Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Chemical Advances in Therapeutic Application of Exosomes and Liposomes

Author(s): Boon Cheng Chew, Fong Fong Liew*, Hsiao Wei Tan and Ivy Chung

Volume 29, Issue 25, 2022

Published on: 29 March, 2022

Page: [4445 - 4473] Pages: 29

DOI: 10.2174/0929867329666220221094044

Price: $65

Abstract

Exosomes and liposomes are vesicular nanoparticles that can encapsulate functional cargo. The chemical similarities between naturally occurring exosomes and synthetic liposomes have accelerated the development of exosome mimetics as a therapeutic drug delivery platform under physiological and pathological environments. To maximise the applications of exosomes and liposomes in the clinical setting, it is essential to look into their basic chemical properties and utilise these characteristics to optimise the preparation, loading, modification and hybridisation. This review summarises the chemical and biological properties of both exosomal and liposomal systems as well as some of the challenges related to their production and application. This article concludes with a discussion on potential perspectives for the integration of exosomal and liposomal technologies in mapping better approaches for their biomedical use, especially in therapeutics.

Keywords: Exosome, liposome, biogenesis, cargo, hybridisation, drug delivery.

« Previous
[1]
Van Giau, V.; An, S.S.A. Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer’s disease. J. Neurol. Sci., 2016, 360, 141-152.
[http://dx.doi.org/10.1016/j.jns.2015.12.005] [PMID: 26723991]
[2]
Mathivanan, S.; Fahner, C.J.; Reid, G.E.; Simpson, R.J. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res., 2012, 40(Database issue), D1241-D1244.
[http://dx.doi.org/10.1093/nar/gkr828] [PMID: 21989406]
[3]
Kalra, H.; Drummen, G.P.; Mathivanan, S. Focus on extracellular vesicles: Introducing the next small big thing. Int. J. Mol. Sci., 2016, 17(2), 170.
[http://dx.doi.org/10.3390/ijms17020170] [PMID: 26861301]
[4]
Johnson, S.M.; Dempsey, C.; Parker, C.; Mironov, A.; Bradley, H.; Saha, V. Acute lymphoblastic leukaemia cells produce large extracellular vesicles containing organelles and an active cytoskeleton. J. Extracell. Vesicles, 2017, 6(1), 1294339.
[http://dx.doi.org/10.1080/20013078.2017.1294339] [PMID: 28386390]
[5]
Raposo, G.; Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol., 2013, 200(4), 373-383.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[6]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30, 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[7]
Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; Ayre, D.C.; Bach, J.M.; Bachurski, D.; Baharvand, H.; Balaj, L.; Baldacchino, S.; Bauer, N.N.; Baxter, A.A.; Bebawy, M.; Beckham, C.; Bedina Zavec, A.; Benmoussa, A.; Berardi, A.C.; Bergese, P.; Bielska, E.; Blenkiron, C.; Bobis-Wozowicz, S.; Boilard, E.; Boireau, W.; Bongiovanni, A.; Borràs, F.E.; Bosch, S.; Boulanger, C.M.; Breakefield, X.; Breglio, A.M.; Brennan, M.Á.; Brigstock, D.R.; Brisson, A.; Broekman, M.L.; Bromberg, J.F.; Bryl-Górecka, P.; Buch, S.; Buck, A.H.; Burger, D.; Busatto, S.; Buschmann, D.; Bussolati, B.; Buzás, E.I.; Byrd, J.B.; Camussi, G.; Carter, D.R.; Caruso, S.; Chamley, L.W.; Chang, Y.T.; Chen, C.; Chen, S.; Cheng, L.; Chin, A.R.; Clayton, A.; Clerici, S.P.; Cocks, A.; Cocucci, E.; Coffey, R.J.; Cordeiro-da-Silva, A.; Couch, Y.; Coumans, F.A.; Coyle, B.; Crescitelli, R.; Criado, M.F.; D’Souza-Schorey, C.; Das, S.; Datta Chaudhuri, A.; de Candia, P.; De Santana, E.F.; De Wever, O.; Del Portillo, H.A.; Demaret, T.; Deville, S.; Devitt, A.; Dhondt, B.; Di Vizio, D.; Dieterich, L.C.; Dolo, V.; Dominguez Rubio, A.P.; Dominici, M.; Dourado, M.R.; Driedonks, T.A.; Duarte, F.V.; Duncan, H.M.; Eichenberger, R.M.; Ekström, K.; El Andaloussi, S.; Elie-Caille, C.; Erdbrügger, U.; Falcón-Pérez, J.M.; Fatima, F.; Fish, J.E.; Flores-Bellver, M.; Försönits, A.; Frelet-Barrand, A.; Fricke, F.; Fuhrmann, G.; Gabrielsson, S.; Gámez-Valero, A.; Gardiner, C.; Gärtner, K.; Gaudin, R.; Gho, Y.S.; Giebel, B.; Gilbert, C.; Gimona, M.; Giusti, I.; Goberdhan, D.C.; Görgens, A.; Gorski, S.M.; Greening, D.W.; Gross, J.C.; Gualerzi, A.; Gupta, G.N.; Gustafson, D.; Handberg, A.; Haraszti, R.A.; Harrison, P.; Hegyesi, H.; Hendrix, A.; Hill, A.F.; Hochberg, F.H.; Hoffmann, K.F.; Holder, B.; Holthofer, H.; Hosseinkhani, B.; Hu, G.; Huang, Y.; Huber, V.; Hunt, S.; Ibrahim, A.G.; Ikezu, T.; Inal, J.M.; Isin, M.; Ivanova, A.; Jackson, H.K.; Jacobsen, S.; Jay, S.M.; Jayachandran, M.; Jenster, G.; Jiang, L.; Johnson, S.M.; Jones, J.C.; Jong, A.; Jovanovic-Talisman, T.; Jung, S.; Kalluri, R.; Kano, S.I.; Kaur, S.; Kawamura, Y.; Keller, E.T.; Khamari, D.; Khomyakova, E.; Khvorova, A.; Kierulf, P.; Kim, K.P.; Kislinger, T.; Klingeborn, M.; Klinke, D.J., II; Kornek, M.; Kosanović, M.M.; Kovács, Á.F.; Krämer-Albers, E.M.; Krasemann, S.; Krause, M.; Kurochkin, I.V.; Kusuma, G.D.; Kuypers, S.; Laitinen, S.; Langevin, S.M.; Languino, L.R.; Lannigan, J.; Lässer, C.; Laurent, L.C.; Lavieu, G.; Lázaro-Ibáñez, E.; Le Lay, S.; Lee, M.S.; Lee, Y.X.F.; Lemos, D.S.; Lenassi, M.; Leszczynska, A.; Li, I.T.; Liao, K.; Libregts, S.F.; Ligeti, E.; Lim, R.; Lim, S.K.; Linē, A.; Linnemannstöns, K.; Llorente, A.; Lombard, C.A.; Lorenowicz, M.J.; Lörincz, Á.M.; Lötvall, J.; Lovett, J.; Lowry, M.C.; Loyer, X.; Lu, Q.; Lukomska, B.; Lunavat, T.R.; Maas, S.L.; Malhi, H.; Marcilla, A.; Mariani, J.; Mariscal, J.; Martens-Uzunova, E.S.; Martin-Jaular, L.; Martinez, M.C.; Martins, V.R.; Mathieu, M.; Mathivanan, S.; Maugeri, M.; McGinnis, L.K.; McVey, M.J.; Meckes, D.G., Jr; Meehan, K.L.; Mertens, I.; Minciacchi, V.R.; Möller, A.; Møller Jørgensen, M.; Morales-Kastresana, A.; Morhayim, J.; Mullier, F.; Muraca, M.; Musante, L.; Mussack, V.; Muth, D.C.; Myburgh, K.H.; Najrana, T.; Nawaz, M.; Nazarenko, I.; Nejsum, P.; Neri, C.; Neri, T.; Nieuwland, R.; Nimrichter, L.; Nolan, J.P.; Nolte-’t Hoen, E.N.; Noren Hooten, N.; O’Driscoll, L.; O’Grady, T.; O’Loghlen, A.; Ochiya, T.; Olivier, M.; Ortiz, A.; Ortiz, L.A.; Osteikoetxea, X.; Østergaard, O.; Ostrowski, M.; Park, J.; Pegtel, D.M.; Peinado, H.; Perut, F.; Pfaffl, M.W.; Phinney, D.G.; Pieters, B.C.; Pink, R.C.; Pisetsky, D.S.; Pogge von Strandmann, E.; Polakovicova, I.; Poon, I.K.; Powell, B.H.; Prada, I.; Pulliam, L.; Quesenberry, P.; Radeghieri, A.; Raffai, R.L.; Raimondo, S.; Rak, J.; Ramirez, M.I.; Raposo, G.; Rayyan, M.S.; Regev-Rudzki, N.; Ricklefs, F.L.; Robbins, P.D.; Roberts, D.D.; Rodrigues, S.C.; Rohde, E.; Rome, S.; Rouschop, K.M.; Rughetti, A.; Russell, A.E.; Saá, P.; Sahoo, S.; Salas-Huenuleo, E.; Sánchez, C.; Saugstad, J.A.; Saul, M.J.; Schiffelers, R.M.; Schneider, R.; Schøyen, T.H.; Scott, A.; Shahaj, E.; Sharma, S.; Shatnyeva, O.; Shekari, F.; Shelke, G.V.; Shetty, A.K.; Shiba, K.; Siljander, P.R.; Silva, A.M.; Skowronek, A.; Snyder, O.L., II; Soares, R.P.; Sódar, B.W.; Soekmadji, C.; Sotillo, J.; Stahl, P.D.; Stoorvogel, W.; Stott, S.L.; Strasser, E.F.; Swift, S.; Tahara, H.; Tewari, M.; Timms, K.; Tiwari, S.; Tixeira, R.; Tkach, M.; Toh, W.S.; Tomasini, R.; Torrecilhas, A.C.; Tosar, J.P.; Toxavidis, V.; Urbanelli, L.; Vader, P.; van Balkom, B.W.; van der Grein, S.G.; Van Deun, J.; van Herwijnen, M.J.; Van Keuren-Jensen, K.; van Niel, G.; van Royen, M.E.; van Wijnen, A.J.; Vasconcelos, M.H.; Vechetti, I.J., Jr; Veit, T.D.; Vella, L.J.; Velot, É.; Verweij, F.J.; Vestad, B.; Viñas, J.L.; Visnovitz, T.; Vukman, K.V.; Wahlgren, J.; Watson, D.C.; Wauben, M.H.; Weaver, A.; Webber, J.P.; Weber, V.; Wehman, A.M.; Weiss, D.J.; Welsh, J.A.; Wendt, S.; Wheelock, A.M.; Wiener, Z.; Witte, L.; Wolfram, J.; Xagorari, A.; Xander, P.; Xu, J.; Yan, X.; Yáñez-Mó, M.; Yin, H.; Yuana, Y.; Zappulli, V.; Zarubova, J.; Žėkas, V.; Zhang, J.Y.; Zhao, Z.; Zheng, L.; Zheutlin, A.R.; Zickler, A.M.; Zimmermann, P.; Zivkovic, A.M.; Zocco, D.; Zuba-Surma, E.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles, 2018, 7(1), 1535750.
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[8]
Witwer, K.W.; Théry, C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J. Extracell. Vesicles, 2019, 8(1), 1648167.
[http://dx.doi.org/10.1080/20013078.2019.1648167] [PMID: 31489144]
[9]
Harding, C.; Heuser, J.; Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol., 1983, 97(2), 329-339.
[http://dx.doi.org/10.1083/jcb.97.2.329] [PMID: 6309857]
[10]
Harding, C.; Heuser, J.; Stahl, P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: Demonstration of a pathway for receptor shedding. Eur. J. Cell Biol., 1984, 35(2), 256-263.
[PMID: 6151502]
[11]
Johnstone, R.M.; Bianchini, A.; Teng, K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood, 1989, 74(5), 1844-1851.
[http://dx.doi.org/10.1182/blood.V74.5.1844.1844] [PMID: 2790208]
[12]
Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem., 1987, 262(19), 9412-9420.
[http://dx.doi.org/10.1016/S0021-9258(18)48095-7] [PMID: 3597417]
[13]
Johnstone, R.M. The Jeanne Manery-Fisher Memorial Lecture 1991. Maturation of reticulocytes: Formation of exosomes as a mechanism for shedding membrane proteins. Biochem. Cell Biol., 1992, 70(3-4), 179-190.
[http://dx.doi.org/10.1139/o92-028] [PMID: 1515120]
[14]
Rufino-Ramos, D.; Albuquerque, P.R.; Carmona, V.; Perfeito, R.; Nobre, R.J.; Pereira de Almeida, L. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. J. Control. Release, 2017, 262, 247-258.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.001] [PMID: 28687495]
[15]
Suchorska, W.M.; Lach, M.S. The role of exosomes in tumor progression and metastasis (Review). Oncol. Rep., 2016, 35(3), 1237-1244.
[http://dx.doi.org/10.3892/or.2015.4507] [PMID: 26707854]
[16]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-252.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[17]
Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 381-391.
[http://dx.doi.org/10.3109/21691401.2014.953633] [PMID: 25222036]
[18]
Nkanga, C.I.; Bapolisi, A.M.; Okafor, N.I.; Krause, R.W.M. General perception of liposomes: Formation, manufacturing and applications. In: Liposomes-Advances and Perspectives; Catala, A., Ed.; IntechOpen: London, UK, 2019.
[http://dx.doi.org/10.5772/intechopen.84255]
[19]
Li, X.; Corbett, A.L.; Taatizadeh, E.; Tasnim, N.; Little, J.P.; Garnis, C.; Daugaard, M.; Guns, E.; Hoorfar, M.; Li, I.T.S. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng., 2019, 3(1), 011503.
[http://dx.doi.org/10.1063/1.5087122] [PMID: 31069333]
[20]
Willms, E.; Johansson, H.J.; Mäger, I.; Lee, Y.; Blomberg, K.E.M.; Sadik, M.; Alaarg, A.; Smith, C.I.; Lehtiö, J.; El Andaloussi, S.; Wood, M.J.; Vader, P. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep., 2016, 6(1), 22519.
[http://dx.doi.org/10.1038/srep22519] [PMID: 26931825]
[21]
Stremersch, S.; De Smedt, S.C.; Raemdonck, K. Therapeutic and diagnostic applications of extracellular vesicles. J. Control. Release, 2016, 244(Pt B), 167-183.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.054] [PMID: 27491882]
[22]
Joo, H.S.; Suh, J.H.; Lee, H.J.; Bang, E.S.; Lee, J.M. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. Int. J. Mol. Sci., 2020, 21(3), 727.
[http://dx.doi.org/10.3390/ijms21030727] [PMID: 31979113]
[23]
Antimisiaris, S.G.; Mourtas, S.; Marazioti, A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics, 2018, 10(4), 218.
[http://dx.doi.org/10.3390/pharmaceutics10040218] [PMID: 30404188]
[24]
Pegtel, D.M.; Gould, S.J. Exosomes. Annu. Rev. Biochem., 2019, 88, 487-514.
[http://dx.doi.org/10.1146/annurev-biochem-013118-111902] [PMID: 31220978]
[25]
Simons, M.; Raposo, G. Exosomes--vesicular carriers for intercellular communication. Curr. Opin. Cell Biol., 2009, 21(4), 575-581.
[http://dx.doi.org/10.1016/j.ceb.2009.03.007] [PMID: 19442504]
[26]
Urbanelli, L.; Magini, A.; Buratta, S.; Brozzi, A.; Sagini, K.; Polchi, A.; Tancini, B.; Emiliani, C. Signaling pathways in exosomes biogenesis, secretion and fate. Genes (Basel), 2013, 4(2), 152-170.
[http://dx.doi.org/10.3390/genes4020152] [PMID: 24705158]
[27]
Jung, J.W.; Kwon, M.; Choi, J.C.; Shin, J.W.; Park, I.W.; Choi, B.W.; Kim, J.Y. Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy. Yonsei Med. J., 2013, 54(5), 1293-1296.
[http://dx.doi.org/10.3349/ymj.2013.54.5.1293] [PMID: 23918585]
[28]
Hessvik, N.P.; Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci., 2018, 75(2), 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[29]
Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New developments in liposomal drug delivery. Chem. Rev., 2015, 115(19), 10938-10966.
[http://dx.doi.org/10.1021/acs.chemrev.5b00046] [PMID: 26010257]
[30]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[31]
Nisini, R.; Poerio, N.; Mariotti, S.; De Santis, F.; Fraziano, M. The multirole of liposomes in therapy and prevention of infectious diseases. Front. Immunol., 2018, 9, 155.
[http://dx.doi.org/10.3389/fimmu.2018.00155] [PMID: 29459867]
[32]
Sharma Vijay, K.; Mishra, D.; Sharma, A.; Srivastava, B. Liposomes: present prospective and future challenges. Int. J. Curr. Pharm. Rev. Res., 2010, 1(2), 6-16.
[33]
Samad, A.; Beg, S.; Nazish, I. Liposomal delivery systems: Advances and challenges; Future Science Ltd: UK, 2015, 1, .
[http://dx.doi.org/10.4155/9781910419052]
[34]
Kawabata, Y.; Matsuno, A.; Shinoda, T.; Kato, T. Formation process of bilayer gel structure in a nonionic surfactant solution. J. Phys. Chem. B, 2009, 113(17), 5686-5689.
[http://dx.doi.org/10.1021/jp810911y] [PMID: 19344101]
[35]
Kawabata, Y.; Shinoda, T.; Kato, T. Vesicle growth and deformation in a surfactant solution below the Krafft temperature. Phys. Chem. Chem. Phys., 2011, 13(8), 3484-3490.
[http://dx.doi.org/10.1039/c0cp01132k] [PMID: 21243142]
[36]
Nagai, Y.; Kawabata, Y.; Kato, T. Microscopic investigation on morphologies of bilayer gel structure in the mixed polyoxyethylene-type nonionic surfactant systems. J. Phys. Chem. B, 2012, 116(41), 12558-12566.
[http://dx.doi.org/10.1021/jp306049j] [PMID: 22994139]
[37]
Svaerd, M.; Schurtenberger, P.; Fontell, K.; Joensson, B.; Lindman, B. Micelles, vesicles, and liquid crystals in the monoolein-sodium taurocholate-water system: phase behavior, NMR, self-diffusion, and quasi-elastic light scattering studies. J. Phys. Chem., 1988, 92(8), 2261-2270.
[http://dx.doi.org/10.1021/j100319a034]
[38]
Viseu, M.I.; Edwards, K.; Campos, C.S.; Costa, S.M. Spontaneous vesicles formed in aqueous mixtures of two cationic amphiphiles. Langmuir, 2000, 16(5), 2105-2114.
[http://dx.doi.org/10.1021/la990831m]
[39]
Kawabata, Y.; Ichiguchi, K.; Ando, T.; Kato, T. Vesicle formations at critical vesicle concentration in a polyoxyethylene type nonionic surfactant system. Colloids Surf. A Physicochem. Eng. Asp., 2014, 462, 179-185.
[http://dx.doi.org/10.1016/j.colsurfa.2014.09.009]
[40]
Kaler, E.W.; Murthy, A.K.; Rodriguez, B.E.; Zasadzinski, J.A. Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science, 1989, 245(4924), 1371-1374.
[http://dx.doi.org/10.1126/science.2781283] [PMID: 2781283]
[41]
Zhai, L.; Tan, X.; Li, T.; Chen, Y.; Huang, X. Influence of salt and polymer on the critical vesicle concentration in aqueous mixture of zwitterionic/anionic surfactants. Colloids Surf. A Physicochem. Eng. Asp., 2006, 276(1-3), 28-33.
[http://dx.doi.org/10.1016/j.colsurfa.2005.09.043]
[42]
Weiss, T.M.; Narayanan, T.; Gradzielski, M. Dynamics of spontaneous vesicle formation in fluorocarbon and hydrocarbon surfactant mixtures. Langmuir, 2008, 24(8), 3759-3766.
[http://dx.doi.org/10.1021/la703515j] [PMID: 18327960]
[43]
Tan, H.W. Rheological evaluation of chitonated fatty acid liposome in carbohydrate-based gel, 2014.
[44]
Jin, L.; Engelhart, A.E.; Adamala, K.P.; Szostak, J.W. Preparation, purification, and use of fatty acid-containing liposomes. J. Vis. Exp., 2018, 132(132), 57324.
[http://dx.doi.org/10.3791/57324] [PMID: 29553563]
[45]
Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci., 2015, 10(2), 81-98.
[http://dx.doi.org/10.1016/j.ajps.2014.09.004]
[46]
Ohki, K. Ca2+-induced lateral phase separation in ternary mixtures of phosphatidic acid, phosphatidylcholine, and phosphatidylethanolamine inferred by calorimetry. J. Biochem., 1988, 104(1), 14-17.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a122410] [PMID: 3220824]
[47]
Kim, M.W.; Niidome, T.; Lee, R. Glycol chitosan-docosahexaenoic acid liposomes for drug delivery: Synergistic effect of doxorubicin-rapamycin in drug-resistant breast cancer. Mar. Drugs, 2019, 17(10), 581.
[http://dx.doi.org/10.3390/md17100581] [PMID: 31614820]
[48]
Janas, T.; Janas, M.M.; Sapoń, K.; Janas, T. Mechanisms of RNA loading into exosomes. FEBS Lett., 2015, 589(13), 1391-1398.
[http://dx.doi.org/10.1016/j.febslet.2015.04.036] [PMID: 25937124]
[49]
Haraszti, R.A.; Didiot, M-C.; Sapp, E.; Leszyk, J.; Shaffer, S.A.; Rockwell, H.E.; Gao, F.; Narain, N.R.; DiFiglia, M.; Kiebish, M.A.; Aronin, N.; Khvorova, A. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J. Extracell. Vesicles, 2016, 5(1), 32570.
[http://dx.doi.org/10.3402/jev.v5.32570] [PMID: 27863537]
[50]
Liew, F.F.; Chew, B.C.; Ooi, J. Wound healing properties of exosomes—a review and modelling of combinatorial analysis strategies. Curr. Mol. Med., 2021. [Epub ahead of print].
[http://dx.doi.org/10.2174/1566524021666210405131238] [PMID: 33820518]
[51]
Valcz, G.; Galamb, O.; Krenács, T.; Spisák, S.; Kalmár, A.; Patai, Á.V.; Wichmann, B.; Dede, K.; Tulassay, Z.; Molnár, B. Exosomes in colorectal carcinoma formation: ALIX under the magnifying glass. Mod. Pathol., 2016, 29(8), 928-938.
[http://dx.doi.org/10.1038/modpathol.2016.72] [PMID: 27150162]
[52]
Lu, J.; Li, J.; Liu, S.; Wang, T.; Ianni, A.; Bober, E.; Braun, T.; Xiang, R.; Yue, S. Exosomal tetraspanins mediate cancer metastasis by altering host microenvironment. Oncotarget, 2017, 8(37), 62803-62815.
[http://dx.doi.org/10.18632/oncotarget.19119] [PMID: 28977990]
[53]
Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol., 2002, 2(8), 569-579.
[http://dx.doi.org/10.1038/nri855] [PMID: 12154376]
[54]
Keller, S.; Sanderson, M.P.; Stoeck, A.; Altevogt, P. Exosomes: From biogenesis and secretion to biological function. Immunol. Lett., 2006, 107(2), 102-108.
[http://dx.doi.org/10.1016/j.imlet.2006.09.005] [PMID: 17067686]
[55]
You, Y.; Shan, Y.; Chen, J.; Yue, H.; You, B.; Shi, S.; Li, X.; Cao, X. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis. Cancer Sci., 2015, 106(12), 1669-1677.
[http://dx.doi.org/10.1111/cas.12818] [PMID: 26362844]
[56]
Pant, S.; Hilton, H.; Burczynski, M.E. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem. Pharmacol., 2012, 83(11), 1484-1494.
[http://dx.doi.org/10.1016/j.bcp.2011.12.037] [PMID: 22230477]
[57]
Matsuo, H.; Chevallier, J.; Mayran, N.; Le Blanc, I.; Ferguson, C.; Fauré, J.; Blanc, N.S.; Matile, S.; Dubochet, J.; Sadoul, R.; Parton, R.G.; Vilbois, F.; Gruenberg, J. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science, 2004, 303(5657), 531-534.
[http://dx.doi.org/10.1126/science.1092425] [PMID: 14739459]
[58]
Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478), eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[59]
Chrai, S.S.; Murari, R.; Ahmad, I. Liposomes (a review)-part one: Manufacturing issues. Biochem. Pharmacol., 2001, 14(11), 10-14.
[60]
Lasic, D.D. Novel applications of liposomes. Trends Biotechnol., 1998, 16(7), 307-321.
[http://dx.doi.org/10.1016/S0167-7799(98)01220-7] [PMID: 9675915]
[61]
Vemuri, S.; Rhodes, C.T. Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharm. Acta Helv., 1995, 70(2), 95-111.
[http://dx.doi.org/10.1016/0031-6865(95)00010-7] [PMID: 7651973]
[62]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[63]
Pu, C.; Tang, W.; Li, X.; Li, M.; Sun, Q. Stability enhancement efficiency of surface decoration on curcumin-loaded liposomes: Comparison of guar gum and its cationic counterpart. Food Hydrocoll., 2019, 87, 29-37.
[http://dx.doi.org/10.1016/j.foodhyd.2018.07.039]
[64]
Sikka, M.P.; Midha, V.K. The role of biopolymers and biodegradable polymeric dressings in managing chronic wounds. In: Advanced Textiles for Wound Care; Rajendran, S., Ed.; Woodhead Publishing: Duxford, UK, 2019; pp. 463-488.
[http://dx.doi.org/10.1016/B978-0-08-102192-7.00016-3]
[65]
Kooijmans, S.A.A.; Fliervoet, L.A.L.; van der Meel, R.; Fens, M.H.A.M.; Heijnen, H.F.G.; van Bergen En Henegouwen, P.M.P.; Vader, P.; Schiffelers, R.M. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J. Control. Release, 2016, 224, 77-85.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.009] [PMID: 26773767]
[66]
Abuchowski, A.; van Es, T.; Palczuk, N.C.; Davis, F.F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem., 1977, 252(11), 3578-3581.
[http://dx.doi.org/10.1016/S0021-9258(17)40291-2] [PMID: 405385]
[67]
Khan, A.A.; Allemailem, K.S.; Almatroodi, S.A.; Almatroudi, A.; Rahmani, A.H. Recent strategies towards the surface modification of liposomes: An innovative approach for different clinical applications. 3 Biotech, 2020, 10(4), 1-15.
[68]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[69]
Price, M.E.; Cornelius, R.M.; Brash, J.L. Protein adsorption to polyethylene glycol modified liposomes from fibrinogen solution and from plasma. Biochim. Biophys. Acta, 2001, 1512(2), 191-205.
[http://dx.doi.org/10.1016/S0005-2736(01)00330-3] [PMID: 11406096]
[70]
Robson, A-L.; Dastoor, P.C.; Flynn, J.; Palmer, W.; Martin, A.; Smith, D.W.; Woldu, A.; Hua, S. Advantages and limitations of current imaging techniques for characterizing liposome morphology. Front. Pharmacol., 2018, 9, 80.
[http://dx.doi.org/10.3389/fphar.2018.00080] [PMID: 29467660]
[71]
Sapra, P.; Allen, T.M. Ligand-targeted liposomal anticancer drugs. Prog. Lipid Res., 2003, 42(5), 439-462.
[http://dx.doi.org/10.1016/S0163-7827(03)00032-8] [PMID: 12814645]
[72]
Beit-Yannai, E.; Tabak, S.; Stamer, W.D. Physical exosome:exosome interactions. J. Cell. Mol. Med., 2018, 22(3), 2001-2006.
[http://dx.doi.org/10.1111/jcmm.13479] [PMID: 29377463]
[73]
Llorente, A.; Skotland, T.; Sylvänne, T.; Kauhanen, D.; Róg, T.; Orłowski, A.; Vattulainen, I.; Ekroos, K.; Sandvig, K. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta, 2013, 1831(7), 1302-1309.
[http://dx.doi.org/10.1016/j.bbalip.2013.04.011] [PMID: 24046871]
[74]
Phuyal, S.; Skotland, T.; Hessvik, N.P.; Simolin, H.; Øverbye, A.; Brech, A.; Parton, R.G.; Ekroos, K.; Sandvig, K.; Llorente, A. The ether lipid precursor hexadecylglycerol stimulates the release and changes the composition of exosomes derived from PC-3 cells. J. Biol. Chem., 2015, 290(7), 4225-4237.
[http://dx.doi.org/10.1074/jbc.M114.593962] [PMID: 25519911]
[75]
Trajkovic, K.; Hsu, C.; Chiantia, S.; Rajendran, L.; Wenzel, D.; Wieland, F.; Schwille, P.; Brügger, B.; Simons, M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 2008, 319(5867), 1244-1247.
[http://dx.doi.org/10.1126/science.1153124] [PMID: 18309083]
[76]
Skotland, T.; Sagini, K.; Sandvig, K.; Llorente, A. An emerging focus on lipids in extracellular vesicles. Adv. Drug Deliv. Rev., 2020, 159, 308-321.
[http://dx.doi.org/10.1016/j.addr.2020.03.002] [PMID: 32151658]
[77]
Lai, C.P.; Mardini, O.; Ericsson, M.; Prabhakar, S.; Maguire, C.; Chen, J.W.; Tannous, B.A.; Breakefield, X.O. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano, 2014, 8(1), 483-494.
[http://dx.doi.org/10.1021/nn404945r] [PMID: 24383518]
[78]
Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine, 2006, 1(3), 297-315.
[PMID: 17717971]
[79]
Salunkhe, S.; Dheeraj, ; Basak, M.; Chitkara, D.; Mittal, A. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance. J. Control. Release, 2020, 326, 599-614.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.042] [PMID: 32730952]
[80]
Nakase, I.; Futaki, S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci. Rep., 2015, 5(1), 10112.
[http://dx.doi.org/10.1038/srep10112] [PMID: 26011176]
[81]
Paecharoenchai, O.; Niyomtham, N.; Apirakaramwong, A.; Ngawhirunpat, T.; Rojanarata, T.; Yingyongnarongkul, B.E.; Opanasopit, P. Structure relationship of cationic lipids on gene transfection mediated by cationic liposomes. AAPS PharmSciTech, 2012, 13(4), 1302-1308.
[http://dx.doi.org/10.1208/s12249-012-9857-5] [PMID: 23007192]
[82]
Wang, J.; Li, W.; Zhang, L.; Ban, L.; Chen, P.; Du, W.; Feng, X.; Liu, B-F. Chemically edited exosomes with dual ligand purified by microfluidic device for active targeted drug delivery to tumor cells. ACS Appl. Mater. Interfaces, 2017, 9(33), 27441-27452.
[http://dx.doi.org/10.1021/acsami.7b06464] [PMID: 28762264]
[83]
Zhang, X.; Qi, J.; Lu, Y.; He, W.; Li, X.; Wu, W. Biotinylated liposomes as potential carriers for the oral delivery of insulin. Nanomedicine, 2014, 10(1), 167-176.
[http://dx.doi.org/10.1016/j.nano.2013.07.011] [PMID: 23891617]
[84]
Sigot, V.; Arndt-Jovin, D.J.; Jovin, T.M. Targeted cellular delivery of quantum dots loaded on and in biotinylated liposomes. Bioconjug. Chem., 2010, 21(8), 1465-1472.
[http://dx.doi.org/10.1021/bc100054c] [PMID: 20715851]
[85]
Wan, Y.; Wang, L.; Zhu, C.; Zheng, Q.; Wang, G.; Tong, J.; Fang, Y.; Xia, Y.; Cheng, G.; He, X.; Zheng, S.Y. Aptamer-conjugated extracellular nanovesicles for targeted drug delivery. Cancer Res., 2018, 78(3), 798-808.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2880] [PMID: 29217761]
[86]
Sekhon, S.S.; Ahn, G.; Park, G-Y.; Park, D-Y.; Lee, S-H.; Ahn, J-Y.; Kim, Y-H. The role of aptamer loaded exosome complexes in the neurodegenerative diseases. Toxicol. Environ. Health Sci., 2019, 11(2), 85-93.
[http://dx.doi.org/10.1007/s13530-019-0392-6]
[87]
Janas, T.; Sapoń, K.; Stowell, M.H.B.; Janas, T. Selection of membrane RNA aptamers to amyloid beta peptide: Implications for exosome-based antioxidant strategies. Int. J. Mol. Sci., 2019, 20(2), 299.
[http://dx.doi.org/10.3390/ijms20020299] [PMID: 30642129]
[88]
Alshaer, W.; Hillaireau, H.; Vergnaud, J.; Ismail, S.; Fattal, E. Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells. Bioconjug. Chem., 2015, 26(7), 1307-1313.
[http://dx.doi.org/10.1021/bc5004313] [PMID: 25343502]
[89]
Guo, X.; Tan, W.; Wang, C. The emerging roles of exosomal circRNAs in diseases. Clin. Transl. Oncol., 2021, 23, 1020-1033.
[PMID: 32935262]
[90]
McBride, J.D.; Rodriguez-Menocal, L.; Guzman, W.; Candanedo, A.; Garcia-Contreras, M.; Badiavas, E.V. Bone marrow mesenchymal stem cell-derived CD63(+) exosomes transport Wnt3a exteriorly and enhance dermal fibroblast proliferation, migration, and angiogenesis in vitro. Stem Cells Dev., 2017, 26(19), 1384-1398.
[http://dx.doi.org/10.1089/scd.2017.0087] [PMID: 28679315]
[91]
Shao, M.; Xu, Q.; Wu, Z.; Chen, Y.; Shu, Y.; Cao, X.; Chen, M.; Zhang, B.; Zhou, Y.; Yao, R.; Shi, Y.; Bu, H. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p. Stem Cell Res. Ther., 2020, 11(1), 37.
[http://dx.doi.org/10.1186/s13287-020-1550-0] [PMID: 31973730]
[92]
Guo, G.; Zhu, Y.; Wu, Z.; Ji, H.; Lu, X.; Zhou, Y.; Li, Y.; Cao, X.; Lu, Y.; Talbot, P.; Liao, J.; Shi, Y.; Bu, H. Circulating monocytes accelerate acute liver failure by IL-6 secretion in monkey. J. Cell. Mol. Med., 2018, 22(9), 4056-4067.
[http://dx.doi.org/10.1111/jcmm.13673] [PMID: 29992739]
[93]
Liang, X.; Zhang, L.; Wang, S.; Han, Q.; Zhao, R.C. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J. Cell Sci., 2016, 129(11), 2182-2189.
[http://dx.doi.org/10.1242/jcs.170373] [PMID: 27252357]
[94]
Munagala, R.; Aqil, F.; Jeyabalan, J.; Agrawal, A.K.; Mudd, A.M.; Kyakulaga, A.H.; Singh, I.P.; Vadhanam, M.V.; Gupta, R.C. Exosomal formulation of anthocyanidins against multiple cancer types. Cancer Lett., 2017, 393, 94-102.
[http://dx.doi.org/10.1016/j.canlet.2017.02.004] [PMID: 28202351]
[95]
Aqil, F.; Jeyabalan, J.; Agrawal, A.K.; Kyakulaga, A-H.; Munagala, R.; Parker, L.; Gupta, R.C. Exosomal delivery of berry anthocyanidins for the management of ovarian cancer. Food Funct., 2017, 8(11), 4100-4107.
[http://dx.doi.org/10.1039/C7FO00882A] [PMID: 28991298]
[96]
Aqil, F.; Munagala, R.; Jeyabalan, J.; Agrawal, A.K.; Kyakulaga, A-H.; Wilcher, S.A.; Gupta, R.C. Milk exosomes - Natural nanoparticles for siRNA delivery. Cancer Lett., 2019, 449, 186-195.
[http://dx.doi.org/10.1016/j.canlet.2019.02.011] [PMID: 30771430]
[97]
Tang, Y.; Zhang, Y.C.; Chen, Y.; Xiang, Y.; Shen, C.X.; Li, Y.G. The role of miR-19b in the inhibition of endothelial cell apoptosis and its relationship with coronary artery disease. Sci. Rep., 2015, 5, 15132.
[http://dx.doi.org/10.1038/srep15132] [PMID: 26459935]
[98]
Sun, L.; Li, D.; Song, K.; Wei, J.; Yao, S.; Li, Z.; Su, X.; Ju, X.; Chao, L.; Deng, X.; Kong, B.; Li, L. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. Sci. Rep., 2017, 7(1), 2552.
[http://dx.doi.org/10.1038/s41598-017-02786-x] [PMID: 28566720]
[99]
Haney, M.J.; Klyachko, N.L.; Zhao, Y.; Gupta, R.; Plotnikova, E.G.; He, Z.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A.V.; Batrakova, E.V. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release, 2015, 207, 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[100]
Xu, M.; Yang, Q.; Sun, X.; Wang, Y. Recent advancements in the loading and modification of therapeutic exosomes. Front. Bioeng. Biotechnol., 2020, 8, 586130.
[http://dx.doi.org/10.3389/fbioe.2020.586130] [PMID: 33262977]
[101]
Kim, M.S.; Haney, M.J.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N.L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O.; Hingtgen, S.D.; Kabanov, A.V.; Batrakova, E.V. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine, 2016, 12(3), 655-664.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
[102]
Kooijmans, S.A.A.; Stremersch, S.; Braeckmans, K.; de Smedt, S.C.; Hendrix, A.; Wood, M.J.A.; Schiffelers, R.M.; Raemdonck, K.; Vader, P. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J. Control. Release, 2013, 172(1), 229-238.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.014] [PMID: 23994516]
[103]
Reece, L.; Sankaranarayanan, K.; Kathirvelu, P.; Cooper, C.; Sundararajan, R.; Leary, J. Targeted delivery of siRNA and other difficult to transfect molecules using electroporation: current status and future scope. In: Electroporation-based Therapies for Cancer: From Basics to Clinical Applications; Sundararajan, R., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 245-258.
[http://dx.doi.org/10.1533/9781908818294.245]
[104]
Kamerkar, S.; LeBleu, V.S.; Sugimoto, H.; Yang, S.; Ruivo, C.F.; Melo, S.A.; Lee, J.J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017, 546(7659), 498-503.
[http://dx.doi.org/10.1038/nature22341] [PMID: 28607485]
[105]
Didiot, M-C.; Hall, L.M.; Coles, A.H.; Haraszti, R.A.; Godinho, B.M.; Chase, K.; Sapp, E.; Ly, S.; Alterman, J.F.; Hassler, M.R.; Echeverria, D.; Raj, L.; Morrissey, D.V.; DiFiglia, M.; Aronin, N.; Khvorova, A. Exosome-mediated delivery of hydrophobically modified siRNA for Huntingtin mRNA silencing. Mol. Ther., 2016, 24(10), 1836-1847.
[http://dx.doi.org/10.1038/mt.2016.126] [PMID: 27506293]
[106]
Cifuentes, D.; Xue, H.; Taylor, D.W.; Patnode, H.; Mishima, Y.; Cheloufi, S.; Ma, E.; Mane, S.; Hannon, G.J.; Lawson, N.D.; Wolfe, S.A.; Giraldez, A.J. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science, 2010, 328(5986), 1694-1698.
[http://dx.doi.org/10.1126/science.1190809] [PMID: 20448148]
[107]
Yang, J-S.; Maurin, T.; Robine, N.; Rasmussen, K.D.; Jeffrey, K.L.; Chandwani, R.; Papapetrou, E.P.; Sadelain, M.; O’Carroll, D.; Lai, E.C. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA, 2010, 107(34), 15163-15168.
[http://dx.doi.org/10.1073/pnas.1006432107] [PMID: 20699384]
[108]
Reshke, R.; Taylor, J.A.; Savard, A.; Guo, H.; Rhym, L.H.; Kowalski, P.S.; Trung, M.T.; Campbell, C.; Little, W.; Anderson, D.G.; Gibbings, D. Reduction of the therapeutic dose of silencing RNA by packaging it in extracellular vesicles via a pre-microRNA backbone. Nat. Biomed. Eng., 2020, 4(1), 52-68.
[http://dx.doi.org/10.1038/s41551-019-0502-4] [PMID: 31937944]
[109]
Takahashi, Y.; Nishikawa, M.; Shinotsuka, H.; Matsui, Y.; Ohara, S.; Imai, T.; Takakura, Y. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J. Biotechnol., 2013, 165(2), 77-84.
[http://dx.doi.org/10.1016/j.jbiotec.2013.03.013] [PMID: 23562828]
[110]
Smyth, T.; Kullberg, M.; Malik, N.; Smith-Jones, P.; Graner, M.W.; Anchordoquy, T.J. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J. Control. Release, 2015, 199, 145-155.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.013] [PMID: 25523519]
[111]
Riau, A.K.; Ong, H.S.; Yam, G.H.F.; Mehta, J.S. Sustained delivery system for stem cell-derived exosomes. Front. Pharmacol., 2019, 10, 1368.
[http://dx.doi.org/10.3389/fphar.2019.01368] [PMID: 31798457]
[112]
Panahi, Y.; Farshbaf, M.; Mohammadhosseini, M.; Mirahadi, M.; Khalilov, R.; Saghfi, S.; Akbarzadeh, A. Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications. Artif. Cells Nanomed. Biotechnol., 2017, 45(4), 788-799.
[http://dx.doi.org/10.1080/21691401.2017.1282496] [PMID: 28278586]
[113]
Beltrán-Gracia, E.; López-Camacho, A.; Higuera-Ciapara, I.; Velázquez-Fernández, J.B.; Vallejo-Cardona, A.A. Nanomedicine review: Clinical developments in liposomal applications. Cancer Nanotechnol., 2019, 10(1), 11.
[http://dx.doi.org/10.1186/s12645-019-0055-y]
[114]
Ventola, C.L. Progress in nanomedicine: approved and investigational nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[115]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med., 2019, 4(3), e10143.
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[116]
Zhang, X-X.; McIntosh, T.J.; Grinstaff, M.W. Functional lipids and lipoplexes for improved gene delivery. Biochimie, 2012, 94(1), 42-58.
[http://dx.doi.org/10.1016/j.biochi.2011.05.005] [PMID: 21621581]
[117]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[118]
Malamas, A.S.; Gujrati, M.; Kummitha, C.M.; Xu, R.; Lu, Z-R. Design and evaluation of new pH-sensitive amphiphilic cationic lipids for siRNA delivery. J. Control. Release, 2013, 171(3), 296-307.
[http://dx.doi.org/10.1016/j.jconrel.2013.06.019] [PMID: 23796431]
[119]
Dalby, B.; Cates, S.; Harris, A.; Ohki, E.C.; Tilkins, M.L.; Price, P.J.; Ciccarone, V.C. Advanced transfection with Lipofectamine 2000 reagent: Primary neurons, siRNA, and high-throughput applications. Methods, 2004, 33(2), 95-103.
[http://dx.doi.org/10.1016/j.ymeth.2003.11.023] [PMID: 15121163]
[120]
Whitehead, K.A.; Dahlman, J.E.; Langer, R.S.; Anderson, D.G. Silencing or stimulation? siRNA delivery and the immune system. Annu. Rev. Chem. Biomol. Eng., 2011, 2, 77-96.
[http://dx.doi.org/10.1146/annurev-chembioeng-061010-114133] [PMID: 22432611]
[121]
Filion, M.C.; Phillips, N.C. Major limitations in the use of cationic liposomes for DNA delivery. Int. J. Pharm., 1998, 162(1), 159-170.
[http://dx.doi.org/10.1016/S0378-5173(97)00423-7]
[122]
Swanson, K.V.; Deng, M.; Ting, J.P.Y. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol., 2019, 19(8), 477-489.
[http://dx.doi.org/10.1038/s41577-019-0165-0] [PMID: 31036962]
[123]
Li, T.; He, J.; Horvath, G.; Próchnicki, T.; Latz, E.; Takeoka, S. Lysine-containing cationic liposomes activate the NLRP3 inflammasome: Effect of a spacer between the head group and the hydrophobic moieties of the lipids. Nanomedicine, 2018, 14(2), 279-288.
[http://dx.doi.org/10.1016/j.nano.2017.10.011] [PMID: 29127038]
[124]
He, J.; Li, T.; Próchnicki, T.; Horvath, G.; Latz, E.; Takeoka, S. Membrane fusogenic lysine type lipid assemblies possess enhanced NLRP3 inflammasome activation potency. Biochem. Biophys. Rep., 2019, 18, 100623.
[http://dx.doi.org/10.1016/j.bbrep.2019.100623] [PMID: 31011633]
[125]
Li, T.; Zehner, M.; He, J.; Próchnicki, T.; Horvath, G.; Latz, E.; Burgdorf, S.; Takeoka, S. NLRP3 inflammasome-activating arginine-based liposomes promote antigen presentations in dendritic cells. Int. J. Nanomedicine, 2019, 14, 3503-3516.
[http://dx.doi.org/10.2147/IJN.S202379] [PMID: 31190807]
[126]
Luan, X.; Sansanaphongpricha, K.; Myers, I.; Chen, H.; Yuan, H.; Sun, D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin., 2017, 38(6), 754-763.
[http://dx.doi.org/10.1038/aps.2017.12] [PMID: 28392567]
[127]
Liu, G.; Hou, S.; Tong, P.; Li, J. Liposomes: Preparation, characteristics, and application strategies in analytical chemistry. Crit. Rev. Anal. Chem., 2021. [Epub ahead of print].
[http://dx.doi.org/10.1080/10408347.2020.1805293] [PMID: 32799645]
[128]
Gubernator, J. Active methods of drug loading into liposomes: Recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin. Drug Deliv., 2011, 8(5), 565-580.
[http://dx.doi.org/10.1517/17425247.2011.566552] [PMID: 21492058]
[129]
Altanerova, U.; Jakubechova, J.; Benejova, K.; Priscakova, P.; Pesta, M.; Pitule, P.; Topolcan, O.; Kausitz, J.; Zduriencikova, M.; Repiska, V.; Altaner, C. Prodrug suicide gene therapy for cancer targeted intracellular by mesenchymal stem cell exosomes. Int. J. Cancer, 2019, 144(4), 897-908.
[http://dx.doi.org/10.1002/ijc.31792] [PMID: 30098225]
[130]
Xin, H.; Li, Y.; Liu, Z.; Wang, X.; Shang, X.; Cui, Y.; Zhang, Z.G.; Chopp, M. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells, 2013, 31(12), 2737-2746.
[http://dx.doi.org/10.1002/stem.1409] [PMID: 23630198]
[131]
Ding, Y.; Cao, F.; Sun, H.; Wang, Y.; Liu, S.; Wu, Y.; Cui, Q.; Mei, W.; Li, F. Exosomes derived from human umbilical cord mesenchymal stromal cells deliver exogenous miR-145-5p to inhibit pancreatic ductal adenocarcinoma progression. Cancer Lett., 2019, 442, 351-361.
[http://dx.doi.org/10.1016/j.canlet.2018.10.039] [PMID: 30419348]
[132]
Huang, L.; Gu, N.; Zhang, X.E.; Wang, D.B. Light-inducible exosome-based vehicle for endogenous RNA loading and delivery to leukemia cells. Adv. Funct. Mater., 2019, 29(9), 1807189.
[http://dx.doi.org/10.1002/adfm.201807189]
[133]
Bai, J.; Duan, J.; Liu, R.; Du, Y.; Luo, Q.; Cui, Y.; Su, Z.; Xu, J.; Xie, Y.; Lu, W. Engineered targeting tLyp-1 exosomes as gene therapy vectors for efficient delivery of siRNA into lung cancer cells. Asian J. Pharm. Sci., 2020, 15(4), 461-471.
[http://dx.doi.org/10.1016/j.ajps.2019.04.002] [PMID: 32952669]
[134]
Limoni, S.K.; Moghadam, M.F.; Moazzeni, S.M.; Gomari, H.; Salimi, F. Engineered exosomes for targeted transfer of siRNA to HER2 positive breast cancer cells. Appl. Biochem. Biotechnol., 2019, 187(1), 352-364.
[http://dx.doi.org/10.1007/s12010-018-2813-4] [PMID: 29951961]
[135]
Zhang, J.; Leifer, F.; Rose, S.; Chun, D.Y.; Thaisz, J.; Herr, T.; Nashed, M.; Joseph, J.; Perkins, W.R.; DiPetrillo, K. Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front. Microbiol., 2018, 9, 915.
[http://dx.doi.org/10.3389/fmicb.2018.00915] [PMID: 29867826]
[136]
Caimmi, D.; Martocq, N.; Trioleyre, D.; Guinet, C.; Godreuil, S.; Daniel, T.; Chiron, R. Positive effect of liposomal Amikacin for inhalation on Mycobacterium abcessus in cystic fibrosis patients. Open Forum Infect. Dis., 2018, 5(3), ofy034.
[http://dx.doi.org/10.1093/ofid/ofy034] [PMID: 29564361]
[137]
Clancy, J.P.; Dupont, L.; Konstan, M.W.; Billings, J.; Fustik, S.; Goss, C.H.; Lymp, J.; Minic, P.; Quittner, A.L.; Rubenstein, R.C.; Young, K.R.; Saiman, L.; Burns, J.L.; Govan, J.R.; Ramsey, B.; Gupta, R. Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection. Thorax, 2013, 68(9), 818-825.
[http://dx.doi.org/10.1136/thoraxjnl-2012-202230] [PMID: 23749840]
[138]
Gergis, U.; Roboz, G.; Shore, T.; Ritchie, E.; Mayer, S.; Wissa, U.; McKenna, M.; Christos, P.; Pearse, R.; Mark, T.; Scandura, J.; van Besien, K.; Feldman, E. A phase I study of CPX-351 in combination with busulfan and fludarabine conditioning and allogeneic stem cell transplantation in adult patients with refractory acute leukemia. Biol. Blood Marrow Transplant., 2013, 19(7), 1040-1045.
[http://dx.doi.org/10.1016/j.bbmt.2013.04.013] [PMID: 23648237]
[139]
Cortes, J.E.; Goldberg, S.L.; Feldman, E.J.; Rizzeri, D.A.; Hogge, D.E.; Larson, M.; Pigneux, A.; Recher, C.; Schiller, G.; Warzocha, K.; Kantarjian, H.; Louie, A.C.; Kolitz, J.E. Phase II, multicenter, randomized trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer, 2015, 121(2), 234-242.
[http://dx.doi.org/10.1002/cncr.28974] [PMID: 25223583]
[140]
Lancet, J.E.; Cortes, J.E.; Hogge, D.E.; Tallman, M.S.; Kovacsovics, T.J.; Damon, L.E.; Komrokji, R.; Solomon, S.R.; Kolitz, J.E.; Cooper, M.; Yeager, A.M.; Louie, A.C.; Feldman, E.J. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs. cytarabine/daunorubicin in older adults with untreated AML. Blood, 2014, 123(21), 3239-3246.
[http://dx.doi.org/10.1182/blood-2013-12-540971] [PMID: 24687088]
[141]
Tran, S.; DeGiovanni, P-J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med., 2017, 6(1), 44.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[142]
Zitvogel, L.; Regnault, A.; Lozier, A.; Wolfers, J.; Flament, C.; Tenza, D.; Ricciardi-Castagnoli, P.; Raposo, G.; Amigorena, S. Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes. Nat. Med., 1998, 4(5), 594-600.
[http://dx.doi.org/10.1038/nm0598-594] [PMID: 9585234]
[143]
Lee, Y.; El Andaloussi, S.; Wood, M.J. Exosomes and microvesicles: Extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet., 2012, 21(R1), R125-R134.
[http://dx.doi.org/10.1093/hmg/dds317] [PMID: 22872698]
[144]
Ratajczak, J.; Miekus, K.; Kucia, M.; Zhang, J.; Reca, R.; Dvorak, P.; Ratajczak, M.Z. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 2006, 20(5), 847-856.
[http://dx.doi.org/10.1038/sj.leu.2404132] [PMID: 16453000]
[145]
Camussi, G.; Deregibus, M-C.; Bruno, S.; Grange, C.; Fonsato, V.; Tetta, C. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am. J. Cancer Res., 2011, 1(1), 98-110.
[PMID: 21969178]
[146]
Meckes, D.G., Jr.; Raab-Traub, N. Microvesicles and viral infection. J. Virol., 2011, 85(24), 12844-12854.
[http://dx.doi.org/10.1128/JVI.05853-11] [PMID: 21976651]
[147]
Lai, R.C.; Arslan, F.; Lee, M.M.; Sze, N.S.K.; Choo, A.; Chen, T.S.; Salto-Tellez, M.; Timmers, L.; Lee, C.N.; El Oakley, R.M.; Pasterkamp, G.; de Kleijn, D.P.; Lim, S.K. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. (Amst.), 2010, 4(3), 214-222.
[http://dx.doi.org/10.1016/j.scr.2009.12.003] [PMID: 20138817]
[148]
Chen, B.; Li, Q.; Zhao, B.; Wang, Y. Stem cell-derived extracellular vesicles as a novel potential therapeutic tool for tissue repair. Stem Cells Transl. Med., 2017, 6(9), 1753-1758.
[http://dx.doi.org/10.1002/sctm.16-0477] [PMID: 28653443]
[149]
Chen, L.; Tredget, E.E.; Wu, P.Y.; Wu, Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One, 2008, 3(4), e1886.
[http://dx.doi.org/10.1371/journal.pone.0001886] [PMID: 18382669]
[150]
Reis, L.A.; Borges, F.T.; Simões, M.J.; Borges, A.A.; Sinigaglia-Coimbra, R.; Schor, N. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS One, 2012, 7(9), e44092.
[http://dx.doi.org/10.1371/journal.pone.0044092] [PMID: 22970165]
[151]
Tan, C.Y.; Lai, R.C.; Wong, W.; Dan, Y.Y.; Lim, S-K.; Ho, H.K. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res. Ther., 2014, 5(3), 76.
[http://dx.doi.org/10.1186/scrt465] [PMID: 24915963]
[152]
van Haaften, T.; Byrne, R.; Bonnet, S.; Rochefort, G.Y.; Akabutu, J.; Bouchentouf, M.; Rey-Parra, G.J.; Galipeau, J.; Haromy, A.; Eaton, F.; Chen, M.; Hashimoto, K.; Abley, D.; Korbutt, G.; Archer, S.L.; Thébaud, B. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am. J. Respir. Crit. Care Med., 2009, 180(11), 1131-1142.
[http://dx.doi.org/10.1164/rccm.200902-0179OC] [PMID: 19713449]
[153]
Pan, D.; Chang, X.; Xu, M.; Zhang, M.; Zhang, S.; Wang, Y.; Luo, X.; Xu, J.; Yang, X.; Sun, X. UMSC-derived exosomes promote retinal ganglion cells survival in a rat model of optic nerve crush. J. Chem. Neuroanat., 2019, 96, 134-139.
[http://dx.doi.org/10.1016/j.jchemneu.2019.01.006] [PMID: 30639447]
[154]
Yu, B.; Shao, H.; Su, C.; Jiang, Y.; Chen, X.; Bai, L.; Zhang, Y.; Li, Q.; Zhang, X.; Li, X. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci. Rep., 2016, 6, 34562.
[http://dx.doi.org/10.1038/srep34562] [PMID: 27686625]
[155]
Khalyfa, A.; Gozal, D. Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. J. Transl. Med., 2014, 12(1), 162.
[http://dx.doi.org/10.1186/1479-5876-12-162] [PMID: 24912806]
[156]
Xu, H.L.; Chen, P.P. ZhuGe, D.L.; Zhu, Q.Y.; Jin, B.H.; Shen, B.X.; Xiao, J.; Zhao, Y.Z. Liposomes with silk fibroin hydrogel core to stabilize bFGF and promote the wound healing of mice with deep second-degree scald. Adv. Healthc. Mater., 2017, 6(19), 1700344.
[http://dx.doi.org/10.1002/adhm.201700344]
[157]
Choi, J.U.; Lee, S.W.; Pangeni, R.; Byun, Y.; Yoon, I-S.; Park, J.W. Preparation and in vivo evaluation of cationic elastic liposomes comprising highly skin-permeable growth factors combined with hyaluronic acid for enhanced diabetic wound-healing therapy. Acta Biomater., 2017, 57, 197-215.
[http://dx.doi.org/10.1016/j.actbio.2017.04.034] [PMID: 28476587]
[158]
Huang, Y.; Liu, K.; Li, Q.; Yao, Y.; Wang, Y. Exosomes function in tumor immune microenvironment. In: Exosomes, Stem Cells and MicroRNA; Mettinger, K.L.; Rameshwar, P.; Kumar, V., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 109-122.
[http://dx.doi.org/10.1007/978-3-319-74470-4_7]
[159]
Wong, C-H.; Chen, Y-C. Clinical significance of exosomes as potential biomarkers in cancer. World J. Clin. Cases, 2019, 7(2), 171-190.
[http://dx.doi.org/10.12998/wjcc.v7.i2.171] [PMID: 30705894]
[160]
Raucher, D.; Dragojevic, S.; Ryu, J. Macromolecular drug carriers for targeted glioblastoma therapy: preclinical studies, challenges, and future perspectives. Front. Oncol., 2018, 8, 624.
[http://dx.doi.org/10.3389/fonc.2018.00624] [PMID: 30619758]
[161]
Smith, J.A.; Mathew, L.; Burney, M.; Nyshadham, P.; Coleman, R.L. Equivalency challenge: Evaluation of Lipodox® as the generic equivalent for Doxil® in a human ovarian cancer orthotropic mouse model. Gynecol. Oncol., 2016, 141(2), 357-363.
[http://dx.doi.org/10.1016/j.ygyno.2016.02.033] [PMID: 26946092]
[162]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[163]
Kaplan, L.D.; Deitcher, S.R.; Silverman, J.A.; Morgan, G. Phase II study of vincristine sulfate liposome injection (Marqibo) and rituximab for patients with relapsed and refractory diffuse large B-Cell lymphoma or mantle cell lymphoma in need of palliative therapy. Clin. Lymphoma Myeloma Leuk., 2014, 14(1), 37-42.
[http://dx.doi.org/10.1016/j.clml.2013.09.009] [PMID: 24252360]
[164]
Jain, M.; Zellweger, M.; Frobert, A.; Valentin, J.; van den Bergh, H.; Wagnières, G.; Cook, S.; Giraud, M-N. Intra-arterial drug and light delivery for photodynamic therapy using Visudyne®: implication for atherosclerotic plaque treatment. Front. Physiol., 2016, 7, 400.
[http://dx.doi.org/10.3389/fphys.2016.00400] [PMID: 27672369]
[165]
Antoni, D.; Burckel, H.; Josset, E.; Noel, G. Three-dimensional cell culture: a breakthrough in vivo. Int. J. Mol. Sci., 2015, 16(3), 5517-5527.
[http://dx.doi.org/10.3390/ijms16035517] [PMID: 25768338]
[166]
Duval, K.; Grover, H.; Han, L-H.; Mou, Y.; Pegoraro, A.F.; Fredberg, J.; Chen, Z. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda), 2017, 32(4), 266-277.
[http://dx.doi.org/10.1152/physiol.00036.2016] [PMID: 28615311]
[167]
Efimenko, A.; Starostina, E.; Kalinina, N.; Stolzing, A. Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J. Transl. Med., 2011, 9(1), 10.
[http://dx.doi.org/10.1186/1479-5876-9-10] [PMID: 21244679]
[168]
Hung, S-C.; Pochampally, R.R.; Hsu, S-C.; Sanchez, C.; Chen, S-C.; Spees, J.; Prockop, D.J. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One, 2007, 2(5), e416.
[http://dx.doi.org/10.1371/journal.pone.0000416] [PMID: 17476338]
[169]
Lavrentieva, A.; Majore, I.; Kasper, C.; Hass, R. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Commun. Signal., 2010, 8(1), 18.
[http://dx.doi.org/10.1186/1478-811X-8-18] [PMID: 20637101]
[170]
Buravkova, L.B.; Andreeva, E.R.; Gogvadze, V.; Zhivotovsky, B. Mesenchymal stem cells and hypoxia: Where are we? Mitochondrion, 2014, 19(Pt A), 105-112.
[http://dx.doi.org/10.1016/j.mito.2014.07.005] [PMID: 25034305]
[171]
Fu, S.; Wang, Y.; Xia, X.; Zheng, J.C. Exosome engineering: Current progress in cargo loading and targeted delivery. NanoImpact, 2020, 100261.
[http://dx.doi.org/10.1016/j.impact.2020.100261]
[172]
Das, C.K.; Jena, B.C.; Banerjee, I.; Das, S.; Parekh, A.; Bhutia, S.K.; Mandal, M. Exosome as a novel shuttle for delivery of therapeutics across biological barriers. Mol. Pharm., 2019, 16(1), 24-40.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00901] [PMID: 30513203]
[173]
Sato, Y.T.; Umezaki, K.; Sawada, S.; Mukai, S.A.; Sasaki, Y.; Harada, N.; Shiku, H.; Akiyoshi, K. Engineering hybrid exosomes by membrane fusion with liposomes. Sci. Rep., 2016, 6(1), 21933.
[http://dx.doi.org/10.1038/srep21933] [PMID: 26911358]
[174]
Zhen, S.; Li, X. Liposomal delivery of CRISPR/Cas9. Cancer Gene Ther., 2020, 27(7-8), 515-527.
[http://dx.doi.org/10.1038/s41417-019-0141-7] [PMID: 31676843]
[175]
Xiong, F.; Mi, Z.; Gu, N. Cationic liposomes as gene delivery system: transfection efficiency and new application. Pharmazie, 2011, 66(3), 158-164.
[PMID: 21553643]
[176]
Lin, Y.; Wu, J.; Gu, W.; Huang, Y.; Tong, Z.; Huang, L.; Tan, J. Exosome–liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv. Sci. (Weinh.), 2018, 5(4), 1700611.
[http://dx.doi.org/10.1002/advs.201700611] [PMID: 29721412]
[177]
Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G.J.; Wei, J.; Nie, G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 2014, 35(7), 2383-2390.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.083] [PMID: 24345736]
[178]
Holder, B.; Jones, T.; Sancho Shimizu, V.; Rice, T.F.; Donaldson, B.; Bouqueau, M.; Forbes, K.; Kampmann, B. Macrophage exosomes induce placental inflammatory cytokines: A novel mode of maternal–placental messaging. Traffic, 2016, 17(2), 168-178.
[http://dx.doi.org/10.1111/tra.12352] [PMID: 26602702]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy