Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Osthole: A Medicinally Privileged Natural Compound with its Therapeutic Potential

Author(s): Kamran Ansari, Ujjwal Gupta, Antra Sinha, Ankit Sharma and Kalpana Rahate*

Volume 14, Issue 4, 2024

Published on: 08 October, 2023

Article ID: e081023221872 Pages: 25

DOI: 10.2174/0122103155262670230926120458

Price: $65

Abstract

Osthole is a coumarin derived natural compound which is an essential ingredient of Traditional Chinese Medicine (TMC) and is widely distributed in nature in plants like Cnidium monnieri (L) Cusson and Angelica pubescens. Current study presents a critical review on description of pharmacological importance of osthole, which is reported to exhibit anticancer, antioxidant, osteogenic, hepatoprotective, neuroprotective, cardiovascular protective, antimicrobial, immuno-modulatory and anti-inflammatory activities. Till date, the reports include pharmacological properties, brief chemistry of advanced methods to explore osthole content in variety of plants. Present review seeks to highlight the sources, biosynthesis, extraction methods, pharmacological properties of the molecule and its derivatives. A brief discussion on patents recently published and granted on the molecule has also been highlighted. Thus the overview of the literature presents the analysis about future possible modalities of the research on this molecule.

Keywords: Osthole, pharmacological profile, biosynthesis, extraction, traditional Chinese medicine, immunomodulatory.

Graphical Abstract
[1]
You, L.; Feng, S.; An, R.; Wang, X. Osthole: A promising lead compound for drug discovery from a traditional Chinese medicine (TCM). Nat. Prod. Commun., 2009, 4(2), 1934578X0900400.
[http://dx.doi.org/10.1177/1934578X0900400227] [PMID: 19370943]
[2]
Hoult, J.R.S.; Payá, M. Pharmacological and biochemical actions of simple coumarins: Natural products with therapeutic potential. Gen. Pharmacol., 1996, 27(4), 713-722.
[http://dx.doi.org/10.1016/0306-3623(95)02112-4] [PMID: 8853310]
[3]
Wang, R.; Kong, J.; Wang, D.; Lien, L.L.; Lien, E.J. A survey of Chinese herbal ingredients with liver protection activities. Chin. Med., 2007, 2(1), 5.
[http://dx.doi.org/10.1186/1749-8546-2-5] [PMID: 17490493]
[4]
Matsuda, H.; Ido, Y.; Hirata, A.; Ino, Y.; Naruto, S.; Amamiya, T.; Kubo, M. Antipruritic effect of cnidii monnieri fructus (fruits of Cnidium monnieri CUSSON). Biol. Pharm. Bull., 2002, 25(2), 260-263.
[http://dx.doi.org/10.1248/bpb.25.260] [PMID: 11853179]
[5]
Huang, R.; Chen, C.C.; Huang, Y.L.; Hsieh, D.J.; Hu, C.P.; Chen, C.F.; Chang, C. Osthole increases glycosylation of hepatitis B surface antigen and suppresses the secretion of hepatitis B virus in vitro. Hepatology, 1996, 24(3), 508-515.
[http://dx.doi.org/10.1053/jhep.1996.v24.pm0008781315] [PMID: 8781315]
[6]
Zhang, Z.R.; Leung, W.N.; Cheung, H.Y.; Chan, C.W. Osthole: A review on its bioactivities, pharmacological properties, and potential as alternative medicine. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/919616] [PMID: 26246843]
[7]
Yang, S.M.; Shim, G.Y.; Kim, B.G.; Ahn, J.H. Biological synthesis of coumarins in Escherichia coli. Microb. Cell Fact., 2015, 14(1), 65.
[http://dx.doi.org/10.1186/s12934-015-0248-y] [PMID: 25927349]
[8]
Guh, J.H.; Yu, S.M.; Ko, F.N.; Wu, T.S.; Teng, C.M. Antiproliferative effect in rat vascular smooth muscle cells by osthole, isolated from Angelica pubescens. Eur. J. Pharmacol., 1996, 298(2), 191-197.
[http://dx.doi.org/10.1016/0014-2999(95)00812-8] [PMID: 8867108]
[9]
Zhang, Q.Y.; Chen, H.C.; Qin, L.P. Distribution and pharmacological activity of osthole in plant kingdom. World Phytomed., 2002, 17, 16-18.
[10]
Yan, J.; Xuan, W.D.; Bian, J. Research progress of osthole. Chin Pharm, 2012, 21, 110-112.
[11]
GRIN database; National Germplasm Resources Laboratory: Beltsville, Maryland, 2003.
[12]
Lee, Y.Y.; Lee, S.; Jin, J.L.; Yun-Choi, H.S. Platelet anti-aggregatory effects of coumarins from the roots ofAngelica genuflexa andA. gigas. Arch. Pharm. Res., 2003, 26(9), 723-726.
[http://dx.doi.org/10.1007/BF02976681] [PMID: 14560920]
[13]
Fujioka, T.; Furumi, K.; Fujii, H.; Okabe, H.; Mihashi, K.; Nakano, Y.; Matsunaga, H.; Katano, M.; Mori, M. Antiproliferative constituents from umbelliferae plants. V. A new furanocoumarin and falcarindiol furanocoumarin ethers from the root of Angelica japonica. Chem. Pharm. Bull., 1999, 47(1), 96-100.
[http://dx.doi.org/10.1248/cpb.47.96] [PMID: 9987830]
[14]
Ko, F.N.; Wu, T.S.; Liou, M.J.; Huang, T.F.; Teng, C.M. Inhibition of platelet thromboxane formation and phosphoinositides breakdown by osthole from Angelica pubescens. Thromb. Haemost., 1989, 62(3), 996-999.
[http://dx.doi.org/10.1055/s-0038-1651041] [PMID: 2556815]
[15]
Jiang, T.F.; Lv, Z.H.; Wang, Y.H.; Yue, M.E. On-line concentration by field-enhanced sample injection with reverse migrating micelles in micellar electrokinetic capillary chromatography for the analysis of coumarins from traditional Chinese medicine and human serum. Biomed. Chromatogr., 2010, 24(6), 581-587.
[PMID: 19795362]
[16]
Liang, H.J.; Suk, F.M.; Wang, C.K.; Hung, L.F.; Liu, D.Z.; Chen, N.Q.; Chen, Y.C.; Chang, C.C.; Liang, Y.C. Osthole, a potential antidiabetic agent, alleviates hyperglycemia in db/db mice. Chem. Biol. Interact., 2009, 181(3), 309-315.
[http://dx.doi.org/10.1016/j.cbi.2009.08.003] [PMID: 19682441]
[17]
Chang, Y.; Zhang, Q.H.; Li, J.; Zhang, L.; Guo, X.; He, J.; Zhang, P.; Ma, L.; Deng, Y.; Zhang, B.; Gao, X. Simultaneous determination of scopoletin, psoralen, bergapten, xanthotoxin, columbianetin acetate, imperatorin, osthole and isoimperatorin in rat plasma by LC–MS/MS for pharmacokinetic studies following oral administration of Radix Angelicae Pubescentis extract. J. Pharm. Biomed. Anal., 2013, 77, 71-75.
[http://dx.doi.org/10.1016/j.jpba.2012.12.031] [PMID: 23384552]
[18]
Chen, Y.F.; Tsai, H.Y.; Wu, T.S. Anti-inflammatory and analgesic activities from roots of Angelica pubescens. Planta Med., 1995, 61(1), 2-8.
[http://dx.doi.org/10.1055/s-2006-957987] [PMID: 7700984]
[19]
Li, RZ.; He, YQ.; Chiao, M.; Xu, Y.; Zhang, QB.; Meng, JR.; Gu, Y.; Ge, LP. Studies of the active constituents of the Chinese drug “duhuo” Angelica pubescents. Yao Xue Xue Bao, 1989, 24(7), 546-551.
[20]
Liu, J.; Zschocke, S.; Reininger, E.; Bauer, R. Inhibitory effects of Angelica pubescens f. biserrata on 5-lipoxygenase and cyclooxygenase. Planta Med., 1998, 64(6), 525-529.
[http://dx.doi.org/10.1055/s-2006-957507] [PMID: 9741298]
[21]
Luo, Q.; Wang, C.; Li, J.; Ma, W.; Bai, Y.; Ma, L.; Gao, X.; Zhang, B.; Chang, Y. The pharmacokinetics and oral bioavailability studies of columbianetin in rats after oral and intravenous administration. J. Ethnopharmacol., 2013, 150(1), 175-180.
[http://dx.doi.org/10.1016/j.jep.2013.08.030] [PMID: 23994338]
[22]
Teng, C.M.; Lin, C.H.; Ko, F.N.; Wu, T.S.; Huang, T.F. The relaxant action of osthole isolated from Angelica pubescens in guineapig trachea. Naunyn Schmiedebergs Arch. Pharmacol., 1994, 349(2), 202-208.
[http://dx.doi.org/10.1007/BF00169838] [PMID: 8170504]
[23]
Wang, K.; Yao, L.; Du, Y.; Xie, J.; Huang, J.; Yin, Z. Anthelmintic activity of the crude extracts, fractions, and osthole from Radix angelicae pubescentis against Dactylogyrus intermedius in goldfish (Carassius auratus) in vivo. Parasitol. Res., 2011, 108(1), 195-200.
[http://dx.doi.org/10.1007/s00436-010-2058-9] [PMID: 20878184]
[24]
Yang, X.W.; Guo, Q.M.; Wang, Y. Absorption and transport of 6 coumarins isolated from the roots of Angelica pubescens f. biserrata in human Caco-2 cell monolayer model. J. Chin. Integr. Med., 2008, 6(4), 392-398.
[http://dx.doi.org/10.3736/jcim20080413]
[25]
Yao, L.; Lu, P.; Li, Y.; Yang, L.; Feng, H.; Huang, Y.; Zhang, D.; Chen, J.; Zhu, D. Osthole relaxes pulmonary arteries through endothelial phosphatidylinositol 3-kinase/Akt-eNOS-NO signaling pathway in rats. Eur. J. Pharmacol., 2013, 699(1-3), 23-32.
[http://dx.doi.org/10.1016/j.ejphar.2012.11.056] [PMID: 23220709]
[26]
Zalewska, E. Pathogenicity of septoria carvi Syd. towards caraway Carum carvi L. (Apiaceae). J. Agric. Sci. Technol., 2013, A3, 711-723.
[27]
Pimenov, M.G.; Tikhomirov, V.N. The taxonomic problems in the genera prangos Lindl. Cachrys L., carytodiscus schrenk and hippomarathrumHoffmgg. et Link (Umbelliferae, Apoidea). Feddes Repert., 1983, 94, 145-164.
[28]
Choi, H-S.; Kim, M-S.L.; Sawamura, M. Constituents of the essential oil ofcnidium officinale Makino, a Korean medicinal plant. Flavour Fragrance J., 2002, 17(1), 49-53.
[http://dx.doi.org/10.1002/ffj.1038]
[29]
Basnet, P.; Yasuda, I.; Kumagai, N.; Tohda, C.; Nojima, H.; Kuraishi, Y.; Komatsu, K. Inhibition of itch-scratch response by fruits of Cnidium monnieri in mice. Biol. Pharm. Bull., 2001, 24(9), 1012-1015.
[http://dx.doi.org/10.1248/bpb.24.1012] [PMID: 11558560]
[30]
Chen, D.; Wang, J.; Jiang, Y.; Zhou, T.; Fan, G.; Wu, Y. Separation and determination of coumarins in Fructus cnidii extracts by pressurized capillary electrochromatography using a packed column with a monolithic outlet frit. J. Pharm. Biomed. Anal., 2009, 50(5), 695-702.
[http://dx.doi.org/10.1016/j.jpba.2009.05.026] [PMID: 19608371]
[31]
Chen, J.; Chiou, W.F.; Chen, C.C.; Chen, C.F. Effect of the plant-extract osthole on the relaxation of rabbit corpus cavernosum tissue in vitro. J. Urol., 2000, 163(6), 1975-1980.
[http://dx.doi.org/10.1016/S0022-5347(05)67613-6] [PMID: 10799242]
[32]
Chen, R.; Xue, J.; Xie, M.L. Reduction of isoprenaline-induced myocardial TGF-β1 expression and fibrosis in osthole-treated mice. Toxicol. Appl. Pharmacol., 2011, 256(2), 168-173.
[http://dx.doi.org/10.1016/j.taap.2011.08.005] [PMID: 21854795]
[33]
Chen, T.; Liu, W.; Chao, X.; Qu, Y.; Zhang, L.; Luo, P.; Xie, K.; Huo, J.; Fei, Z. Neuroprotective effect of osthole against oxygen and glucose deprivation in rat cortical neurons: Involvement of mitogen-activated protein kinase pathway. Neuroscience, 2011, 183, 203-211.
[http://dx.doi.org/10.1016/j.neuroscience.2011.03.038] [PMID: 21453755]
[34]
Dien, P.H.; Nhan, N.T.; Le Thuy, H.T.; Quang, D.N. Main constituents from the seeds of Vietnamese Cnidium monnieri and cytotoxic activity. Nat. Prod. Res., 2012, 26(22), 2107-2111.
[PMID: 22017625]
[35]
Du, R.; Xue, J.; Wang, H.; Zhang, Y.; Xie, M. Osthol ameliorates fat milk-induced fatty liver in mice by regulation of hepatic sterol regulatory element-binding protein-1c/2-mediated target gene expression. Eur. J. Pharmacol., 2011, 666(1-3), 183-188.
[http://dx.doi.org/10.1016/j.ejphar.2011.05.014] [PMID: 21620823]
[36]
Tewari, M.; Mathela, C.S. Chemical composition of the leaf and root oils of Selinum tenuifolium. Indian Perfumer, 2003, 47, 343.
[37]
Rao, G.X.; Gao, Y.L.; Lin, Y.P.; Xiao, Y.L.; Li, S.H.; Sun, H.D. Chemical constituents of Selinum cryptotaenium. J. Asian Nat. Prod. Res., 2006, 8(3), 273-275.
[http://dx.doi.org/10.1080/1028602042000325555] [PMID: 16864434]
[38]
Eigner, D.; Scholz, D. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. J. Ethnopharmacol., 1999, 67(1), 1-6.
[http://dx.doi.org/10.1016/S0378-8741(98)00234-7] [PMID: 10616954]
[39]
Evans, W.C. Trease and Evans Pharmacognosy; WB. Sanders Company: Nottingham, UK, 1996.
[40]
Liu, Y.Y.; Zhang, C.; Li, L.; Xiao, Y.Q. [Studies on chemical constituents in roots of Heracleum rapula]. Zhongguo Zhongyao Zazhi, 2006, 31(4), 309-311.
[PMID: 16706022]
[41]
Tosun, A.; Akkol, E.K.; Yeşilada, E. Anti-inflammatory and antinociceptive activity of coumarins from Seseli gummiferum subsp. corymbosum (Apiaceae). Z. Naturforsch. C J. Biosci., 2009, 64(1-2), 56-62.
[http://dx.doi.org/10.1515/znc-2009-1-210] [PMID: 19323267]
[42]
Shi, J.; Fu, Q.; Chen, W.; Yang, H.P.; Liu, J.; Wang, X.M.; He, X. Comparative study of pharmacokinetics and tissue distribution of osthole in rats after oral administration of pure osthole and Libanotis buchtormensis supercritical extract. J. Ethnopharmacol., 2013, 145(1), 25-31.
[http://dx.doi.org/10.1016/j.jep.2012.10.028] [PMID: 23142197]
[43]
Mišić, D.; Zizovic, I.; Stamenić, M.; Ašanin, R.; Ristić, M.; Petrović, S.D.; Skala, D. Antimicrobial activity of celery fruit isolates and SFE process modeling. Biochem. Eng. J., 2008, 42(2), 148-152.
[http://dx.doi.org/10.1016/j.bej.2008.06.008]
[44]
Castro, A.; Bergenståhl, B.; Tornberg, E. Parsnip (Pastinaca sativa L.): Dietary fibre composition and physicochemical characterization of its homogenized suspensions. Food Res. Int., 2012, 48(2), 598-608.
[http://dx.doi.org/10.1016/j.foodres.2012.05.023]
[45]
Arai, S.; Osawa, T.; Ohigashi, H.; Yoshikawa, M.; Kaminogawa, S.; Watanabe, M.; Ogawa, T.; Okubo, K.; Watanabe, S.; Nishino, H.; Shinohara, K.; Esashi, T.; Hirahara, T. A mainstay of functional food science in Japan--history, present status, and future outlook. Biosci. Biotechnol. Biochem., 2001, 65(1), 1-13.
[http://dx.doi.org/10.1271/bbb.65.1] [PMID: 11272811]
[46]
Vogl, S.; Zehl, M.; Picker, P.; Urban, E.; Wawrosch, C.; Reznicek, G.; Saukel, J.; Kopp, B. Identification and quantification of coumarins in Peucedanum ostruthium (L.) Koch by HPLC-DAD and HPLC-DAD-MS. J. Agric. Food Chem., 2011, 59(9), 4371-4377.
[http://dx.doi.org/10.1021/jf104772x] [PMID: 21425828]
[47]
Salehi, S. Medicinal Plants and Phytotherapy; DonyayTaghziah Press: Tehran, Iran, 2010. 1
[48]
Sedigheh, A.; Jamal, M.S.; Mahbubeh, S.; Somayeh, K.; Mahmoud, R.K.; Azadeh, A.; Fatemeh, S. Hypoglycaemic and hypolipidemic effects of pumpkin (Cucurbita pepo L) on alloxan induced diabetic rats. Afr. J. Pharm. Pharmacol., 2011, 5, 2620-2626.
[49]
Hu, C.Q.; Chang, J.J.; Lee, K.H. Antitumor agents, 115. Seselidiol, a new cytotoxic polyacetylene from Seseli mairei. J. Nat. Prod., 1990, 53(4), 932-935.
[http://dx.doi.org/10.1021/np50070a022] [PMID: 2095375]
[50]
Siskos, E.P.; Mazomenos, B.E.; Konstantopoulou, M.A. Isolation and identification of insecticidal components from Citrus aurantium fruit peel extract. J. Agric. Food Chem., 2008, 56(14), 5577-5581.
[http://dx.doi.org/10.1021/jf800446t] [PMID: 18578532]
[51]
Nakamura, T.; Kodama, N.; Arai, Y.; Kumamoto, T.; Higuchi, Y.; Chaichantipyuth, C.; Ishikawa, T.; Ueno, K.; Yano, S. Inhibitory effect of oxycoumarins isolated from the Thai medicinal plant Clausena guillauminii on the inflammation mediators, iNOS, TNF-α, and COX-2 expression in mouse macrophage RAW 264.7. J. Nat. Med., 2009, 63(1), 21-27.
[http://dx.doi.org/10.1007/s11418-008-0277-5] [PMID: 18636311]
[52]
Shen, D.Y.; Chan, Y.Y.; Hwang, T.L.; Juang, S.H.; Huang, S.C.; Kuo, P.C.; Thang, T.D.; Lee, E.J.; Damu, A.G.; Wu, T.S. Constituents of the roots of Clausena lansium and their potential anti-inflammatory activity. J. Nat. Prod., 2014, 77(5), 1215-1223.
[http://dx.doi.org/10.1021/np500088u] [PMID: 24798144]
[53]
Sharma, R.; Negi, D.; Gibbons, S.; Otsuka, H. Chemical and antibacterial constituents of Skimmia anquetelia. Planta Med., 2008, 74(2), 175-177.
[http://dx.doi.org/10.1055/s-2008-1034281] [PMID: 18240101]
[54]
Figueroa, M.; Rivero-Cruz, I.; Rivero-Cruz, B.; Bye, R.; Navarrete, A.; Mata, R. Constituents, biological activities and quality control parameters of the crude extract and essential oil from Arracacia tolucensis var. multifida. J. Ethnopharmacol., 2007, 113(1), 125-131.
[http://dx.doi.org/10.1016/j.jep.2007.05.015] [PMID: 17582715]
[55]
Resch, M.; Steigel, A.; Chen, Z.; Bauer, R. 5-Lipoxygenase and cyclooxygenase-1 inhibitory active compounds from Atractylodes lancea. J. Nat. Prod., 1998, 61(3), 347-350.
[http://dx.doi.org/10.1021/np970430b] [PMID: 9544564]
[56]
Li, Y.; Liu, X.L.; Cai, Z.G.; Zhang, S.X. LC-ESI-MS/MS analysis and pharmacokinetics of jolkinolide B, a potential antitumor active component isolated from Euphorbia fischeriana, in rat plasma. Biomed. Chromatogr., 2014, 28(2), 193-196.
[http://dx.doi.org/10.1002/bmc.3000] [PMID: 23868721]
[57]
Jiménez, B.; Grande, M.C.; Anaya, J.; Torres, P.; Grande, M. Coumarins from Ferulago capillaris and F. brachyloba. Phytochemistry, 2000, 53(8), 1025-1031.
[http://dx.doi.org/10.1016/S0031-9422(99)00524-5] [PMID: 10820825]
[58]
Sheng, L.; Wu, C.Y.; Chen, X.F. [Inhibitory acting mechanism of psoralen-osthole on bone metastasis of breast cancer--an expatiation viewing from OPG/RANKL/RANK system]. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2011, 31(5), 684-689.
[PMID: 21812275]
[59]
Anand Solomon, K.; Rajan, S.S.; Gopalakrishnan, G.; Kashinath, V.; Santhana Krishnan, V.P. 8-(2-Bromo-3-methoxy-3-methylbutyl)-7-methoxycoumarin. Acta Crystallogr. C, 2003, 59(1), o40-o41.
[http://dx.doi.org/10.1107/S0108270102020838] [PMID: 12506234]
[60]
Sadraei, H.; Shokoohinia, Y.; Sajjadi, S.E.; Ghadirian, B. Antispasmodic effect of osthole and Prangos ferulacea extract on rat uterus smooth muscle motility. Res. Pharm. Sci., 2012, 7(3), 141-149.
[PMID: 23181092]
[61]
Sadraei, H.; Shokoohinia, Y.; Sajjadi, S.E.; Mozafari, M. Antispasmodic effects of Prangos ferulacea acetone extract and its main component osthole on ileum contraction. Res. Pharm. Sci., 2013, 8(2), 137-144.
[PMID: 24019823]
[62]
Huo, L.; Jiang, Z.; Lei, M.; Wang, X.; Guo, X. Simultaneous quantification of Kirenol and ent-16beta,17-dihydroxy-kauran-19-oic acid from Herba Siegesbeckiae in rat plasma by liquid chromatography-tandem mass spectrometry and its application to pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 937, 18-24.
[63]
Zhao, Y.; Wang, N.; Sui, Z.; Huang, C.; Zeng, Z.; Kong, L. The molecular and structural basis of O-methylation reaction in coumarin biosynthesis in Peucedanumpraeruptorum Dunn. Int. J. Mol. Sci., 2019, 20(7), 1533.
[http://dx.doi.org/10.3390/ijms20071533] [PMID: 30934718]
[64]
Shi, Y.; Zhang, S.; Peng, D.; Shan, C.; Zhao, L.; Wang, B.; Wu, J. De novo transcriptome analysis of Cnidium monnieri (L.) Cuss and detection of genes related to coumarin biosynthesis. PeerJ, 2020, 8, e10157.
[http://dx.doi.org/10.7717/peerj.10157] [PMID: 33194397]
[65]
Hehmann, M.; Lukačin, R.; Ekiert, H.; Matern, U. Furanocoumarin biosynthesis in Ammi majus L. Eur. J. Biochem., 2004, 271(5), 932-940.
[http://dx.doi.org/10.1111/j.1432-1033.2004.03995.x] [PMID: 15009205]
[66]
Liu, G.L.; Hao, B.; Liu, S.P.; Wang, G.X. Synthesis and anthelmintic activity of osthol analogs against Dactylogyrus intermedius in goldfish. Eur. J. Med. Chem., 2012, 54, 582-590.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.009] [PMID: 22749191]
[67]
Yin, Q.; Yan, H.; Zhang, Y.; Wang, Y.; Zhang, G.; He, Y.; Zhang, W. Palladium-catalyzed synthesis of 8-allyl or 8-prenylcoumarins by using organotin reagents as multicoupling nucleophiles. Appl. Organomet. Chem., 2013, 27(2), 85-88.
[http://dx.doi.org/10.1002/aoc.2944]
[68]
Liu, M.; Liu, Y.; Hua, X.; Wu, C.; Zhou, S.; Wang, B.; Li, Z. Synthesis of Osthole derivatives with Grignard reagents and their larvicidal activities on mosquitoes. Chin. J. Chem., 2015, 33(12), 1353-1358.
[http://dx.doi.org/10.1002/cjoc.201500620]
[69]
Gulías, M.; Marcos-Atanes, D.; Mascareñas, J.L.; Font, M. Practical large-scale preparation of benzoxepines and coumarins through Rhodium (III)-catalyzed C–H activation/annulation reactions. Org. Process Res. Dev., 2019, 23(8), 1669-1673.
[http://dx.doi.org/10.1021/acs.oprd.9b00191]
[70]
Schmidt, B.; Riemer, M. Synthesis of allyl- and prenylcoumarinsvia microwave-promoted tandem Claisen rearrangement/Wittigolefination. Synthesis, 2015, 48(1), 141-149.
[http://dx.doi.org/10.1055/s-0035-1560501]
[71]
Konrádová, D; Kozubíková, H; Doležal, K; Pospíšil, J Microwave assistedsynthesis of phenylpropanoids and coumarins: Totalsynthesis of osthol. Eur. J. Org. Chem., 2017, 2017, 5204-5213.
[72]
Zhang, R.; Fang, Q. Study on the extraction and preparation of osthole. Stud. J. Tradit. Chin. Med., 2003, 21, 1336.
[73]
Shang, F.; Wang, Y.X.; Chen, F.X.; Qian, C.M. Optimization of extracting process of osthol with orthogonal design. China Pharmacist., 2006, 9, 621-622.
[74]
Deng, H.; Gu, DD.; Yang, Y.; Qin, Y.; Lan, B.; Wang, AP. Optimization of extraction process of osthole from Fructus cnidii. West Chin. J. Pharm. Sci., 2013, 28, 106-107.
[75]
Su, X.Q.; Yang, J.H. Optimization of extraction process of osthole. Tianjin Pharm., 2009, 21, 3-4.
[76]
Wang, X.K.; Li, W.D.; Gao, S.Y.; Fan, T. Cnidicin extraction technology. Yingyong Huagong, 2011, 40, 1237-1238.
[77]
Lu, Q.; Wang, Y.M.; Wang, X.M. Study on extraction method of Cnidium Monnieri. J. Inn. Mong. Agric. Univ., 2010, 31, 298-330.
[78]
Li, F.; Zhu, Y.; Cheng, W. Optimization of extraction technology of osthole by orthogonal test. Zhongguo Xiandai Yaowu Yingyong, 2011, 5, 82-83.
[79]
Yan, Z.F.; Liu, B.S.; Zhao, S.P. Study of CO2 supercritical technology on osthole extraction from Common Cnidium Fruit. World J. Integr. Tradit. West Med., 2009, 4, 20-22.
[80]
Gong, Z.Y.; Zhang, G.Y.; Nie, Y.L.; Zhang, X.X.; Gu, H.X. Influence of supercritical CO2 extraction technology on osthol content from fruits of Cnidium monnieri. Chin. Tradit. Herbal Drugs, 2006, 17, 2156-2159.
[81]
Zhang, Y.Y.; Gao, Y.Z.; Dian, L.H.; Wu, T. Study on extracting technique of osthole in Cnidium monnieri (L.) Cusson. Chin Med Mod DistEduc Chin., 2008, 6, 726-727.
[82]
Chen, H.; Li, X.H.; Lu, X.H.; Yang, X.P.; Liang, J.P. Optimization of Ultrasonic-assisted extraction of osthole from Radix Angelicae Pubescentis using response surface methodology. Nat Prod Res Dev., 2013, 25, 834-840.
[83]
Xie, G.L.; Wang, R.; Yang, J.; Meng, Y.M. Optimization of extraction process of osthol by quadratic general rotary combination design. Inf Tradit Chin Med., 2014, 31, 95-96.
[84]
Wang, R.; Yang, J.; Xie, GL.; Jiang, JM.; Wang, YH. Extraction of osthole from Fructus cnidii by ultrasonic method combined with surfactant. Lishizhen Med Mat. Med Res., 2013, 24, 603-604.
[85]
Xie, L.; Zhou, J.; Tian, Q.Q.; Wang, Q.F. Aqueous two-phase extraction and separation of osthole from Cnidium monnieri with analysis by high performance liquid chromatography. Pharm. J. Chin PLA., 2010, 26, 310-314.
[86]
Liu, Y.J.; Hu, Y.G.; Niu, X.F. Study on extraction technology of osthole from Fructus cnidii. Mod. Tradit. Chin Med., 2016, 36, 79-81.
[87]
Zhang, L.; Weng, L.D.; Liu, L.; Zheng, F.; Liu, Q. Optimization of percolation extraction conditions of Fructus cnidii by orthogonal test. Chin. J. Exp. Tradit. Med. Form., 2010, 16, 12-13.
[88]
Ning, N.; Han, J.J.; Hu, Y.L.; Zou, Z.Y.; Yu, J.S. Optimization of enzymatic extraction of osthole from Fructus cnidii by Response Surface Methodology. Jiangsu Agric. Sci., 2016, 44, 169-173.
[89]
Zafar, S.; Sarfraz, I.; Rasul, A.; Shah, M.A.; Hussain, G.; Zahoor, M.K.; Shafiq, N.; Riaz, A.; Selamoglu, Z.; Sarker, S.D. Osthole: A multi-functional natural compound with potential anticancer, antioxidant and anti-inflammatory activities. Mini Rev. Med. Chem., 2021, 21(18), 2747-2763.
[http://dx.doi.org/10.2174/18755607MTA4nMDMiw] [PMID: 32646359]
[90]
Okamoto, T.; Kawasaki, T.; Hino, O. Osthole prevents anti-Fas antibody-induced hepatitis in mice by affecting the caspase-3-mediated apoptotic pathway. Biochem. Pharmacol., 2003, 65(4), 677-681.
[http://dx.doi.org/10.1016/S0006-2952(02)01606-4] [PMID: 12566097]
[91]
Okamoto, T.; Kobayashi, T. hi Yoshida, S. Synthetic derivatives of osthole for the prevention of hepatitis. Med. Chem., 2007, 3(1), 35-44.
[http://dx.doi.org/10.2174/157340607779317607] [PMID: 17266622]
[92]
Lee, W.H.; Lin, R.J.; Lin, S.Y.; Chen, Y.C.; Lin, H.M.; Liang, Y.C. Osthole enhances glucose uptake through activation of AMP-activated protein kinase in skeletal muscle cells. J. Agric. Food Chem., 2011, 59(24), 12874-12881.
[http://dx.doi.org/10.1021/jf2036559] [PMID: 22098542]
[93]
Yuan, J.; Xie, J.; Li, A.; Zhou, F. [Effects of osthol on androgen level and nitric oxide synthase activity in castrate rats]. Zhong Yao Cai, 2004, 27(7), 504-506.
[PMID: 15551966]
[94]
Zhou, Z-W.; Liu, P-X. [Progress in study of chemical constituents and anti-tumor activities of Cnidium monnieri]. Zhongguo Zhongyao Zazhi, 2005, 30(17), 1309-1313.
[PMID: 16323535]
[95]
Kawaii, S.; Tomono, Y.; Ogawa, K.; Sugiura, M.; Yano, M.; Yoshizawa, Y.; Ito, C.; Furukawa, H. Antiproliferative effect of isopentenylated coumarins on several cancer cell lines. Anticancer Res., 2001, 21(3B), 1905-1911.
[PMID: 11497276]
[96]
Yang, L-L.; Wang, M-C.; Chen, L-G.; Wang, C-C. Cytotoxic activity of coumarins from the fruits of Cnidium monnieri on leukaemia cell lines. Planta Medica., 2003, 69(12), 1091-1095.
[97]
Riviere, C.; Goossens, L.; Pommery, N.; Fourneau, C.; Delelis, A.; Henichart, J.P. Antiproliferative effects of isopentenylated coumarins isolated fromPhellolophium madagascariense Baker. Nat. Prod. Res., 2006, 20(10), 909-916.
[http://dx.doi.org/10.1080/14786410500277787] [PMID: 16854718]
[98]
Lin, V.C.H.; Chou, C.H.; Lin, Y.C.; Lin, J.N.; Yu, C.C.; Tang, C.H.; Lin, H.Y.; Way, T.D. Osthole suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt/mTOR pathway. J. Agric. Food Chem., 2010, 58(8), 4786-4793.
[http://dx.doi.org/10.1021/jf100352c] [PMID: 20218616]
[99]
Xu, X.; Zhang, Y.; Qu, D.; Jiang, T.; Li, S. Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway. J. Exp. Clin. Cancer Res., 2011, 30(1), 33.
[http://dx.doi.org/10.1186/1756-9966-30-33] [PMID: 21447176]
[100]
Matsuda, H.; Hirata, N.; Kawaguchi, Y.; Yamazaki, M.; Naruto, S.; Shibano, M.; Taniguchi, M.; Baba, K.; Kubo, M. Melanogenesis stimulation in murine b16 melanoma cells by umberiferae plant extracts and their coumarin constituents. Biol. Pharm. Bull., 2005, 28(7), 1229-1233.
[http://dx.doi.org/10.1248/bpb.28.1229] [PMID: 15997104]
[101]
Han, X.H.; Ye, Y-Y.; Guo, B-F.; Liu, S. Effects of platycodin D in combination with different active ingredients of Chinese herbs on proliferation and invasion of 4T1 and MDA-MB-231 breast cancer cell lines. J. Chin. Integr. Med., 2012, 10(1), 67-75.
[http://dx.doi.org/10.3736/jcim20120111] [PMID: 22237277]
[102]
Guo, B-F.; Liu, S.; Ye, Y-Y.; Han, X-H. [Inhibitory effects of osthole, psoralen and aconitine on invasive activities of breast cancer MDA-MB-231BO cell line and the mechanisms]. J. Chin. Integr. Med., 2011, 9(10), 1110-1117.
[http://dx.doi.org/10.3736/jcim20111012] [PMID: 22015193]
[103]
Hung, C.M.; Kuo, D.H.; Chou, C.H.; Su, Y.C.; Ho, C.T.; Way, T.D. Osthole suppresses hepatocyte growth factor (HGF)-induced epithelial-mesenchymal transition via repression of the c-Met/Akt/mTOR pathway in human breast cancer cells. J. Agric. Food Chem., 2011, 59(17), 9683-9690.
[http://dx.doi.org/10.1021/jf2021489] [PMID: 21806057]
[104]
Kao, S.J.; Su, J.L.; Chen, C.K.; Yu, M.C.; Bai, K.J.; Chang, J.H.; Bien, M.Y.; Yang, S.F.; Chien, M.H. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression. Toxicol. Appl. Pharmacol., 2012, 261(1), 105-115.
[http://dx.doi.org/10.1016/j.taap.2012.03.020] [PMID: 22503731]
[105]
Huang, W.J.; Chen, C.C.; Chao, S.W.; Lee, S.S.; Hsu, F.L.; Lu, Y.L.; Hung, M.F.; Chang, C.I. Synthesis of N-hydroxycinnamides capped with a naturally occurring moiety as inhibitors of histone deacetylase. ChemMedChem, 2010, 5(4), 598-607.
[http://dx.doi.org/10.1002/cmdc.200900494] [PMID: 20209563]
[106]
Park, W.; Park, S.; Song, G.; Lim, W. Inhibitory effects of Osthole on human breast cancer cell progression via induction of cell cycle arrest, mitochondrial dysfunction, and ER stress. Nutrients, 2019, 11(11), 2777.
[http://dx.doi.org/10.3390/nu11112777] [PMID: 31731635]
[107]
Lin, Z.K.; Liu, J.; Jiang, G.Q.; Tan, G.; Gong, P.; Luo, H.F.; Li, H.M.; Du, J.; Ning, Z.; Xin, Y.; Wang, Z.Y. Osthole inhibits the tumorigen-esis of hepatocellular carcinoma cells. Oncol. Rep., 2017, 37(3), 1611-1618.
[http://dx.doi.org/10.3892/or.2017.5403] [PMID: 28184928]
[108]
Ju, Yunjie. The mechanism of osthole in the treatment of gastric cancer based on network pharmacology and molecular docking technolo-gy. Appl. Bionics Biomech., 2022, 2022, 5997895.
[http://dx.doi.org/10.1155/2022/5997895]
[109]
Mei, J.; Wang, TJ.; Zhao, SJ.; Zhang, Y.; Mei, J. Osthole inhibits breast cancer progression through upregulating tumoursuppressor GNG7. J. Oncol., 2021, 2021, 6610511.
[http://dx.doi.org/10.1155/2021/6610511]
[110]
Zhang, Y.; Song, H.Z.; Wen, H.; Zhang, X.H.; Chen, X.T.; Qi, Z.G. Osthole inhibits the proliferation of breast cancer MCF-7 cells via activating peroxisome proliferator activated receptor γ. ZhongliuYanjiu Yu Linchuang., 2015, 27, 375-380.
[111]
Dai, X.; Yin, C.; Zhang, Y.; Guo, G.; Zhao, C.; Wang, O.; Xiang, Y.; Zhang, X.; Liang, G. Osthole inhibits triple negative breast cancer cells by suppressing STAT3. J. Exp. Clin. Cancer Res., 2018, 37(1), 322.
[http://dx.doi.org/10.1186/s13046-018-0992-z] [PMID: 30577812]
[112]
Chen, Y.; Song, H.; Zhou, Z.; Ma, J.; Luo, Z.; Zhou, Y.; Wang, J.; Liu, S.; Han, X. Osthole inhibits the migration and invasion of highly metastatic breast cancer cells by suppressing ITGα3/ITGβ5 signaling. Acta Pharmacol. Sin., 2022, 43(6), 1544-1555.
[http://dx.doi.org/10.1038/s41401-021-00757-7] [PMID: 34426644]
[113]
Liu, N.; Tian, H.; Zhang, G.; Sun, N.; Wang, S. Effect of combined treatment with lobaplatin and osthole on inducing apoptosis and inhibiting proliferation in human breast cancer MDA-MB-231 cells. Med. Oncol., 2022, 39(1), 16.
[http://dx.doi.org/10.1007/s12032-021-01609-4] [PMID: 34837558]
[114]
Che, Y.L.; Li, J.; Li, Z.J.; Li, J.; Wang, S.; Yan, Y. Osthole enhances antitumor activity and irradiation sensitivity of cervical cancer cells by suppressing ATM/NF-κB signaling. Oncol. Rep., 2018, 40, 737-747.
[115]
Zhao, X.J. Effect mechanism of HeLa cells apoptosis induced by osthole. Zhongguo YiyaoDaobao., 2016, 13, 32-35.
[116]
Su, J; Zhang, F; Li, X; Liu, Z Osthole promotes the suppressive effects of cisplatin on NRF2 expression to prevent drug-resistant cervical cancer progression. Biochem. Biophs. Res. Commun., 2019, 514, 510-517.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.021]
[117]
Pan, L.; Zhang, X.; Wang, D.; Huang, M.; Huang, Q.; Duan, P. Dclk1might be a therapeutic target of osthole against cervical cancer. Pharmazie, 2021, 76, 503-506.
[118]
Yin, S.; Liu, H.; Wang, J.; Feng, S.; Chen, Y.; Shang, Y.; Su, X.; Si, F. Osthole induces apoptosis and inhibits proliferation, invasion, and migration of human cervical carcinoma Hela cells. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-7.
[http://dx.doi.org/10.1155/2021/8885093] [PMID: 34539807]
[119]
Liang, J.; Zhou, J.L; Xu, Y.Q; Huang, X.F; Wang, X.F; Huang, W.H Osthole inhibits ovarian carcinoma cells through LC3-mediated autophagy and GSDME-dependent pyroptosis except for apoptosis. Eur. J. Pharm., 2020, 874, 172990.
[120]
Jiang, GQ.; Liu, J.; Ren, BY.; Tang, YW.; Owusu, L.; Li, M. Anti-tumour effects of osthole on ovarian cancer cells in vitro. J. Ethnopharmacol., 2016, 193, 368-376.
[121]
Bae, H.; Lee, J.Y.; Song, J.; Song, G.; Lim, W. Osthole interacts with an ER-mitochondria axis and facilitates tumor suppression in ovarian cancer. J. Cell. Physiol., 2021, 236, 1025-1042.
[122]
Lu, K.N.; Lin, J.J.; Jiang, J. Osthole inhibited cell proliferation and induced cell apoptosis through decreasing CPEB2 expression via upregu-lating miR-424 in endometrial carcinoma. J. Recept. Signal Transduct. Res., 2020, 40, 89-96.
[123]
Liang, L.; Yang, B.; Wu, Y.; Sun, L. Osthole suppresses the proliferation and induces apoptosis via inhibiting the pi3k/akt signaling path-way of endometrial cancer jec cells. Exp. Ther. Med., 2021, 22, 1171.
[124]
Lin, Z.K.; Liu, J.; Jiang, G.Q.; Tan, G.; Gong, P.; Luo, H.F. Osthole inhibits the tumorigenesis of hepatocellular carcinoma cell. Oncol. Rep., 2017, 37, 1611-1618.
[125]
Mo, Y.S.; Wu, Y.; Li, X.; Rao, H.; Tian, X.X.; Wu, D.N. Osthole delays hepatocarcinogenesis in mice by suppressing AKT/FASN axis and ERK phosphorylation. Eur. J. Pharm., 2020, 867, 172788.
[126]
Zhang, L.R.; Jiang, G.R.; Yao, F.; Liang, G.Q.; Wang, F.; Xu, H. Osthole promotes anti-tumor immune responses in tumor-bearing mice with hepatocellular carcinoma. ImmunopharmImmunotoxicol., 2015, 37, 301-207.
[127]
Ye, J.; Sun, D.; Yu, Y.; Yu, J. Osthole resensitizes cd133(+) hepatocellular carcinoma cells to cisplatin treatment via pten/akt pathway. Aging, 2020, 12, 14406-14417.
[128]
Xu, XJ.; Liu, XY.; Zhang, Y. Osthole inhibits gastric cancer cell proliferation through regulation of PI3K/AKT. PLoS One, 2018, 13, e0193449.
[129]
Yang, Y.; Ren, F.; Tian, ZY.; Song, W.; Cheng, BF. Feng, ZW Osthole synergizes with HER2 inhibitor, trastuzumab in HER2-overexpressed N87 gastric cancer by inducing apoptosis and inhibition of AKT-MAPK pathway. Front. Pharmacol., 2018, 9, 1392.
[http://dx.doi.org/10.3389/fphar.2018.01392]
[130]
Peng, K.Y.; Chou, T.C. Osthole exerts inhibitory effects on hypoxic colon cancer cells via eif2[formula: See text] phosphorylation-mediated apoptosis and regulation of hif-1. Am. J. Chin. Med., 2022, 50(2), 621-637.
[http://dx.doi.org/10.1142/S0192415X22500240] [PMID: 35114913]
[131]
Zhou, X.H.; Kang, J.; Zhong, Z.D.; Cheng, Y. Osthole induces apoptosis of the ht-29 cells via endoplasmic reticulum stress and autopha-gy. Oncol. Lett., 2021, 22, 726.
[http://dx.doi.org/10.3892/ol.2021.12987]
[132]
Tosun, F.; Mıhoğlugil, F.; Beutler, J.A.; Eroğlu Özkan, E.; Miski, M. Neopapillarine, an unusual coumarino-alkaloid from the root extract of neocryptodiscus papillaris with cytotoxic activity on renal cancer cells. Molecules, 2020, 25(13), 3040.
[http://dx.doi.org/10.3390/molecules25133040] [PMID: 32635247]
[133]
Min, K.J.; Han, M.A.; Kim, S.; Park, J.W. Kwon, TK Osthole enhances TRAIL-mediated apoptosis through downregulation of c-FLIP expres-sion in renal carcinoma Caki cells. Oncol. Rep., 2017, 37, 2348-2354.
[134]
Liu, L.; Mao, J.; Wang, Q.F.; Zhang, Z.W.; Wu, G.Z. Tang, QZ in vitro anticancer activities of osthole against renal cell carcinoma cells. Biomed. Pharmacother., 2017, 94, 1020-1027.
[135]
Liu, P.Y.; Chang, D.C.; Lo, Y.S.; His, Y.T.; Lin, C.C.; Chuang, Y.C. Osthole induces human nasopharyngeal cancer cells apoptosis through Fas-Fas ligand and mitochondrial pathway. Environ. Toxicol., 2018, 33, 446-453.
[136]
Liu, J.; Xu, R.; Zhao, X. [Mechanisms for effect of osthole on inhibiting the growth and invasion of bladder cancer cells]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2016, 41(4), 345-352.
[PMID: 27241143]
[137]
Feng, H.T.; Lu, J.J.; Wang, Y.T.; Pei, L.X. Chen, XP Osthole inhibited TGFβ-induced epithelial-mesenchymal transition (EMT) by suppressing NF-κB mediated Snail activation in lung cancer A549 cells. Cell Adhes. Migr., 2017, 11, 464-475.
[138]
Abosharaf, H.A.; Diab, T.; Mohamed, T.M.; Atlam, F.M. Osthole extracted from a citrus fruit that affects apoptosis on A549 cell line by histone deacetylases inhibition (HDACs). Biotechnol. Rep., 2020, 28, e00531.
[139]
Jo, M.J.; Lee, Y.J.; Park, C.W.; Chung, Y.B.; Kim, J.S.; Lee, M.K.; Shin, D.H. Evaluation of the physicochemical properties, pharmacoki-netics, and in vitro anticancer effects of docetaxel and osthol encapsulated in methoxy poly(ethylene glycol)-b-poly(caprolactone) polymeric micelles. Int. J. Mol. Sci., 2020, 22(1), 231.
[http://dx.doi.org/10.3390/ijms22010231] [PMID: 33379376]
[140]
Fang, L.; Wang, W.; Chen, J.; Zuo, A.; Gao, H.; Yan, T.; Wang, P.; Lu, Y.; Lv, R.; Xu, F.; Chen, Y.; Lyu, L. Osthole attenuates bleomycin-induced pulmonary fibrosis by modulating nadph oxidase 4-derived oxidative stress in mice. Oxid. Med. Cell. Longev., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/3309944] [PMID: 34527170]
[141]
Cheng, L.X.; Zhang, B.H. Anticancer activity and mechanism of osthole combined with cisplatin in human lung cancer cells. JianyanYixue., 2015, 30, 631-634.
[142]
Wang, H.; Jia, X.H.; Chen, J.R.; Wang, J.Y.; You, J. Osthole shows the potential to overcome P-glycoprotein-mediated multidrug resistance in human myelogenous leukaemia K562/ADM cells by inhibiting the PI3K/AKT signaling pathway. Oncol. Rep., 2016, 35, 3659-3668.
[143]
Pan, L.P.; Guo, J.M.; Yuan, W. Osthole induced proliferation inhibition and apoptosis of K562 cells by suppressing PI3K/AKT signal pathway. LinchuangXueyexueZazhi., 2016, 29, 232-234.
[144]
Farooq, S.; Banday, J.A.; Hussain, A.; Nazir, M.; Qurishi, M.A.; Hamid, A.; Koul, S. Synthesis and biological evaluation of novel osthol derivatives as potent cytotoxic agents. Med. Chem., 2019, 15(2), 138-149.
[http://dx.doi.org/10.2174/1573406414666180911161047] [PMID: 30207222]
[145]
Huangfu, M.J.; Wei, R.; Wang, J.; Qin, J.L.; Yu, D. Guan, X Osthole induces necroptosis via ROS overproduction in glioma cells. FEBS Open Bio, 2021, 11, 456-467.
[146]
Sumorek-Wiadro, J.; Zajac, A.; Badziul, D.; Langner, E.; Skalicka-Wozniak, K.; Maciejczyk, A. Coumarins modulate the anti-glioma properties of temozolomide. Eur. J. Pharmacol., 2020, 881, 173207.
[http://dx.doi.org/10.1016/j.ejphar.2020.173207]
[147]
Sumorek-Wiadro, J.; Zając, A.; Langner, E.; Skalicka-Woźniak, K.; Maciejczyk, A.; Rzeski, W.; Jakubowicz-Gil, J. Antiglioma potential of coumarins combined with sorafenib. Molecules, 2020, 25(21), 5192.
[http://dx.doi.org/10.3390/molecules25215192] [PMID: 33171577]
[148]
Wróblewska-Łuczka, P.; Grabarska, A.; Florek-Łuszczki, M.; Plewa, Z.; Łuszczki, J.J. Synergy, additivity, and antagonism between cisplatin and selected coumarins in human melanoma cells. Int. J. Mol. Sci., 2021, 22(2), 537.
[http://dx.doi.org/10.3390/ijms22020537] [PMID: 33430369]
[149]
Yang, J.; Zhu, X.J.; Jin, M.Z.; Cao, Z.W.; Ren, Y.Y.; Gu, Z.W. Osthole induces cell cycle arrest and apoptosis in head and neck squamous cell carcinoma by suppressing the PI3K/AKT signaling pathway. Chem. Biol. Interact., 2020, 316, 108934.
[150]
Wang, L.; Yang, L.; Lu, Y.; Chen, Y.; Liu, T.; Peng, Y.; Zhou, Y.; Cao, Y.; Bi, Z.; Liu, T.; Liu, Z.; Shan, H. Osthole induces cell cycle arrest and inhibits migration and invasion via PTEN/AKT pathways in osteosarcoma. Cell. Physiol. Biochem., 2016, 38(6), 2173-2182.
[http://dx.doi.org/10.1159/000445573] [PMID: 27185245]
[151]
Jarzab, A.; Luszczki, J.; Guz, M.; Skalicka-Wozniak, K.; Halasa, M.; Smok-Kalwat, J. Combination of osthole and cisplatin against rhabdomyosarcoma TE671 cells yielded additive pharmacologic interaction by means of isobolographic analysis. Anticancer Res., 2018, 38, 205-210.
[152]
Zhu, X.Y.; Song, X.L.; Xie, K.; Zhang, X.; He, W.; Liu, F.B. Osthole induces apoptosis and suppresses proliferation via the PI3K/AKT pathway in intrahepatic cholangiocarcinoma. Int. J. Mol. Med., 2017, 40, 1143-1151.
[153]
Sun, X.Y.; Liu, X. Effects of osthole on apoptosis and autophagy of human tongue cancer tca8113 cells. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2021, 43, 501-506.
[154]
Lv, X.; Yang, H.; Zhong, H.; He, L.; Wang, L. Osthole exhibits an antitumor effect in retinoblastoma through inhibiting the pi3k/akt/mtor pathway via regulating the hsa_circ_0007534/mir-214-3p axis. Pharm. Biol., 2022, 60, 417-426.
[155]
Zhang, W.; Ma, D.; Zhao, Q.; Ishida, T. The effect of the major components of Fructus cnidii on osteoblasts in vitro. J. Acupunct. Meridian Stud., 2010, 3(1), 32-37.
[http://dx.doi.org/10.1016/S2005-2901(10)60005-2] [PMID: 20633513]
[156]
Zhang, Q.; Qin, L.; He, W.; Van Puyvelde, L.; Maes, D.; Adams, A.; Zheng, H.; De Kimpe, N. Coumarins from Cnidium monnieri and their antiosteoporotic activity. Planta Med., 2007, 73(1), 13-19.
[http://dx.doi.org/10.1055/s-2006-951724] [PMID: 17315308]
[157]
Li, Q.N.; Liang, N.C.; Wu, T.; Wu, Y.; Xie, H.; Huang, G.D.; Mo, L.E. Effects of total coumarins of Fructus cnidii on skeleton of ovariectomized rats. Chung Kuo Yao Li Hsueh Pao, 1994, 15(6), 528-532.
[PMID: 7709753]
[158]
Ma, Y.; Wang, L.; Zheng, S.; Xu, J.; Pan, Y.; Tu, P.; Sun, J.; Guo, Y. Osthole inhibits osteoclasts formation and bone resorption by regulating NF‐κB signaling and NFATc1 activations stimulated by RANKL. J. Cell. Biochem., 2019, 120(9), 16052-16061.
[http://dx.doi.org/10.1002/jcb.28886] [PMID: 31081953]
[159]
Yu, Y.; Chen, M.; Yang, S.; Shao, B.; Chen, L.; Dou, L.; Gao, J.; Yang, D. Osthole enhances the immunosuppressive effects of bone marrow‐derived mesenchymal stem cells by promoting the Fas/FasL system. J. Cell. Mol. Med., 2021, 25(10), 4835-4845.
[http://dx.doi.org/10.1111/jcmm.16459] [PMID: 33749126]
[160]
Zheng, X.; Yu, Y.; Shao, B.; Gan, N.; Chen, L.; Yang, D. Osthole improves therapy for osteoporosis through increasing autophagy of mesenchymal stem cells. Exp. Anim., 2019, 68(4), 453-463.
[http://dx.doi.org/10.1538/expanim.18-0178] [PMID: 31155553]
[161]
Guo, Y.; Zheng, S.; Ma, Y.; Wang, L.; Pan, Y. Osthole promote differentiation and inhibit proliferation of osteoblast by activating wnt signaling and endoplasmic reticulum stress. Pharmacogn. Mag., 2018, 14(58), 641-646.
[http://dx.doi.org/10.4103/pm.pm_591_17]
[162]
Jin, Z.X.; Liao, X.Y.; Da, W.W.; Zhao, Y.J.; Li, X.F.; Tang, D.Z. Osthole enhances the bone mass of senile osteoporosis and stimulates the expression of osteoprotegerin by activating β-catenin signaling. Stem Cell Res. Ther., 2021, 12(1), 154.
[http://dx.doi.org/10.1186/s13287-021-02228-6] [PMID: 33640026]
[163]
Liu, W.B.; Zhou, J.; Qu, Y.; Li, X.; Lu, C.T.; Xie, K.L.; Sun, X.L.; Fei, Z. Neuroprotective effect of osthole on MPP+-induced cytotoxicity in PC12 cells via inhibition of mitochondrial dysfunction and ROS production. Neurochem. Int., 2010, 57(3), 206-215.
[http://dx.doi.org/10.1016/j.neuint.2010.05.011] [PMID: 20510317]
[164]
Wu, L.; Cheng, S-Y.; Wang, Q.; Chen, Y-B. [Advances in study on the pharmacological effects of active components of Chinese herbs on Alzheimer’s disease]. Zhongguo Zhongyao Zazhi, 2004, 29(5), 387-389.
[PMID: 15706882]
[165]
Guan, J.; Wei, X.; Qu, S.; Lv, T.; Fu, Q.; Yuan, Y. Osthole prevents cerebral ischemia–reperfusion injury via the Notch signaling pathway. Biochem. Cell Biol., 2017, 95(4), 459-467.
[http://dx.doi.org/10.1139/bcb-2016-0233] [PMID: 28257582]
[166]
Li, K.; Ding, D.; Zhang, M. Neuroprotection of Osthole against cerebral ischemia/reperfusion injury through an anti-apoptotic pathway in rats. Biol. Pharm. Bull., 2016, 39(3), 336-342.
[http://dx.doi.org/10.1248/bpb.b15-00699] [PMID: 26934926]
[167]
Chen, Z.; Mao, X.; Liu, A.; Gao, X.; Chen, X.; Ye, M.; Ye, J.; Liu, P.; Xu, S.; Liu, J.; He, W.; Lian, Q.; Pi, R. Osthole, a natural coumarin improves cognitive impairments and BBB dysfunction after transient global brain ischemia in C57 BL/6J mice: Involvement of Nrf2 pathway. Neurochem. Res., 2015, 40(1), 186-194.
[http://dx.doi.org/10.1007/s11064-014-1483-z] [PMID: 25424966]
[168]
Wang, W.; Zhou, H.; Sun, L.; Li, M.; Gao, F.; Sun, A.; Zou, X. Osthole-mediated inhibition of neurotoxicity induced by ropivacaine via Amplification of the cyclic adenosine monophosphate signaling pathway. Dose Res., 2022, 20(1)
[http://dx.doi.org/10.1177/15593258221088092] [PMID: 35392264]
[169]
Shi, Z.; Shen, S.; Zhou, W.; Wang, F.; Fan, Y. Fusarium graminearum growth inhibition due to glucose starvation caused by osthol. Int. J. Mol. Sci., 2008, 9(3), 371-382.
[http://dx.doi.org/10.3390/ijms9030371] [PMID: 19325755]
[170]
Rosselli, S.; Maggio, A.; Bellone, G.; Formisano, C.; Basile, A.; Cicala, C.; Alfieri, A.; Mascolo, N.; Bruno, M. Antibacterial and anticoagulant activities of coumarins isolated from the flowers of Magydaris tomentosa. Planta Med., 2007, 73(2), 116-120.
[http://dx.doi.org/10.1055/s-2006-951772] [PMID: 17128388]
[171]
Yuan, M.; Luo, Y.; Xin, Q.; Gao, H.; Zhang, G.; Jing, T. Efficacy of osthole for Echinococcus granulosus in vitro and Echinococcus multilocularis in vivo. Vet. Parasitol., 2016, 226, 38-43.
[http://dx.doi.org/10.1016/j.vetpar.2016.05.016] [PMID: 27514881]
[172]
Chen, Y.H.; Guo, D.S.; Lu, M.H.; Yue, J.Y.; Liu, Y.; Shang, C.M.; An, D.R.; Zhao, M.M. Inhibitory effect of Osthole from Cnidium monnieri on tobacco mosaic virus (TMV) infection in Nicotiana glutinosa. Molecules, 2019, 25(1), 65.
[http://dx.doi.org/10.3390/molecules25010065] [PMID: 31878172]
[173]
Seibert, K.; Zhang, Y.; Leahy, K.; Hauser, S.; Masferrer, J.; Perkins, W.; Lee, L.; Isakson, P. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci., 1994, 91(25), 12013-12017.
[http://dx.doi.org/10.1073/pnas.91.25.12013] [PMID: 7991575]
[174]
Zimecki, M.; Artym, J.; Cisowski, W.; Mażol, I.; Włodarczyk, M.; Glenśk, M. Immunomodulatory and anti-inflammatory activity of selected osthole derivatives. Z. Naturforsch. C J. Biosci., 2009, 64(5-6), 361-368.
[http://dx.doi.org/10.1515/znc-2009-5-610] [PMID: 19678539]
[175]
Zhao, X.; Xue, J.; Xie, M. Osthole inhibits oleic acid/lipopolysaccharide-induced lipid accumulation and inflammatory response through activating PPARα signaling pathway in cultured hepatocytes. Exp. Gerontol., 2019, 119, 7-13.
[http://dx.doi.org/10.1016/j.exger.2019.01.014] [PMID: 30659956]
[176]
Mosebarger, A.; Reddi, R.N.; Menon, R.; Kammala, A.K. Computational screening of the natural product osthole and its derivates for anti-inflammatory activity. Life, 2022, 12(4), 505.
[http://dx.doi.org/10.3390/life12040505] [PMID: 35454996]
[177]
Callahan, B.N.; Kammala, A.K.; Syed, M.; Yang, C.; Occhiuto, C.J.; Nellutla, R.; Chumanevich, A.P.; Oskeritzian, C.A.; Das, R.; Subrama-nian, H. Osthole, a natural plant derivative inhibits MRGPRX2 induced mast cell responses. Front. Immunol., 2020, 11, 703.
[http://dx.doi.org/10.3389/fimmu.2020.00703] [PMID: 32391014]
[178]
Ogawa, H.; Sasai, N.; Kamisako, T.; Baba, K. Effects of osthol on blood pressure and lipid metabolism in stroke-prone spontaneously hypertensive rats. J. Ethnopharmacol., 2007, 112(1), 26-31.
[http://dx.doi.org/10.1016/j.jep.2007.01.028] [PMID: 17324541]
[179]
Chiou, W.F.; Huang, Y.L.; Chen, C.F.; Chen, C.C. Vasorelaxing effect of coumarins from Cnidium monnieri on rabbit corpus cavernosum. Planta Med., 2001, 67(3), 282-284.
[http://dx.doi.org/10.1055/s-2001-12013] [PMID: 11345705]
[180]
Liu, S.; He, Y.; Shi, J.; Liu, L.; Ma, H.; He, L.; Guo, Y. Downregulation of miRNA 30a enhanced autophagy in osthole alleviated myocardium ischemia/reperfusion injury. J. Cell. Physiol., 2019, 28556, jcp.28556.
[http://dx.doi.org/10.1002/jcp.28556] [PMID: 31017665]
[181]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[182]
Sinha, N.; Dabla, P. Oxidative stress and antioxidants in hypertension-a current review. Curr. Hypertens. Rev., 2015, 11(2), 132-142.
[http://dx.doi.org/10.2174/1573402111666150529130922] [PMID: 26022210]
[183]
Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem., 2009, 16(32), 4236-4260.
[http://dx.doi.org/10.2174/092986709789578187] [PMID: 19754420]
[184]
Tsai, Y.F.; Yu, H.P.; Chung, P.J.; Leu, Y.L.; Kuo, L.M. Osthol attenuates neutrophilic oxidative stress and haemorrhagic shock-induced lung injury via inhibition of phosphodiesterase 4. Free Radic. Biol. Med., 2015, 89, 387-400.
[185]
Yang, S.M.; Chan, Y.L.; Hua, K.F.; Chang, J.M.; Chen, H.L. Osthole improves an accelerated focal segmental glomerulosclerosis model in the early stage by activating the Nrf2 antioxidant pathway and subsequently inhibiting NF-kappaB-mediated COX-2 expression and apoptosis. Free Radic. Biol. Med., 2014, 73, 260-269.
[186]
Wang, X.Y.; Dong, W.P.; Bi, S.H.; Pan, Z.G.; Yu, H.; Wang, X.W.; Ma, T.; Wang, J.; Zhang, W.D. Protective effects of osthole against myocardial ischemia/reperfusion injury in rats. Int. J. Mol. Med., 2013, 32(2), 365-372.
[http://dx.doi.org/10.3892/ijmm.2013.1386] [PMID: 23695269]
[187]
Zheng, Y.; Lu, M.; Ma, L.; Zhang, S.; Qiu, M.; Wang, Y. Osthole ameliorates renal ischemia-reperfusion injury in rats. J. Surg. Res., 2013, 183(1), 347-354.
[http://dx.doi.org/10.1016/j.jss.2013.01.008] [PMID: 23391166]
[188]
Zhang, Z.; Pan, C.; Wang, H.Z.; Li, Y.X. Protective effects of osthole on intestinal ischemia-reperfusion injury in mice. Exp. Clin. Transplant., 2014, 12(3), 246-252.
[PMID: 24907727]
[189]
Dong, W.; Zhang, Z.; Liu, Z.; Liu, H.; Wang, X.; Bi, S.; Wang, X.; Ma, T.; Zhang, W. Protective effects of osthole, a natural derivative of coumarin, against intestinal ischemia-reperfusion injury in mice. Int. J. Mol. Med., 2013, 31(6), 1367-1374.
[http://dx.doi.org/10.3892/ijmm.2013.1347] [PMID: 23588507]
[190]
Cheng, Y.; Geng, Z.; Li, Y.; Song, X.; Li, L.; Wen, A.; Yin, Z. Effects of “Shi Ying Zi” powder and osthole on immune and antioxidant function of Eimeria tenella-infected broilers. Experi. Parasitol., 2023, 246, 108451.
[191]
Yung-Fong, T.; Huang-Ping, Y.; Pei-Jen, C. Osthol attenuates neutrophilic oxidative stress and hemorrhagic shock-induced lung injury via inhibition of phosphodiesterase 4. Free Radic. Biol. Med., 2015, 89, 387-400.
[192]
Hou, X.; Hao, J.; Song, Y. ). Osthole micro-emulsion as well as preparation method and application of osthole micro-emulsion. CN201910898389, 2020.
[193]
Xia, B.; Liang, X. Insecticidal composition containing d-limonene. CN20191127769, 2020.
[194]
Chen, J.; Zhu, H.; Xiong, P.; Du, L.; Yang, H.; Zhang, Y.; Gao, X. Pesticide composition containing dicloromezotiaz and osthole. CN202010636739, 2020.
[195]
Zhao, Q.; Wu, J.; Jiang, S.; Zhang, L. Botanical pesticide and preparation method thereof. CN202010672353, 2020.
[196]
Ishizuno, A.; Sono, Y.; Matsumoto, M. Vascular endothelial function enhancing composition. JP20190114779, 2021.
[197]
Cho, H.D.; Kim, B.J.; Kang, J.W. Method for producing Cnidium germinating seed extract containing osthole and cosmetic composition for skin whitening including Cnidium germinating seed extract. KR20190118330, 2021.
[198]
Di, R. Natural efficient antibacterial preservative. CN202011168325, 2021.
[199]
Gao, Q. Uniform stirring device for osthole additive. CN201911117361, 2021.
[200]
Anhui Yixinde Biological Tech Co Ltd. Edible mushroom cultivation method and culture medium. CN202110611054, 2021.
[201]
Sun, M.; Zheng, X.; Zhang, J.; Feng, X. Application of osthole and derivatives thereof in inhibition of aldoketoreductase. CN202110464680, 2021.
[202]
Sun, M.; Zheng, X.; Feng, J.; Feng, X. Osthole derivatives and preparation method thereof. CN202110464698, 2021.
[203]
Guo, Y.; Yan, X.; Han, M.; Liu, Z.; Cheng, W. Osthole isoxazoline derivative as well as preparation method and application thereof. CN202110452323, 2021.
[204]
Chen, Q.; Liu, Y. Bactericidal composition containing isotianil and osthole. CN202110593738, 2021.
[205]
Yan, T. Comprehensive technology for controlling diseases and insect pests of muskmelons by using botanical pesticide. CN202110441754, 2021.
[206]
Grigoriadis, I.G. Specific plant-based nutritional supplement treating erectile dysfunction. GR20200200206U, 2021.
[207]
Li, J.; Lin, Y.; Tian, G. Rice seeds soaking agent based on kitchen biogas slurry and preparation method and application thereof. CN202111225331, 2022.
[208]
Zhao, C.; Song, J.; Sun, B. Engineering bacterium for producing umbelliferon and osthole as well as construction method and application of engineering bacterium. CN202111320560, 2022.
[209]
Feng, C.; Dou, X. Gel nanofiber carrier for promoting transdermal absorption of osthole. CN202111276438, 2022.
[210]
Anhui Delaikang Biological Medical Tech Co Ltd. Pharmaceutical composition for treating skin infection of dogs and cats, preparation method and application of pharmaceutical composition. CN202010748104, 2022.
[211]
Malagi, F.; Froes, M.; Adabo, J. Method for extracting coumarinderived organic compounds by reusing wood from the genus citrus. WO2020BR50332, 2022.
[212]
Zhang, G.; Chen, X.; Yao, N. Method for detecting coumarin components in vitex negundo and radix et rhizoma rhei granules. CN202011629098, 2022.
[213]
Ling, X.; Hao, X.; Wang, Z.; Hu, Y. Method for extracting Cnidium lactone by response surface design method. CN202210646378, 2022.
[214]
Dong, X.; Liu, T. Agricultural composition containing physcion and osthole. CN202210586881, 2022.
[215]
Zhang, Y.; Niu, H.; Cui, J.; Zhang, S.; Zhang, Z.; Liu, H.; Zhuang, Y. Pesticide composition, method and application. CN202210805163, 2022.
[216]
Guo, Y.; Yang, R.; Cheng, W. Osthole thiourea derivative as well as preparation method and application thereof. CN20221151995, 2022.
[217]
Xu, Y.; Li, C. Application of Cnidium lactone in preparation of medicine for preventing and/or treating lung cancer and medicine composition of Cnidium lactone Espacenet. CN20221142050, 2022.
[218]
Zhang, Y.; Li, Z. Multifunctional nutrient fertilizer and preparation method thereof. CN20211102606, 2022.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy