0] [PMID: 32144735]
[59]
Naseri, Z.; Kazemi Oskuee, R.; Jaafari, M.R.; Forouzandeh, M. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int. J. Nanomedicine, 2018, 13, 7727-7747.
[http://dx.doi.org/10.2147/IJN.S182384] [PMID: 30538455]
[60]
Ono, M.; Kosaka, N.; Tominaga, N.; Yoshioka, Y.; Takeshita, F.; Takahashi, R.; Yoshida, M.; Tsuda, H.; Tamura, K.; Ochiya, T. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal., 2014, 7(332), ra63.
[http://dx.doi.org/10.1126/scisignal.2005231] [PMID: 24985346]
[61]
Misir, S.; Aliyazicioglu, Y.; Demir, S.; Turan, I.; Hepokur, C. Effect of Turkish Propolis on miRNA expression, cell cycle, and apoptosis in human breast cancer (MCF-7) cells. Nutr. Cancer, 2020, 72(1), 133-145.
[http://dx.doi.org/10.1080/01635581.2019.1616100] [PMID: 31112051]
[62]
Mavrogiannis, A.V.; Kokkinopoulou, I.; Kontos, C.K.; Sideris, D.C. Effect of vinca alkaloids on the expression levels of microRNAs targeting apoptosis-related genes in breast cancer cell lines. Curr. Pharm. Biotechnol., 2019, 19(13), 1076-1086.
[http://dx.doi.org/10.2174/1389201019666181112103204] [PMID: 30417784]
[63]
Zhang, Y.; Lai, X.; Yue, Q.; Cao, F.; Zhang, Y.; Sun, Y.; Tian, J.; Lu, Y.; He, L.; Bai, J.; Wei, Y. Bone marrow mesenchymal stem cells-derived exosomal microRNA-16-5p restrains epithelial-mesenchymal transition in breast cancer cells via EPHA1/NF-κB signaling axis. Genomics, 2022, 114(3), 110341.
[http://dx.doi.org/10.1016/j.ygeno.2022.110341] [PMID: 35283197]
[64]
Fox, B.P.; Kandpal, R.P. Invasiveness of breast carcinoma cells and transcript profile: Eph receptors and ephrin ligands as molecular markers of potential diagnostic and prognostic application. Biochem. Biophys. Res. Commun., 2004, 318(4), 882-892.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.102] [PMID: 15147954]
[65]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[66]
Jiang, C.; Fedewa, S.A.; Wen, Y.; Jemal, A.; Han, X. Shared decision making and prostate-specific antigen based prostate cancer screening following the 2018 update of USPSTF screening guideline. Prostate Cancer Prostatic Dis., 2021, 24(1), 77-80.
[http://dx.doi.org/10.1038/s41391-020-0227-1] [PMID: 32296126]
[67]
Tiburcius, S.; Krishnan, K.; Yang, J.H.; Hashemi, F.; Singh, G.; Radhakrishnan, D.; Trinh, H.T.; Verrills, N.M.; Karakoti, A.; Vinu, A. Silica-based nanoparticles as drug delivery vehicles for prostate cancer treatment. Chem. Rec., 2021, 21(6), 1535-1568.
[PMID: 33320438]
[68]
Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; Lin, C.; Leach, C.; Cannady, R.S.; Cho, H.; Scoppa, S.; Hachey, M.; Kirch, R.; Jemal, A.; Ward, E. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin., 2012, 62(4), 220-241.
[http://dx.doi.org/10.3322/caac.21149] [PMID: 22700443]
[69]
Lisle, J.E.; Mertens-Walker, I.; Rutkowski, R.; Herington, A.C.; Stephenson, S.A. Eph receptors and their ligands: Promising molecular biomarkers and therapeutic targets in prostate cancer. Biochim. Biophys. Acta, 2013, 1835(2), 243-257.
[PMID: 23396052]
[70]
Krantz, B.A.; Dave, N.; Komatsubara, K.M.; Marr, B.P.; Carvajal, R.D. Uveal melanoma: Epidemiology, etiology, and treatment of primary disease. Clin. Ophthalmol., 2017, 11, 279-289.
[http://dx.doi.org/10.2147/OPTH.S89591] [PMID: 28203054]
[71]
Kujala, E.; Ma¨kitie, T.; Kivela¨, T. Very long-term prognosis of patients with malignant uveal melanoma. Invest. Ophthalmol. Vis. Sci., 2003, 44(11), 4651-4659.
[http://dx.doi.org/10.1167/iovs.03-0538] [PMID: 14578381]
[72]
Wang, S.; Placzek, W.J.; Stebbins, J.L.; Mitra, S.; Noberini, R.; Koolpe, M.; Zhang, Z.; Dahl, R.; Pasquale, E.B.; Pellecchia, M. Novel targeted system to deliver chemotherapeutic drugs to EphA2-expressing cancer cells. J. Med. Chem., 2012, 55(5), 2427-2436.
[http://dx.doi.org/10.1021/jm201743s] [PMID: 22329578]
[73]
Pasquale, E.B. Eph receptors and ephrins in cancer: Bidirectional signalling and beyond. Nat. Rev. Cancer, 2010, 10(3), 165-180.
[http://dx.doi.org/10.1038/nrc2806] [PMID: 20179713]
[74]
Brantley-Sieders, D.M.; Jiang, A.; Sarma, K.; Badu-Nkansah, A.; Walter, D.L.; Shyr, Y.; Chen, J. Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome. PLoS One, 2011, 6(9), e24426.
[http://dx.doi.org/10.1371/journal.pone.0024426] [PMID: 21935409]
[75]
Sahoo, A.R.; Buck, M. Structural and functional insights into the transmembrane domain association of Eph receptors. Int. J. Mol. Sci., 2021, 22(16), 8593.
[http://dx.doi.org/10.3390/ijms22168593] [PMID: 34445298]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy