Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Preparation, Characterization, and Anticancer Activity Assessment of Chitosan/TPP Nanoparticles Loaded with Echis carinatus Venom

Author(s): Maral Mahboubi Kancha, Mohsen Mehrabi*, Fatemeh Sadat Bitaraf, Hamid Vahedi, Morteza Alizadeh and Andreas Bernkop-Schnürch

Volume 24, Issue 7, 2024

Published on: 18 January, 2024

Page: [533 - 543] Pages: 11

DOI: 10.2174/0118715206279731231129105221

Price: $65

Abstract

Aims and Background: Echis carinatus venom is a toxic substance naturally produced by special glands in this snake species. Alongside various toxic properties, this venom has been used for its therapeutic effects, which are applicable in treating various cancers (liver, breast, etc.).

Objective: Nanotechnology-based drug delivery systems are suitable for protecting Echis carinatus venom against destruction and unwanted absorption. They can manage its controlled transfer and absorption, significantly reducing side effects.

Methods: In the present study, chitosan nanoparticles were prepared using the ionotropic gelation method with emulsion cross-linking. The venom's encapsulation efficiency, loading capacity, and release rate were calculated at certain time points. Moreover, the nanoparticles' optimal formulation and cytotoxic effects were determined using the MTT assay.

Results: The optimized nanoparticle formulation increases cell death induction in various cancerous cell lines. Moreover, chitosan nanoparticles loaded with Echis carinatus venom had a significant rate of cytotoxicity against cancer cells.

Conclusion: It is proposed that this formulation may act as a suitable candidate for more extensive assessments of cancer treatment using nanotechnology-based drug delivery systems.

Keywords: Echis carinatus, chitosan, tripolyphosphate, nanoparticle, anticancer activity, nanoparticles.

Graphical Abstract
[1]
Kisaki, C.Y.; Arcos, S.S.S.; Montoni, F.; da Silva Santos, W.; Calacina, H.M.; Lima, I.F.; Cajado-Carvalho, D.; Ferro, E.S.; Nishiyama-Jr, M.Y.; Iwai, L.K. Bothrops jararaca snake venom modulates key cancer-related proteins in breast tumor cell lines. Toxins, 2021, 13(8), 519.
[http://dx.doi.org/10.3390/toxins13080519] [PMID: 34437390]
[2]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[3]
Boffetta, P.; Nyberg, F. Contribution of environmental factors to cancer risk. Br. Med. Bull., 2003, 68(1), 71-94.
[http://dx.doi.org/10.1093/bmp/ldg023] [PMID: 14757710]
[4]
Thrift, A.P.; Wenker, T.N.; El-Serag, H.B. Global burden of gastric cancer: Epidemiological trends, risk factors, screening and prevention. Nat. Rev. Clin. Oncol., 2023, 20(5), 338-349.
[http://dx.doi.org/10.1038/s41571-023-00747-0] [PMID: 36959359]
[5]
van Tuijl, L.A.; Basten, M.; Pan, K.Y.; Vermeulen, R.; Portengen, L.; de Graeff, A.; Dekker, J.; Geerlings, M.I.; Hoogendoorn, A.; Lamers, F.; Voogd, A.C.; Abell, J.; Awadalla, P.; Beekman, A.T.F.; Bjerkeset, O.; Boyd, A.; Cui, Y.; Frank, P.; Galenkamp, H.; Garssen, B.; Hellingman, S.; Huisman, M.; Huss, A.; de Jong, T.R.; Keats, M.R.; Kok, A.A.L.; Krokstad, S.; Van Leeuwen, F.E.; Luik, A.I.; Noisel, N.; Onland-Moret, N.C.; Payette, Y.; Penninx, B.W.J.H.; Rissanen, I.; Roest, A.M.; Ruiter, R.; Schoevers, R.A.; Soave, D.; Spaan, M.; Steptoe, A.; Stronks, K.; Sund, E.R.; Sweeney, E.; Twait, E.L.; Teyhan, A.; Verschuren, W.M.M.; Van der Willik, K.D.; Rosmalen, J.G.M.; Ranchor, A.V. Depression, anxiety, and the risk of cancer: An individual participant data meta‐analysis. Cancer, 2023, 129(20), 3287-3299.
[http://dx.doi.org/10.1002/cncr.34853] [PMID: 37545248]
[6]
Haycock, P.C.; Borges, M.C.; Burrows, K.; Lemaitre, R.N.; Burgess, S.; Khankari, N.K.; Tsilidis, K.K.; Gaunt, T.R.; Hemani, G.; Zheng, J.; Truong, T.; Birmann, B.M. OMara, T.; Spurdle, A.B.; Iles, M.M.; Law, M.H.; Slager, S.L.; Saberi Hosnijeh, F.; Mariosa, D.; Cotterchio, M.; Cerhan, J.R.; Peters, U.; Enroth, S.; Gharahkhani, P.; Le Marchand, L.; Williams, A.C.; Block, R.C.; Amos, C.I.; Hung, R.J.; Zheng, W.; Gunter, M.J.; Smith, G.D.; Relton, C.; Martin, R.M.; Tintle, N.; Rice, T.; Cheng, I.; Jenkins, M.; Gallinger, S.; Cornish, A.J.; Sud, A.; Vijayakrishnan, J.; Wrensch, M.; Johansson, M.; Norman, A.D.; Klein, A.; Clay-Gilmour, A.; Franke, A.; Ardisson Korat, A.V.; Wheeler, B.; Nilsson, B.; Smith, C.; Heng, C-K.; Song, C.; Riadi, D.; Claus, E.B.; Ellinghaus, E.; Ostroumova, E.; Hosnijeh; de Vathaire, F.; Cugliari, G.; Matullo, G.; Oi-Lin Ng, I.; Passow, J.E.; Foo, J.N.; Han, J.; Liu, J.; Barnholtz-Sloan, J.; Schildkraut, J.M.; Maris, J.; Wiemels, J.L.; Hemminki, K.; Yang, K.; Kiemeney, L.A.; Wu, L.; Amundadottir, L.; Stern, M-H.; Boutron, M-C.; Iles, M.M.; Purdue, M.P.; Stanulla, M.; Bondy, M.; Gaudet, M.; Mobuchon, L.; Camp, N.J.; Sham, P.C.; Guénel, P.; Brennan, P.; Taylor, P.R.; Ostrom, Q.; Stolzenberg-Solomon, R.; Dorajoo, R.; Houlston, R.; Jenkins, R.B.; Diskin, S.; Berndt, S.I.; Tsavachidis, S.; Channock, S.J.; Harrison, T.; Galesloot, T.; Gyllensten, U.; Joseph, V.; Shi, Y.; Yang, W.; Lin, Y.; Van Den Eeden, S.K. The association between genetically elevated polyunsaturated fatty acids and risk of cancer. EBioMedicine, 2023, 91, 104510.
[http://dx.doi.org/10.1016/j.ebiom.2023.104510] [PMID: 37086649]
[7]
Kalita, B.; Saviola, A.J.; Mukherjee, A.K. From venom to drugs: A review and critical analysis of Indian snake venom toxins envisaged as anticancer drug prototypes. Drug Discov. Today, 2021, 26(4), 993-1005.
[http://dx.doi.org/10.1016/j.drudis.2020.12.021] [PMID: 33486112]
[8]
Diniz-Sousa, R.; Caldeira, C.A.S.; Pereira, S.S.; Da Silva, S.L.; Fernandes, P.A.; Teixeira, L.M.C.; Zuliani, J.P.; Soares, A.M. Therapeutic applications of snake venoms: An invaluable potential of new drug candidates. Int. J. Biol. Macromol., 2023, 238, 124357.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124357] [PMID: 37028634]
[9]
Almeida, T.C.; Ribeiro, S.L.M.; de Oliveira, B.A.M.; Lopes, F.S.R.; Sant’Anna, M.B.; Picolo, G. Cytotoxic effect of crotoxin on cancer cells and its antitumoral effects correlated to tumor microenvironment: A review. Int. J. Biol. Macromol., 2023, 242(Pt 2), 124892.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124892] [PMID: 37196721]
[10]
Bialves, T.S.; Bastos Junior, C.L.Q.; Cordeiro, M.F.; Boyle, R.T. Snake venom, a potential treatment for melanoma. A systematic review. Int. J. Biol. Macromol., 2023, 231, 123367.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123367] [PMID: 36690229]
[11]
Morjen, M.; Zakraoui, O.; Abdelkafi-Koubaa, Z.; Srairi-Abid, N.; Marrakchi, N.; Essafi-Benkhadir, K.; Jebali, J. CC5 and CC8, two disintegrin isoforms from cerastes cerastes snake venom decreased inflammation response in vitro and in vivo. Int. J. Mol. Sci., 2023, 24(15), 12427.
[http://dx.doi.org/10.3390/ijms241512427] [PMID: 37569801]
[12]
Oliveira, D.; Guerra-Duarte, C.; Stransky, S.; Scussel, R.; Pereira de Castro, K.L.; Costal-Oliveira, F.; Aragão, M.; Oliveira-Souza, G.; Saavedra-Langer, R.; Trevisan, G.; Bonilla-Ferreyra, C.; Chávez-Olórtegui, C.; Machado-de-Ávila, R.A. Toxic and antigenic characterization of Peruvian Micrurus surinamensis coral snake venom. Toxicon, 2023, 225, 107056.
[http://dx.doi.org/10.1016/j.toxicon.2023.107056] [PMID: 36804442]
[13]
Si, H.; Yin, C.; Wang, W.; Davies, P.; Sanchez, E.; Suntravat, M.; Zawieja, D.; Cromer, W. Effect of the snake venom component crotamine on lymphatic endothelial cell responses and lymph transport. Microcirculation, 2023, 30(2-3), e12775.
[http://dx.doi.org/10.1111/micc.12775] [PMID: 35689804]
[14]
DiBianco, R. Angiotensin converting enzyme inhibition. Postgrad. Med., 1985, 78(5), 229-248. 244, 247-248
[http://dx.doi.org/10.1080/00325481.1985.11699167] [PMID: 2864682]
[15]
Marte, F.; Sankar, P.; Cassagnol, M. Captopril. In: StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022.
[16]
Ram, C.V.S. Captoril. Arch. Intern. Med., 1982, 142(5), 914-916.
[http://dx.doi.org/10.1001/archinte.1982.00340180072016] [PMID: 6282230]
[17]
Brown, S.; Nores, G.D.G.; Sarker, A.; Ly, C.; Li, C.; Park, H.J.; Hespe, G.E.; Gardenier, J.; Kuonqui, K.; Campbell, A.; Shin, J.; Kataru, R.P.; Aras, O.; Mehrara, B.J. Topical captopril: A promising treatment for secondary lymphedema. Transl. Res., 2023, 257, 43-53.
[http://dx.doi.org/10.1016/j.trsl.2023.01.005] [PMID: 36736951]
[18]
Manjunatha, K.R. Excitement ahead: Structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon, 2003, 42(8), 827-840.
[http://dx.doi.org/10.1016/j.toxicon.2003.11.002] [PMID: 15019485]
[19]
Du, X.Y.; Clemetson, K.J. Snake venom l-amino acid oxidases. Toxicon, 2002, 40(6), 659-665.
[http://dx.doi.org/10.1016/S0041-0101(02)00102-2] [PMID: 12175601]
[20]
Olaoba, O.T.; Karina dos Santos, P.; Selistre-de-Araujo, H.S.; Ferreira de Souza, D.H. Snake venom metalloproteinases (SVMPs): A structure-function update. Toxicon X, 2020, 7, 100052.
[http://dx.doi.org/10.1016/j.toxcx.2020.100052] [PMID: 32776002]
[21]
McCleary, R.J.R.; Kini, R.M. Non-enzymatic proteins from snake venoms: A gold mine of pharmacological tools and drug leads. Toxicon, 2013, 62, 56-74.
[http://dx.doi.org/10.1016/j.toxicon.2012.09.008] [PMID: 23058997]
[22]
Li, L.; Huang, J.; Lin, Y. Snake venoms in cancer therapy: Past, present and future. Toxins, 2018, 10(9), 346.
[http://dx.doi.org/10.3390/toxins10090346] [PMID: 30158426]
[23]
Garcia. Soares; Stockand, Stockand. J.D. Snake venoms in drug discovery: Valuable therapeutic tools for life saving. Toxins, 2019, 11(10), 564.
[http://dx.doi.org/10.3390/toxins11100564] [PMID: 31557973]
[24]
Akhtar, B.; Muhammad, F.; Sharif, A.; Anwar, M.I. Mechanistic insights of snake venom disintegrins in cancer treatment. Eur. J. Pharmacol., 2021, 899, 174022.
[http://dx.doi.org/10.1016/j.ejphar.2021.174022] [PMID: 33727054]
[25]
Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res., 2010, 44(5), 479-496.
[http://dx.doi.org/10.3109/10715761003667554] [PMID: 20370557]
[26]
Zhao, Y.; Ye, X.; Xiong, Z.; Ihsan, A.; Ares, I.; Martínez, M.; Lopez-Torres, B.; Martínez-Larrañaga, M.R.; Anadón, A.; Wang, X.; Martínez, M.A. Cancer metabolism: The role of ROS in DNA damage and induction of apoptosis in cancer cells. Metabolites, 2023, 13(7), 796.
[http://dx.doi.org/10.3390/metabo13070796] [PMID: 37512503]
[27]
Park, J.A.; Na, H.H.; Jin, H.O.; Kim, K.C. Increased expression of fosb through reactive oxygen species accumulation functions as pro-apoptotic protein in piperlongumine treated MCF7 breast cancer cells. Mol. Cells, 2019, 42(12), 884-892.
[PMID: 31735020]
[28]
Endres, L.; Begley, U.; Clark, R.; Gu, C.; Dziergowska, A. Małkiewicz, A.; Melendez, J.A.; Dedon, P.C.; Begley, T.J. Alkbh8 regulates selenocysteine-protein expression to protect against reactive oxygen species damage. PLoS One, 2015, 10(7), e0131335.
[http://dx.doi.org/10.1371/journal.pone.0131335] [PMID: 26147969]
[29]
Cabiscol, E.; Tamarit, J.; Ros, J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol., 2000, 3(1), 3-8.
[PMID: 10963327]
[30]
Wang, R.; Liang, L.; Matsumoto, M.; Iwata, K.; Umemura, A.; He, F. Reactive oxygen species and NRF2 signaling, friends or foes in cancer? Biomolecules, 2023, 13(2), 353.
[http://dx.doi.org/10.3390/biom13020353] [PMID: 36830722]
[31]
Lyons, N.J.; Giri, R.; Begun, J.; Clark, D.; Proud, D.; He, Y.; Hooper, J.D.; Kryza, T. Reactive oxygen species as mediators of disease progression and therapeutic response in colorectal cancer. Antioxid. Redox Signal., 2023, 39(1-3), 186-205.
[http://dx.doi.org/10.1089/ars.2022.0127] [PMID: 36792932]
[32]
Kwak, A.W.; Lee, J.Y.; Lee, S.O.; Seo, J.; Park, J.W.; Choi, Y.H.; Cho, S.S.; Yoon, G.; Lee, M.H.; Shim, J.H. Echinatin induces reactive oxygen species‐mediated apoptosis viaJNK/p38 MAPK signaling pathway in colorectal cancer cells. Phytother. Res., 2023, 37(2), 563-577.
[http://dx.doi.org/10.1002/ptr.7634] [PMID: 36184899]
[33]
He, M.; Wang, M.; Xu, T.; Zhang, M.; Dai, H.; Wang, C.; Ding, D.; Zhong, Z. Reactive oxygen species-powered cancer immunotherapy: Current status and challenges. J. Control. Release, 2023, 356, 623-648.
[http://dx.doi.org/10.1016/j.jconrel.2023.02.040] [PMID: 36868519]
[34]
Ding, Y.; Pan, Q.; Gao, W.; Pu, Y.; Luo, K.; He, B. Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy. Biomater. Sci., 2023, 11(4), 1182-1214.
[http://dx.doi.org/10.1039/D2BM01833K] [PMID: 36606593]
[35]
Biagioni, A.; Peri, S.; Versienti, G.; Fiorillo, C.; Becatti, M.; Magnelli, L.; Papucci, L. Gastric cancer vascularization and the contribution of reactive oxygen species. Biomolecules, 2023, 13(6), 886.
[http://dx.doi.org/10.3390/biom13060886] [PMID: 37371466]
[36]
Yu, J.E.; Yeo, I.J.; Lee, D.W.; Chang, J.Y.; Son, D.J.; Yun, J.; Han, S.B.; Hong, J.T. Snake venom induces an autophagic cell death via activation of the JNK pathway in colorectal cancer cells. J. Cancer, 2022, 13(12), 3333-3341.
[http://dx.doi.org/10.7150/jca.75791] [PMID: 36186900]
[37]
Divya, K.; Jisha, M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett., 2018, 16(1), 101-112.
[http://dx.doi.org/10.1007/s10311-017-0670-y]
[38]
Pandey, R.P.; Kumar, S.; Dhiman, R.; Prudencio, C.R.; da Costa, A.C.; Vibhuti, A.; Leal, E.; Chang, C-M.; Raj, V.S. Chitosan: Applications in drug delivery system. Mini Rev. Med. Chem., 2023, 23(2), 187-191.
[http://dx.doi.org/10.2174/1389557522666220609102010] [PMID: 35692143]
[39]
Wang, X.; Song, R.; Johnson, M. A, S.; Shen, P.; Zhang, N.; Lara-Sáez, I.; Xu, Q.; Wang, W. Chitosan‐based hydrogels for infected wound treatment. Macromol. Biosci., 2023, 23(9), 2300094.
[http://dx.doi.org/10.1002/mabi.202300094] [PMID: 37158294]
[40]
Meng, Q.; Zhong, S.; Wang, J.; Gao, Y.; Cui, X. Advances in chitosan-based microcapsules and their applications. Carbohydr. Polym., 2023, 300, 120265.
[http://dx.doi.org/10.1016/j.carbpol.2022.120265] [PMID: 36372516]
[41]
Kulka, K.; Sionkowska, A. Chitosan based materials in cosmetic applications: A review. Molecules, 2023, 28(4), 1817.
[http://dx.doi.org/10.3390/molecules28041817] [PMID: 36838805]
[42]
Guadarrama-Escobar, O.R.; Serrano-Castañeda, P.; Anguiano-Almazán, E.; Vázquez-Durán, A.; Peña-Juárez, M.C.; Vera-Graziano, R.; Morales-Florido, M.I.; Rodriguez-Perez, B.; Rodriguez-Cruz, I.M.; Miranda-Calderón, J.E.; Escobar-Chávez, J.J. Chitosan nanoparticles as oral drug carriers. Int. J. Mol. Sci., 2023, 24(5), 4289.
[http://dx.doi.org/10.3390/ijms24054289] [PMID: 36901719]
[43]
Aghbashlo, M.; Amiri, H.; Moosavi Basri, S.M.; Rastegari, H.; Lam, S.S.; Pan, J.; Gupta, V.K.; Tabatabaei, M. Tuning chitosan’s chemical structure for enhanced biological functions. Trends Biotechnol., 2023, 41(6), 785-797.
[http://dx.doi.org/10.1016/j.tibtech.2022.11.009] [PMID: 36535818]
[44]
Dubey, S.K.; Bhatt, T.; Agrawal, M.; Saha, R.N.; Saraf, S.; Saraf, S.; Alexander, A. Application of chitosan modified nanocarriers in breast cancer. Int. J. Biol. Macromol., 2022, 194, 521-538.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.095] [PMID: 34822820]
[45]
Sachdeva, B.; Sachdeva, P.; Negi, A.; Ghosh, S.; Han, S.; Dewanjee, S.; Jha, S.K.; Bhaskar, R.; Sinha, J.K.; Paiva-Santos, A.C.; Jha, N.K.; Kesari, K.K. Chitosan nanoparticles-based cancer drug delivery: Application and challenges. Mar. Drugs, 2023, 21(4), 211.
[http://dx.doi.org/10.3390/md21040211] [PMID: 37103352]
[46]
Ghaz-Jahanian, M.A.; Abbaspour-Aghdam, F.; Anarjan, N.; Berenjian, A.; Jafarizadeh-Malmiri, H. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol. Biotechnol., 2015, 57(3), 201-218.
[http://dx.doi.org/10.1007/s12033-014-9816-3] [PMID: 25385004]
[47]
Shargh, V.H.; Hondermarck, H.; Liang, M. Antibody-targeted biodegradable nanoparticles for cancer therapy. Nanomedicine, 2016, 11(1), 63-79.
[http://dx.doi.org/10.2217/nnm.15.186] [PMID: 26654068]
[48]
Vaezifar, S.; Razavi, S.; Golozar, M.A.; Karbasi, S.; Morshed, M.; Kamali, M. Effects of some parameters on particle size distribution of chitosan nanoparticles prepared by ionic gelation method. J. Cluster Sci., 2013, 24(3), 891-903.
[http://dx.doi.org/10.1007/s10876-013-0583-2]
[49]
Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[50]
Alalawy, A.I.; Haddad, A., E.R.; Fahad, M.A.; Ahmed, A.T.; Mohammed, A.A.; Nahla, S.Z.; Mohamed, I.S. Effectual anticancer potentiality of loaded bee venom onto fungal chitosan nanoparticles. Int. J. Polym. Sci., 2020, 2020.
[http://dx.doi.org/10.1155/2020/2785304]
[51]
Mohammadpour, D.N.; Eskandari, R.; Avadi, M.R.; Zolfagharian, H.; Mir, M.S.A.; Rezayat, M. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J. Venom. Anim. Toxins Incl. Trop. Dis., 2012, 18(1), 44-52.
[http://dx.doi.org/10.1590/S1678-91992012000100006]
[52]
Jimenez-Canale, J.; Fernandez-Quiroz, D.; Teran-Saavedra, N.G.; Diaz-Galvez, K.R.; Gallegos-Tabanico, A.; Burgara-Estrella, A.J.; Sarabia-Sainz, H.M.; Guzman-Partida, A.M.; Robles-Burgueño, M.D.R.; Vazquez-Moreno, L.; Sarabia-Sainz, J.A. Cytotoxic activity of Crotalus molossus molossus snake venom-loaded in chitosan nanoparticles against T-47D breast carcinoma cells. Acta Biochim. Pol., 2022, 69(1), 233-243.
[PMID: 35148045]
[53]
Zahr, A.S.; Davis, C.A.; Pishko, M.V. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir, 2006, 22(19), 8178-8185.
[http://dx.doi.org/10.1021/la060951b] [PMID: 16952259]
[54]
Sawtarie, N.; Cai, Y.; Lapitsky, Y. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity. Colloids Surf. B Biointerfaces, 2017, 157, 110-117.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.055] [PMID: 28578269]
[55]
Hussain, Z.; Sahudin, S. Preparation, characterisation and colloidal stability of chitosan-tripolyphosphate nanoparticles: optimisation of formulation and process parameters. Int. J. Pharm. Pharm. Sci., 2016, 8(3), 297-308.
[56]
Dev, A.; Binulal, N.S.; Anitha, A.; Nair, S.V.; Furuike, T.; Tamura, H.; Jayakumar, R. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr. Polym., 2010, 80(3), 833-838.
[http://dx.doi.org/10.1016/j.carbpol.2009.12.040]
[57]
Vyas, A.; Saraf, S.; Saraf, S. Encapsulation of cyclodextrin complexed simvastatin in chitosan nanocarriers: A novel technique for oral delivery. J. Incl. Phenom. Macrocycl. Chem., 2010, 66(3-4), 251-259.
[http://dx.doi.org/10.1007/s10847-009-9605-y]
[58]
Akhlaq, A.; Ashraf, M.; Omer, M.O.; Altaf, I. Carvacrol-fabricated chitosan nanoparticle synergistic potential with topoisomerase inhibitors on breast and cervical cancer cells. ACS Omega, 2023, 8(35), 31826-31838.
[http://dx.doi.org/10.1021/acsomega.3c03337] [PMID: 37692253]
[59]
Ali, A.; Saroj, S.; Saha, S.; Gupta, S.K.; Rakshit, T.; Pal, S. Glucose-responsive chitosan nanoparticle/poly(vinyl alcohol) hydrogels for sustained insulin release in vivo. ACS Appl. Mater. Interfaces, 2023, 15(27), 32240-32250.
[http://dx.doi.org/10.1021/acsami.3c05031] [PMID: 37368956]
[60]
Zhang, Y.; Chan, J.W.; Moretti, A.; Uhrich, K.E. Designing polymers with sugar-based advantages for bioactive delivery applications. J. Control. Release, 2015, 219, 355-368.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.053] [PMID: 26423239]
[61]
Gan, Q.; Wang, T.; Cochrane, C.; McCarron, P. Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids Surf. B Biointerfaces, 2005, 44(2-3), 65-73.
[http://dx.doi.org/10.1016/j.colsurfb.2005.06.001] [PMID: 16024239]
[62]
Yang, X.; Yuan, X.; Cai, D.; Wang, S.; Zong, L. Low molecular weight chitosan in DNA vaccine delivery via mucosa. Int. J. Pharm., 2009, 375(1-2), 123-132.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.032] [PMID: 19481698]
[63]
Tabynov, K.; Solomadin, M.; Turebekov, N.; Babayeva, M.; Fomin, G.; Yadagiri, G.; Renu, S.; Yerubayev, T.; Petrovsky, N.; Renukaradhya, G.J.; Tabynov, K. An intranasal vaccine comprising SARS-CoV-2 spike receptor-binding domain protein entrapped in mannose-conjugated chitosan nanoparticle provides protection in hamsters. Sci. Rep., 2023, 13(1), 12115.
[http://dx.doi.org/10.1038/s41598-023-39402-0] [PMID: 37495639]
[64]
Qi, L.; Xu, Z.; Chen, M. In vitro and in vivo suppression of hepatocellular carcinoma growth by chitosan nanoparticles. Eur. J. Cancer, 2007, 43(1), 184-193.
[http://dx.doi.org/10.1016/j.ejca.2006.08.029] [PMID: 17049839]
[65]
Qi, L.; Xu, Z. In vivo antitumor activity of chitosan nanoparticles. Bioorg. Med. Chem. Lett., 2006, 16(16), 4243-4245.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.078] [PMID: 16759859]
[66]
Sheikh, A.; Hazari, S.A.; Molugulu, N.; Alshehri, S.A.; Wahab, S.; Sahebkar, A.; Kesharwani, P. Hyaluronic acid engineered gallic acid embedded chitosan nanoparticle as an effective delivery system for treatment of psoriasis. Environ. Res., 2023, 238(Pt 1), 117086.
[http://dx.doi.org/10.1016/j.envres.2023.117086] [PMID: 37683783]
[67]
Algandaby, M.M.; Esmat, A.; Nasrullah, M.Z.; Alhakamy, N.A.; Abdel-Naim, A.B.; Rashad, O.M.; Elhady, S.S.; Eltamany, E.E. LC-MS based metabolic profiling and wound healing activity of a chitosan nanoparticle-loaded formula of Teucrium polium in diabetic rats. Biomed. Pharmacother., 2023, 168, 115626.
[http://dx.doi.org/10.1016/j.biopha.2023.115626] [PMID: 37852098]
[68]
Yinsong, W.; Lingrong, L.; Jian, W.; Zhang, Q. Preparation and characterization of self-aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan conjugates. Carbohydr. Polym., 2007, 69(3), 597-606.
[http://dx.doi.org/10.1016/j.carbpol.2007.01.016]
[69]
Zhang, W.; Zhang, J.; Jiang, Q.; Xia, W. Physicochemical and structural characteristics of chitosan nanopowders prepared by ultrafine milling. Carbohydr. Polym., 2012, 87(1), 309-313.
[http://dx.doi.org/10.1016/j.carbpol.2011.07.057] [PMID: 34662966]
[70]
Brunel, F.; Véron, L.; David, L.; Domard, A.; Delair, T. A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir, 2008, 24(20), 11370-11377.
[http://dx.doi.org/10.1021/la801917a] [PMID: 18774829]
[71]
Mitra, S.; Gaur, U.; Ghosh, P.C.; Maitra, A.N. Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier. J. Control. Release, 2001, 74(1-3), 317-323.
[http://dx.doi.org/10.1016/S0168-3659(01)00342-X] [PMID: 11489513]
[72]
Vasconcellos, F.C.; Goulart, G.A.S.; Beppu, M.M. Production and characterization of chitosan microparticles containing papain for controlled release applications. Powder Technol., 2011, 205(1-3), 65-70.
[http://dx.doi.org/10.1016/j.powtec.2010.08.066]
[73]
Mirzaei, F.; Mohammadpour Dounighi, N.; Avadi, M.R.; Rezayat, M. A new approach to antivenom preparation using chitosan nanoparticles containing echiscarinatus venom as a novel antigen delivery system. Iran. J. Pharm. Res., 2017, 16(3), 858-867.
[PMID: 29201077]
[74]
Mohammadur, D.; Mehrabi, M.; Avadi, M.R.; Zolfagharian, H.; Rezayat, M. Preparation, characterization and stability investigation of chitosan nanoparticles loaded with the Echis carinatus snake venom as a novel delivery system. Arch. Razi Inst., 2015, 70(4), 269-277.
[75]
Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Joni, I.M.; Muchtaridi, M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers, 2021, 13(11), 1717.
[http://dx.doi.org/10.3390/polym13111717] [PMID: 34074020]
[76]
Wu, J. The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J. Pers. Med., 2021, 11(8), 771.
[http://dx.doi.org/10.3390/jpm11080771] [PMID: 34442415]
[77]
Shambayati, M.H. Characterizing and controlling the loading of Vipera albicornuta venom in chitosan nanoparticles as an adjuvant and vaccine delivery system. J. Nanomed. Res., 2019, 4(4), 220-227.
[78]
Patra, A.; Kalita, B.; Chanda, A.; Mukherjee, A.K. Proteomics and antivenomics of Echis carinatus carinatus venom: Correlation with pharmacological properties and pathophysiology of envenomation. Sci. Rep., 2017, 7(1), 17119.
[http://dx.doi.org/10.1038/s41598-017-17227-y] [PMID: 29215036]
[79]
Zaeri, S.; Fatemikia, H.; Kamyab, M.; Esmaili, A.; Kim, E. Mohammadpour Dounighi, N.; Salemi, A.; Khadem, P.; Seyedian, R., Hemodynamic Changes Provoked through Intravascular Injection of the Echis carinatus Venom in Rats. Arch. Razi Inst., 2021, 76(3), 599-607.
[80]
Parihar, V.; Mittal, A.; Vikarn, V.; Didel, S.; Singh, K. Venom-induced consumptive coagulopathy leading to thrombotic microangiopathy following Echis carinatus sochureki bite: is snake antivenom effective? J. Trop. Pediatr., 2022, 69(1), fmac113.
[81]
Kachhwaha, A.; Kumar, A.; Garg, P.; Sharma, A.; Garg, M.K.; Gopalakrishnan, M. Delayed compression paralysis following an iliopsoas hematoma 30 days after saw-scaled viper (Echis carinatus sochureki) envenoming: A case report. Wilderness & environmental medicine, 2023, 34(3), 366-371.
[82]
Pirasath, S.; Athirayan, C.; Gajan, D. Thrombotic microangiopathy following saw-scaled viper (Echis carinatus) envenoming in Sri Lanka. SAGE open medical case reports, 2021, 9, 2050313x211032399.
[83]
Woythe, L.; Madhikar, P.; Feiner-Gracia, N.; Storm, C.; Albertazzi, L. A single-molecule view at nanoparticle targeting selectivity: correlating ligand functionality and cell receptor density. ACS Nano, 2022, 16(3), 3785-3796.
[84]
Liu, M.; Wang, L.; Lo, Y.; Shiu, S.C.; Kinghorn, A.B.; Tanner, J.A. Aptamer-enabled nanomaterials for therapeutics, drug targeting and imaging. Cells, 2022, 11(1), 159.
[85]
Safarzadeh, K.P.; Rahbarizadeh, F. Flexible aptamer-based nucleolin-targeting cancer treatment modalities: A focus on immunotherapy, radiotherapy, and phototherapy. Trends Med. Sci., 2021, 1(3), e113991.
[86]
Ruks, T.; Loza, K.; Heggen, M.; Prymak, O.; Sehnem, A.L.; Oliveira, C.L.P.; Bayer, P.; Beuck, C.; Epple, M. Peptide-conjugated ultrasmall gold nanoparticles (2 nm) for selective protein targeting. ACS Applied Bio Materials, 2021, 4(1), 945-965.
[87]
Kozani, P.S.; Kozani, P.S.; Malik, M.T. AS1411-functionalized delivery nanosystems for targeted cancer therapy. Explor. Med., 2021, 2, 146-166.
[88]
Rao, D.A.; Forrest, M.L.; Alani, A.W.; Kwon, G.S.; Robinson, J.R. Biodegradable PLGA based nanoparticles for sustained regional lymphatic drug delivery. J. Pharm. Sci., 2010, 99(4), 2018-2031.
[89]
Garrastazu Pereira, G.; Lawson, A.J.; Buttini, F.; Sonvico, F. Loco-regional administration of nanomedicines for the treatment of lung cancer. Drug Delivery., 2016, 23(8), 2881-2896.
[90]
Mangal, S.; Gao, W.; Li, T.; Zhou, Q.T. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacologica Sinica, 2017, 38(6), 782-797.
[91]
Terracciano, R.; Carcamo-Bahena, Y.; Royal, A.L.R.; Messina, L.; Delk, J.; Butler, E.B.; Demarchi, D.; Grattoni, A.; Wang, Z.; Cristini, V.; Dogra, P.; Filgueira, C.S. Zonal intratumoral delivery of nanoparticles guided by surface functionalization. Langmuir, 2022, 38(45), 13983-13994.
[92]
Terracciano, R.; Carcamo-Bahena, Y.; Butler, E.B.; Demarchi, D.; Grattoni, A.; Filgueira, C.S. Hyaluronate-thiol passivation enhances gold nanoparticle peritumoral distribution when administered intratumorally in lung cancer. Biomedicines, 2021, 9(11), 1561.
[93]
Yu, T.; Lin, Y.; Jin, A.; Zhang, P.; Zhou, X.; Fang, M.; Liu, X. Safety and efficiency of low dose intra-arterial tirofiban in mechanical thrombectomy during acute ischemic stroke. Curr. Neurovas. Res., 2018, 15(2), 145-150.
[94]
Sarkees, M. L.; Bavry, A.A. Non ST-elevation acute coronary syndrome. BMJ. Clin. Evid., 2010, 2010, 0209.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy