Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Advances in Metallic Nanostructures-assisted Biosensors for Medical Diagnosis and Therapy

Author(s): Ecem Tiryaki* and Tolga Zorlu

Volume 24, Issue 11, 2024

Published on: 18 January, 2024

Page: [930 - 951] Pages: 22

DOI: 10.2174/0115680266282489240109050225

Price: $65

Abstract

The field of nanotechnology has witnessed remarkable progress in recent years, particularly in its application to medical diagnosis and therapy. Metallic nanostructures-assisted biosensors have emerged as a powerful and versatile platform, offering unprecedented opportunities for sensitive, specific, and minimally invasive diagnostic techniques, as well as innovative therapeutic interventions. These biosensors exploit the molecular interactions occurring between biomolecules, such as antibodies, enzymes, aptamers, or nucleic acids, and metallic surfaces to induce observable alterations in multiple physical attributes, encompassing electrical, optical, colorimetric, and electrochemical signals. These interactions yield measurable data concerning the existence and concentration of particular biomolecules. The inherent characteristics of metal nanostructures, such as conductivity, plasmon resonance, and catalytic activity, serve to amplify both sensitivity and specificity in these biosensors. This review provides an in-depth exploration of the latest advancements in metallic nanostructures-assisted biosensors, highlighting their transformative impact on medical science and envisioning their potential in shaping the future of personalized healthcare.

Keywords: Biosensors, Diagnostic, Magnetic, MOFs, Nanomaterials, Plasmonics.

Graphical Abstract
[1]
Neuberger, T.; Schöpf, B.; Hofmann, H.; Hofmann, M.; von Rechenberg, B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater., 2005, 293(1), 483-496.
[http://dx.doi.org/10.1016/j.jmmm.2005.01.064]
[2]
Zorkina, Y.; Abramova, O.; Ushakova, V.; Morozova, A.; Zubkov, E.; Valikhov, M.; Melnikov, P.; Majouga, A.; Chekhonin, V. Nano carrier drug delivery systems for the treatment of neuropsychiatric disorders: Advantages and limitations. Molecules, 2020, 25(22), 5294.
[http://dx.doi.org/10.3390/molecules25225294] [PMID: 33202839]
[3]
Homayun, B.; Lin, X.; Choi, H.J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics, 2019, 11(3), 129.
[http://dx.doi.org/10.3390/pharmaceutics11030129] [PMID: 30893852]
[4]
Budama-Kilinc, Y.; Ozdemir, B.; Zorlu, T.; Gok, B.; Egil, A.C. Nanobiomaterials for neural regenerative medicine. In: Neural Regenerative Nanomedicine; Elsevier, 2020; pp. 25-45.
[http://dx.doi.org/10.1016/B978-0-12-820223-4.00002-4]
[5]
Cahill, E.M.; Keaveney, S.; Stuettgen, V.; Eberts, P.; Ramos-Luna, P.; Zhang, N.; Dangol, M.; O’Cearbhaill, E.D. Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery. Acta Biomater., 2018, 80, 401-411.
[http://dx.doi.org/10.1016/j.actbio.2018.09.007] [PMID: 30201432]
[6]
Lim, Y.Y.; Zaidi, A.M.A.; Miskon, A. Composing on-program triggers and on-demand stimuli into biosensor drug carriers in drug delivery systems for programmable arthritis therapy. Pharmaceuticals, 2022, 15(11), 1330.
[http://dx.doi.org/10.3390/ph15111330] [PMID: 36355502]
[7]
Kaushal, S.; Nanda, S.S.; Samal, S.; Yi, D.K. Strategies for the development of metallic-nanoparticle-based label-free biosensors and their biomedical applications. ChemBioChem, 2020, 21(5), 576-600.
[http://dx.doi.org/10.1002/cbic.201900566] [PMID: 31634410]
[8]
Adekunle, A.; Raghavan, V.; Tartakovsky, B. On-line monitoring of heavy metals-related toxicity with a microbial fuel cell biosensor. Biosens. Bioelectron., 2019, 132, 382-390.
[http://dx.doi.org/10.1016/j.bios.2019.03.011] [PMID: 30903911]
[9]
Picó, Y.; Farré, M.; Kantiani, L.; Barceló, D. Microfluidic devices: Biosensors. Chem. Analy. Food: Tech. Appl., 2012, 177-217.
[10]
Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized enzymes in biosensor applications. Materials, 2019, 12(1), 121.
[http://dx.doi.org/10.3390/ma12010121] [PMID: 30609693]
[11]
Kurbanoglu, S.; Erkmen, C.; Uslu, B. Frontiers in electrochemical enzyme based biosensors for food and drug analysis. Trends Analyt. Chem., 2020, 124, 115809.
[http://dx.doi.org/10.1016/j.trac.2020.115809]
[12]
Lin, S.; Xu, X.; Hu, F.; Chen, Z.; Wang, Y.; Zhang, L.; Peng, Z.; Li, D.; Zeng, L.; Chen, Y.; Wang, Z. Using antibody modified terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen. IEEE J. Sel. Top. Quantum Electron., 2021, 27(4), 1-7.
[http://dx.doi.org/10.1109/JSTQE.2020.3038308] [PMID: 33746498]
[13]
Minopoli, A.; Della Ventura, B.; Lenyk, B.; Gentile, F.; Tanner, J.A.; Offenhäusser, A.; Mayer, D.; Velotta, R. Ultrasensitive antibody-aptamer plasmonic biosensor for malaria biomarker detection in whole blood. Nat. Commun., 2020, 11(1), 6134.
[http://dx.doi.org/10.1038/s41467-020-19755-0] [PMID: 33262332]
[14]
Zhang, L.; Mazouzi, Y.; Salmain, M.; Liedberg, B.; Boujday, S. Antibody-gold nanoparticle bioconjugates for biosensors: Synthesis, characterization and selected applications. Biosens. Bioelectron., 2020, 165, 112370.
[http://dx.doi.org/10.1016/j.bios.2020.112370] [PMID: 32729502]
[15]
Saadati, A.; Hassanpour, S.; Guardia, M.; Mosafer, J.; Hashemzaei, M.; Mokhtarzadeh, A.; Baradaran, B. Recent advances on application of peptide nucleic acids as a bioreceptor in biosensors development. Trends Analyt. Chem., 2019, 114, 56-68.
[http://dx.doi.org/10.1016/j.trac.2019.02.030]
[16]
Xiao, M.; Lai, W.; Man, T.; Chang, B.; Li, L.; Chandrasekaran, A.R.; Pei, H. Rationally engineered nucleic acid architectures for biosensing applications. Chem. Rev., 2019, 119(22), 11631-11717.
[http://dx.doi.org/10.1021/acs.chemrev.9b00121] [PMID: 31573184]
[17]
Lakshmipriya, T.; Gopinath, S.C. An introduction to biosensors and biomolecules. In: Nanobiosensors for biomolecular targeting; Elsevier, 2019; pp. 1-21.
[http://dx.doi.org/10.1016/B978-0-12-813900-4.00001-4]
[18]
Dervisevic, M.; Alba, M.; Prieto-Simon, B.; Voelcker, N.H. Skin in the diagnostics game: Wearable biosensor nano- and microsystems for medical diagnostics. Nano Today, 2020, 30, 100828.
[http://dx.doi.org/10.1016/j.nantod.2019.100828]
[19]
Saylan, Y.; Erdem, Ö.; Ünal, S.; Denizli, A. An alternative medical diagnosis method: Biosensors for virus detection. Biosensors, 2019, 9(2), 65.
[http://dx.doi.org/10.3390/bios9020065] [PMID: 31117262]
[20]
Kamel, S.; A Khattab, T. Recent advances in cellulose-based biosensors for medical diagnosis. Biosensors, 2020, 10(6), 67.
[http://dx.doi.org/10.3390/bios10060067] [PMID: 32560377]
[21]
Vinoth, S.; Shalini Devi, K.S.; Pandikumar, A. A comprehensive review on graphitic carbon nitride based electrochemical and biosensors for environmental and healthcare applications. Trends Analyt. Chem., 2021, 140, 116274.
[http://dx.doi.org/10.1016/j.trac.2021.116274]
[22]
Do, M.H.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Varjani, S.; Kumar, M. Microbial fuel cell-based biosensor for online monitoring wastewater quality: A critical review. Sci. Total Environ., 2020, 712, 135612.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135612] [PMID: 31836209]
[23]
Hua, Z.; Yu, T.; Liu, D.; Xianyu, Y. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens. Bioelectron., 2021, 179, 113076.
[http://dx.doi.org/10.1016/j.bios.2021.113076] [PMID: 33601132]
[24]
Leonardo, S.; Toldrà, A.; Campàs, M. Biosensors based on isothermal DNA amplification for bacterial detection in food safety and environmental monitoring. Sensors, 2021, 21(2), 602.
[http://dx.doi.org/10.3390/s21020602] [PMID: 33467078]
[25]
Zhang, J.; Huang, H.; Song, G.; Huang, K.; Luo, Y.; Liu, Q.; He, X.; Cheng, N. Intelligent biosensing strategies for rapid detection in food safety: A review. Biosens. Bioelectron., 2022, 202, 114003.
[http://dx.doi.org/10.1016/j.bios.2022.114003] [PMID: 35065479]
[26]
Vu, C-A.; Chen, W-Y. Field-effect transistor biosensors for biomedical applications: Recent advances and future prospects. Sensors, 2019, 19(19), 4214.
[http://dx.doi.org/10.3390/s19194214] [PMID: 31569330]
[27]
Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf. B Biointerfaces, 2019, 178, 385-394.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.013] [PMID: 30903977]
[28]
Mehrotra, P. Biosensors and their applications - A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159.
[http://dx.doi.org/10.1016/j.jobcr.2015.12.002] [PMID: 27195214]
[29]
Lee, D.J.; Kim, D.Y. Hydrophobic paper-based SERS sensor using gold nanoparticles arranged on graphene oxide flakes. Sensors, 2019, 19(24), 5471.
[http://dx.doi.org/10.3390/s19245471] [PMID: 31835903]
[30]
Zorlu, T.; Puértolas, B.; Becerril-Castro, I.B.; Guerrini, L.; Giannini, V.; Correa-Duarte, M.A.; Alvarez-Puebla, R.A. Optical quantification of metal ions using plasmonic nanostructured microbeads coated with metal-organic frameworks and ion-selective dyes. ACS Nanosci. Au., 2023, 3(3), 222-229.
[http://dx.doi.org/10.1021/acsnanoscienceau.2c00063]
[31]
Martín-Yerga, D. Electrochemical detection and characterization of nanoparticles with printed devices. Biosensors, 2019, 9(2), 47.
[http://dx.doi.org/10.3390/bios9020047] [PMID: 30925772]
[32]
Alvarez-Gonzalez, G.; Dixon, N. Genetically encoded biosensors for lignocellulose valorization. Biotechnol. Biofuels, 2019, 12(1), 246.
[http://dx.doi.org/10.1186/s13068-019-1585-6] [PMID: 31636705]
[33]
Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sensors Int., 2021, 2, 100100.
[http://dx.doi.org/10.1016/j.sintl.2021.100100]
[34]
Mills, D.K.; Nestorova, G.G. Biosensor development and innovation in healthcare and medical applications. Sensors, 2023, 23(5), 2717.
[http://dx.doi.org/10.3390/s23052717]
[35]
Lino, C.; Barrias, S.; Chaves, R.; Adega, F.; Martins-Lopes, P.; Fernandes, J. Biosensors as diagnostic tools in clinical applications. Biochimica et Biophysica Acta (BBA)-. Rev. Can., 2022, 1877(3), 188726.
[36]
Andryukov, B.; Lyapun, I.; Matosova, E.; Somova, L. Biosensor technologies in medicine: From detection of biochemical markers to research into molecular targets. Sovrem Tekhnologii Med, 2020, 12(6), 70-83.
[http://dx.doi.org/10.17691/stm2020.12.6.09]
[37]
Campu, A.; Muresan, I.; Craciun, A.M.; Cainap, S.; Astilean, S.; Focsan, M. Cardiac troponin biosensor designs: Current developments and remaining challenges. Int. J. Mol. Sci., 2022, 23(14), 7728.
[http://dx.doi.org/10.3390/ijms23147728] [PMID: 35887073]
[38]
Parihar, A.; Ranjan, P.; Sanghi, S.K.; Srivastava, A.K.; Khan, R. Point-of-care biosensor-based diagnosis of COVID-19 holds promise to combat current and future pandemics. ACS Appl. Bio Mater., 2020, 3(11), 7326-7343.
[http://dx.doi.org/10.1021/acsabm.0c01083] [PMID: 35019474]
[39]
Gray, M.; Meehan, J.; Ward, C.; Langdon, S.P.; Kunkler, I.H.; Murray, A.; Argyle, D. Implantable biosensors and their contribution to the future of precision medicine. Vet. J., 2018, 239, 21-29.
[http://dx.doi.org/10.1016/j.tvjl.2018.07.011] [PMID: 30197105]
[40]
Mobed, A.; Razavi, S.; Ahmadalipour, A.; Shakouri, S.K.; Koohkan, G. Biosensors in Parkinson’s disease. Clin. Chim. Acta, 2021, 518, 51-58.
[http://dx.doi.org/10.1016/j.cca.2021.03.009] [PMID: 33753044]
[41]
Kujawska, M.; Bhardwaj, S.K.; Mishra, Y.K.; Kaushik, A. Using graphene-based biosensors to detect dopamine for efficient parkinson’s disease diagnostics. Biosensors, 2021, 11(11), 433.
[http://dx.doi.org/10.3390/bios11110433] [PMID: 34821649]
[42]
Li, T.; Xu, T.; Yao, Z.; Ding, Y.; Liu, G.; Shan, F. Highly sensitive biosensor based on IGZO thin-film transistors for detection of Parkinson’s disease. Appl. Phys. Lett., 2023, 122(24), 243701.
[http://dx.doi.org/10.1063/5.0151300]
[43]
Lu, T.; Ji, S.; Jin, W.; Yang, Q.; Luo, Q.; Ren, T.L. Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. Sensors, 2023, 23(6), 2991.
[http://dx.doi.org/10.3390/s23062991] [PMID: 36991702]
[44]
Sharma, A.; Badea, M.; Tiwari, S.; Marty, J.L. Wearable biosensors: An alternative and practical approach in healthcare and disease monitoring. Molecules, 2021, 26(3), 748.
[http://dx.doi.org/10.3390/molecules26030748] [PMID: 33535493]
[45]
Saha, T.; Del Caño, R.; Mahato, K.; De la Paz, E.; Chen, C.; Ding, S.; Yin, L.; Wang, J. Wearable electrochemical glucose sensors in diabetes management: A comprehensive review. Chem. Rev., 2023, 123(12), 7854-7889.
[http://dx.doi.org/10.1021/acs.chemrev.3c00078] [PMID: 37253224]
[46]
Kim, J.; Campbell, A.S.; de Ávila, B.E.F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol., 2019, 37(4), 389-406.
[http://dx.doi.org/10.1038/s41587-019-0045-y] [PMID: 30804534]
[47]
Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 2021, 21(4), 1109.
[http://dx.doi.org/10.3390/s21041109] [PMID: 33562639]
[48]
Aldewachi, H.; Chalati, T.; Woodroofe, M.N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold nanoparticle-based colorimetric biosensors. Nanoscale, 2018, 10(1), 18-33.
[http://dx.doi.org/10.1039/C7NR06367A] [PMID: 29211091]
[49]
Lee, J.H.; Cho, H.Y.; Choi, H.; Lee, J.Y.; Choi, J.W. Application of gold nanoparticle to plasmonic biosensors. Int. J. Mol. Sci., 2018, 19(7), 2021.
[http://dx.doi.org/10.3390/ijms19072021] [PMID: 29997363]
[50]
Jiang, P.; Wang, Y.; Zhao, L.; Ji, C.; Chen, D.; Nie, L. Applications of gold nanoparticles in non-optical biosensors. Nanomaterials, 2018, 8(12), 977.
[http://dx.doi.org/10.3390/nano8120977] [PMID: 30486293]
[51]
Tan, P.; Li, H.; Wang, J.; Gopinath, S.C.B. Silver nanoparticle in biosensor and bioimaging: Clinical perspectives. Biotechnol. Appl. Biochem., 2021, 68(6), 1236-1242.
[PMID: 33043496]
[52]
Beck, F.; Loessl, M.; Baeumner, A.J. Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care. Mikrochim. Acta, 2023, 190(3), 91.
[http://dx.doi.org/10.1007/s00604-023-05666-6] [PMID: 36790481]
[53]
Yu, C.X.; Xiong, F.; Liu, L.L. Electrochemical biosensors with silver nanoparticles as signal labels. Int. J. Electrochem. Sci., 2020, 15(5), 3869-3890.
[http://dx.doi.org/10.20964/2020.05.53]
[54]
Yu, H.; Yu, J.; Li, L.; Zhang, Y.; Xin, S.; Ni, X.; Sun, Y.; Song, K. Recent progress of the practical applications of the platinum nanoparticle-based electrochemistry biosensors. Front Chem., 2021, 9, 677876.
[http://dx.doi.org/10.3389/fchem.2021.677876] [PMID: 34012952]
[55]
Leteba, G.; Lang, C. Synthesis of bimetallic platinum nanoparticles for biosensors. Sensors (Basel), 2013, 13(8), 10358-10369.
[http://dx.doi.org/10.3390/s130810358] [PMID: 23941910]
[56]
Chen, J.; Lu, Y.; Yan, F.; Wu, Y.; Huang, D.; Weng, Z. A fluorescent biosensor based on catalytic activity of platinum nanoparticles for freshness evaluation of aquatic products. Food Chem., 2020, 310, 125922.
[http://dx.doi.org/10.1016/j.foodchem.2019.125922] [PMID: 31835217]
[57]
Mattsson, L.; Wegner, K.D.; Hildebrandt, N.; Soukka, T. Upconverting nanoparticle to quantum dot FRET for homogeneous double-nano biosensors. RSC Advances, 2015, 5(18), 13270-13277.
[http://dx.doi.org/10.1039/C5RA00397K]
[58]
Wegner, K.D.; Hildebrandt, N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev., 2015, 44(14), 4792-4834.
[http://dx.doi.org/10.1039/C4CS00532E] [PMID: 25777768]
[59]
Buk, V.; Pemble, M.E. A highly sensitive glucose biosensor based on a micro disk array electrode design modified with carbon quantum dots and gold nanoparticles. Electrochim. Acta, 2019, 298, 97-105.
[http://dx.doi.org/10.1016/j.electacta.2018.12.068]
[60]
Lei, H.; Zhu, H.; Sun, S.; Zhu, Z.; Hao, J.; Lu, S.; Cai, Y.; Zhang, M.; Du, M. Synergistic integration of Au nanoparticles, Co-MOF and MWCNT as biosensors for sensitive detection of low-concentration nitrite. Electrochim. Acta, 2021, 365, 137375.
[http://dx.doi.org/10.1016/j.electacta.2020.137375]
[61]
Du, L.; Chen, W.; Zhu, P.; Tian, Y.; Chen, Y.; Wu, C. Applications of functional metal-organic frameworks in biosensors. Biotechnol. J., 2021, 16(2), 1900424.
[http://dx.doi.org/10.1002/biot.201900424] [PMID: 32271998]
[62]
Huang, W.; Xu, Y.; Wang, Z.; Liao, K.; Zhang, Y.; Sun, Y. Dual nanozyme based on ultrathin 2D conductive MOF nanosheets intergraded with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells. Talanta, 2022, 249, 123612.
[http://dx.doi.org/10.1016/j.talanta.2022.123612] [PMID: 35688080]
[63]
Banerjee, A.; Maity, S.; Mastrangelo, C.H. Nanostructures for biosensing, with a brief overview on cancer detection, IoT, and the role of machine learning in smart biosensors. Sensors, 2021, 21(4), 1253.
[http://dx.doi.org/10.3390/s21041253] [PMID: 33578726]
[64]
Yang, J.; Qin, D.; Wang, N.; Wu, Y.; Fang, K.; Deng, B. Aggregation-induced electrochemiluminescence based on a zinc-based metal–organic framework and a double quencher Au@UiO-66-NH2 for the sensitive detection of Amyloid β 42 via resonance energy transfer. Anal. Chem., 2023, 95(17), 7045-7052.
[http://dx.doi.org/10.1021/acs.analchem.3c00729] [PMID: 37079698]
[65]
Alhogail, S.; Suaifan, G.A.R.Y.; Bikker, F.J.; Kaman, W.E.; Weber, K.; Cialla-May, D.; Popp, J.; Zourob, M.M. Rapid colorimetric detection of Pseudomonas aeruginosa in clinical isolates using a magnetic nanoparticle biosensor. ACS Omega, 2019, 4(26), 21684-21688.
[http://dx.doi.org/10.1021/acsomega.9b02080] [PMID: 31891046]
[66]
Sarma, D.D.; Kamat, P.V. 2023 nobel prize in chemistry: A mega recognition for nanosized quantum dots. ACS Energy Lett., 2023, 8(12), 5149-5151.
[http://dx.doi.org/10.1021/acsenergylett.3c02390]
[67]
Saeedzadeh Amiri, N.; Milani Hosseini, M-R. Application of ratiometric fluorescence sensor-based microwave-assisted synthesized CdTe quantum dots and mesoporous structured epitope-imprinted polymers for highly efficient determination of tyrosine phosphopeptide. Anal. Methods, 2020, 12(1), 63-72.
[http://dx.doi.org/10.1039/C9AY00276F]
[68]
Ser, J.; Lee, H.; Surendran, S.; Kim, J. K.; Sim, U.; Cho, H. Advances in functionalized nanomaterial-incorporated biosensing platforms for detecting cancer biomarkers during biopsies. In: ChemNanoMat; Wiley, 2023; p. e202300092.
[http://dx.doi.org/10.1002/cnma.202300092]
[69]
He, Z.; Yin, H.; Chang, C.C.; Wang, G.; Liang, X. Interfacing DNA with gold nanoparticles for heavy metal detection. Biosensors, 2020, 10(11), 167.
[http://dx.doi.org/10.3390/bios10110167] [PMID: 33172098]
[70]
Kato, R.; Uesugi, M.; Komatsu, Y.; Okamoto, F.; Tanaka, T.; Kitawaki, F.; Yano, T. Highly stable polymer coating on silver nanoparticles for efficient plasmonic enhancement of fluorescence. ACS Omega, 2022, 7(5), 4286-4292.
[http://dx.doi.org/10.1021/acsomega.1c06010] [PMID: 35155921]
[71]
Li, M.; Zhang, G.; Boakye, A.; Chai, H.; Qu, L.; Zhang, X. Recent advances in metal-organic framework-based electrochemical biosensing applications. Front. Bioeng. Biotechnol., 2021, 9, 797067.
[http://dx.doi.org/10.3389/fbioe.2021.797067] [PMID: 34976986]
[72]
Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front Chem., 2014, 2, 63.
[http://dx.doi.org/10.3389/fchem.2014.00063] [PMID: 25221775]
[73]
Lim, Y.Y.; Miskon, A.; Zaidi, A.M.A. CuZn complex used in electrical biosensors for drug delivery systems. Materials, 2022, 15(21), 7672.
[http://dx.doi.org/10.3390/ma15217672] [PMID: 36363264]
[74]
Roy, S.; Gao, Z. Nanostructure-based electrical biosensors. Nano Today, 2009, 4(4), 318-334.
[http://dx.doi.org/10.1016/j.nantod.2009.06.003]
[75]
Xu, L.; Shoaie, N.; Jahanpeyma, F.; Zhao, J.; Azimzadeh, M.; Al-Jamal, K.T. Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: A comprehensive overview. Biosens. Bioelectron., 2020, 161, 112222.
[http://dx.doi.org/10.1016/j.bios.2020.112222] [PMID: 32365010]
[76]
Kaur, B.; Kumar, S.; Kaushik, B.K. Recent advancements in optical biosensors for cancer detection. Biosens. Bioelectron., 2022, 197, 113805.
[http://dx.doi.org/10.1016/j.bios.2021.113805] [PMID: 34801795]
[77]
Si, P.; Razmi, N.; Nur, O.; Solanki, S.; Pandey, C.M.; Gupta, R.K.; Malhotra, B.D.; Willander, M.; de la Zerda, A. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv., 2021, 3(10), 2679-2698.
[http://dx.doi.org/10.1039/D0NA00961J] [PMID: 36134176]
[78]
Zhang, F.; Liu, J. Label-free colorimetric biosensors based on aptamers and gold nanoparticles: A critical review. Anal. Sens., 2021, 1(1), 30-43.
[http://dx.doi.org/10.1002/anse.202000023]
[79]
Che Sulaiman, I.S.; Chieng, B.W.; Osman, M.J.; Ong, K.K.; Rashid, J.I.A.; Wan Yunus, W.M.Z.; Noor, S.A.M.; Kasim, N.A.M.; Halim, N.A.; Mohamad, A. A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles. Mikrochim. Acta, 2020, 187(2), 131.
[http://dx.doi.org/10.1007/s00604-019-3893-8] [PMID: 31940088]
[80]
Shaban, S.M.; Moon, B.S.; Pyun, D.G.; Kim, D.H. A colorimetric alkaline phosphatase biosensor based on p-aminophenol-mediated growth of silver nanoparticles. Colloids Surf. B Biointerfaces, 2021, 205, 111835.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111835] [PMID: 33992822]
[81]
Huang, X.; Zhu, Y.; Kianfar, E. Nano Biosensors: Properties, applications and electrochemical techniques. J. Mater. Res. Technol., 2021, 12, 1649-1672.
[http://dx.doi.org/10.1016/j.jmrt.2021.03.048]
[82]
Yoon, J.; Cho, H.Y.; Shin, M.; Choi, H.K.; Lee, T.; Choi, J.W. Flexible electrochemical biosensors for healthcare monitoring. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(33), 7303-7318.
[http://dx.doi.org/10.1039/D0TB01325K] [PMID: 32647855]
[83]
Xu, R.; Ouyang, L.; Chen, H.; Zhang, G.; Zhe, J. Recent advances in biomolecular detection based on aptamers and nanoparticles. Biosensors, 2023, 13(4), 474.
[http://dx.doi.org/10.3390/bios13040474] [PMID: 37185549]
[84]
Tian, Y.; Xu, G.; Cai, K.; Zhao, X.; Zhang, B.; Wang, L.; Wang, T. Emerging biotransduction strategies on soft interfaces for biosensing. Nanoscale, 2022, 15(1), 80-91.
[http://dx.doi.org/10.1039/D2NR05444B] [PMID: 36512329]
[85]
Li, X.; Qian, K.; Huang, L. Emerging biosensors based on noble metal self-assembly for in vitro disease diagnosis. Adv. NanoBiomed Res., 2023, 3(6), 2200148.
[http://dx.doi.org/10.1002/anbr.202200148]
[86]
Pirzada, M.; Altintas, Z. Nanomaterials for healthcare biosensing applications. Sensors, 2019, 19(23), 5311.
[http://dx.doi.org/10.3390/s19235311] [PMID: 31810313]
[87]
Rasmi, Y.; Li, X.; Khan, J.; Ozer, T.; Choi, J.R. Emerging point-of-care biosensors for rapid diagnosis of COVID-19: current progress, challenges, and future prospects. Anal. Bioanal. Chem., 2021, 413(16), 4137-4159.
[http://dx.doi.org/10.1007/s00216-021-03377-6] [PMID: 34008124]
[88]
Lim, H.J.; Saha, T.; Tey, B.T.; Tan, W.S.; Ooi, C.W. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens. Bioelectron., 2020, 168, 112513.
[http://dx.doi.org/10.1016/j.bios.2020.112513] [PMID: 32889395]
[89]
Khan, N.I.; Song, E. Lab-on-a-chip systems for aptamer-based biosensing. Micromachines, 2020, 11(2), 220.
[http://dx.doi.org/10.3390/mi11020220] [PMID: 32093323]
[90]
Haji Mohammadi, M.; Mulder, S.; Khashayar, P.; Kalbasi, A.; Azimzadeh, M.; Aref, A.R. Saliva Lab-on-a-chip biosensors: Recent novel ideas and applications in disease detection. Microchem. J., 2021, 168, 106506.
[http://dx.doi.org/10.1016/j.microc.2021.106506]
[91]
Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Recent advancements in nanobiosensors: Current trends, challenges, applications, and future scope. Biosensors, 2022, 12(10), 892.
[http://dx.doi.org/10.3390/bios12100892] [PMID: 36291028]
[92]
De Matteis, V. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics, 2017, 5(4), 29.
[http://dx.doi.org/10.3390/toxics5040029] [PMID: 29051461]
[93]
Kennedy, D.C.; Gies, V.; Jezierski, A.; Yang, L. Changes in the physical properties of silver nanoparticles in cell culture media mediate cellular toxicity and uptake. J. Nanopart. Res., 2019, 21(6), 132.
[http://dx.doi.org/10.1007/s11051-019-4550-1]
[94]
Ngo, H.T.; Wang, H.N.; Fales, A.M.; Vo-Dinh, T. Plasmonic SERS biosensing nanochips for DNA detection. Anal. Bioanal. Chem., 2016, 408(7), 1773-1781.
[http://dx.doi.org/10.1007/s00216-015-9121-4] [PMID: 26547189]
[95]
Park, J.A.; Amri, C.; Kwon, Y.; Lee, J.H.; Lee, T. Recent advances in DNA nanotechnology for plasmonic biosensor construction. Biosensors, 2022, 12(6), 418.
[http://dx.doi.org/10.3390/bios12060418] [PMID: 35735565]
[96]
Frasco, M.; Chaniotakis, N. Semiconductor quantum dots in chemical sensors and biosensors. Sensors, 2009, 9(9), 7266-7286.
[http://dx.doi.org/10.3390/s90907266] [PMID: 22423206]
[97]
Li, J.; Zhu, J.J. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst, 2013, 138(9), 2506-2515.
[http://dx.doi.org/10.1039/c3an36705c] [PMID: 23518695]
[98]
Wei, Q.; Zhang, P.; Liu, T.; Pu, H.; Sun, D.W. A fluorescence biosensor based on single-stranded DNA and carbon quantum dots for acrylamide detection. Food Chem., 2021, 356, 129668.
[http://dx.doi.org/10.1016/j.foodchem.2021.129668] [PMID: 33827044]
[99]
Hwa, K.Y.; Subramani, B. Synthesis of zinc oxide nanoparticles on graphene-carbon nanotube hybrid for glucose biosensor applications. Biosens. Bioelectron., 2014, 62, 127-133.
[http://dx.doi.org/10.1016/j.bios.2014.06.023] [PMID: 24997365]
[100]
Singh, S.; Sharma, A.K.; Lohia, P.; Dwivedi, D.K. Theoretical analysis of sensitivity enhancement of surface plasmon resonance biosensor with zinc oxide and blue phosphorus/MoS2 heterostructure. Optik, 2021, 244, 167618.
[http://dx.doi.org/10.1016/j.ijleo.2021.167618]
[101]
Chaudhary, V.S.; Kumar, D.; Mishra, G.P.; Sharma, S.; Kumar, S. Plasmonic biosensor with gold and titanium dioxide immobilized on photonic crystal fiber for blood composition detection. IEEE Sens. J., 2022, 22(9), 8474-8481.
[http://dx.doi.org/10.1109/JSEN.2022.3160482]
[102]
Nadzirah, S.; Gopinath, S.C.B.; Parmin, N.A.; Hamzah, A.A.; Mohamed, M.A.; Chang, E.Y.; Dee, C.F. State-of-the-art on functional titanium dioxide-integrated nano-hybrids in electrical biosensors. Crit. Rev. Anal. Chem., 2022, 52(3), 637-648.
[http://dx.doi.org/10.1080/10408347.2020.1816447] [PMID: 32997522]
[103]
Gupta, S.; Murthy, C.N.; Prabha, C.R. Recent advances in carbon nanotube based electrochemical biosensors. Int. J. Biol. Macromol., 2018, 108, 687-703.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.038] [PMID: 29223757]
[104]
Monavari, S.M.; Marsusi, F.; Memarian, N.; Qasemnazhand, M. Carbon nanotubes and nanobelts as potential materials for biosensor. Sci. Rep., 2023, 13(1), 3118.
[http://dx.doi.org/10.1038/s41598-023-29862-9] [PMID: 36813813]
[105]
Dong, C.; Campell, A.S.; Eldawud, R.; Perhinschi, G.; Rojanasakul, Y.; Dinu, C.Z. Effects of acid treatment on structure, properties and biocompatibility of carbon nanotubes. Appl. Surf. Sci., 2013, 264, 261-268.
[http://dx.doi.org/10.1016/j.apsusc.2012.09.180]
[106]
Smart, S.K.; Cassady, A.I.; Lu, G.Q.; Martin, D.J. The biocompatibility of carbon nanotubes. Carbon, 2006, 44(6), 1034-1047.
[http://dx.doi.org/10.1016/j.carbon.2005.10.011]
[107]
Zare, Y.; Rhee, K.Y. Effects of interphase regions and filler networks on the viscosity of PLA/PEO/carbon nanotubes biosensor. Polym. Compos., 2019, 40(10), 4135-4141.
[http://dx.doi.org/10.1002/pc.25274]
[108]
Zamzami, M.A.; Rabbani, G.; Ahmad, A.; Basalah, A.A.; Al-Sabban, W.H.; Nate Ahn, S.; Choudhry, H. Carbon nanotube field-effect transistor (CNT-FET)-based biosensor for rapid detection of SARS-CoV-2 (COVID-19) surface spike protein S1. Bioelectrochemistry, 2022, 143, 107982.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107982] [PMID: 34715586]
[109]
Li, T.; Liang, Y.; Li, J.; Yu, Y.; Xiao, M.M.; Ni, W.; Zhang, Z.; Zhang, G.J. Carbon nanotube field-effect transistor biosensor for ultrasensitive and label-free detection of breast cancer exosomal miRNA21. Anal. Chem., 2021, 93(46), 15501-15507.
[http://dx.doi.org/10.1021/acs.analchem.1c03573] [PMID: 34747596]
[110]
Wang, L.; Lin, J. Recent advances on magnetic nanobead based biosensors: From separation to detection. Trends Analyt. Chem., 2020, 128, 115915.
[http://dx.doi.org/10.1016/j.trac.2020.115915]
[111]
Huang, F.; Xue, L.; Qi, W.; Cai, G.; Liu, Y.; Lin, J. An ultrasensitive impedance biosensor for Salmonella detection based on rotating high gradient magnetic separation and cascade reaction signal amplification. Biosens. Bioelectron., 2021, 176, 112921.
[http://dx.doi.org/10.1016/j.bios.2020.112921] [PMID: 33383398]
[112]
Stern, M.; Cohen, M.; Danielli, A. Configuration and design of electromagnets for rapid and precise manipulation of magnetic beads in biosensing applications. Micromachines, 2019, 10(11), 784.
[http://dx.doi.org/10.3390/mi10110784] [PMID: 31731737]
[113]
Koo, K.M.; Soda, N.; Shiddiky, M.J.A. Magnetic nanomaterial–based electrochemical biosensors for the detection of diverse circulating cancer biomarkers. Curr. Opin. Electrochem., 2021, 25, 100645.
[http://dx.doi.org/10.1016/j.coelec.2020.100645]
[114]
Cao, X.; Ye, Y.; Liu, S. Gold nanoparticle-based signal amplification for biosensing. Anal. Biochem., 2011, 417(1), 1-16.
[http://dx.doi.org/10.1016/j.ab.2011.05.027] [PMID: 21703222]
[115]
Tai, J.; Fan, S.; Ding, S.; Ren, L. Gold nanoparticles based optical biosensors for cancer biomarker proteins: A review of the current practices. Front. Bioeng. Biotechnol., 2022, 10, 877193.
[http://dx.doi.org/10.3389/fbioe.2022.877193] [PMID: 35557858]
[116]
Shrivastav, A.M.; Cvelbar, U.; Abdulhalim, I. A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun. Biol., 2021, 4(1), 70.
[http://dx.doi.org/10.1038/s42003-020-01615-8] [PMID: 33452375]
[117]
Gavrilaș, S.; Ursachi, C.Ș.; Perța-Crișan, S.; Munteanu, F.D. Recent trends in biosensors for environmental quality monitoring. Sensors, 2022, 22(4), 1513.
[http://dx.doi.org/10.3390/s22041513] [PMID: 35214408]
[118]
Fattahi, Z.; Khosroushahi, A.Y.; Hasanzadeh, M. Recent progress on developing of plasmon biosensing of tumor biomarkers: Efficient method towards early stage recognition of cancer. Biomed. Pharmacother., 2020, 132, 110850.
[http://dx.doi.org/10.1016/j.biopha.2020.110850] [PMID: 33068930]
[119]
Badshah, M.A.; Koh, N.Y.; Zia, A.W.; Abbas, N.; Zahra, Z.; Saleem, M.W. Recent developments in plasmonic nanostructures for metal enhanced fluorescence-based biosensing. Nanomaterials, 2020, 10(9), 1749.
[http://dx.doi.org/10.3390/nano10091749] [PMID: 32899375]
[120]
Heo, N.S.; Oh, S.Y.; Ryu, M.Y.; Baek, S.H.; Park, T.J.; Choi, C.; Huh, Y.S.; Park, J.P. Affinity peptide-guided plasmonic biosensor for detection of noroviral protein and human norovirus. Biotechnol. Bioprocess Eng.; BBE, 2019, 24(2), 318-325.
[http://dx.doi.org/10.1007/s12257-018-0410-6]
[121]
Khan, J.; Rasmi, Y.; Kırboğa, K.K.; Ali, A.; Rudrapal, M.; Patekar, R.R. Development of gold nanoparticle-based biosensors for COVID-19 diagnosis. Beni. Suef Univ. J. Basic Appl. Sci., 2022, 11(1), 111.
[http://dx.doi.org/10.1186/s43088-022-00293-1] [PMID: 36092513]
[122]
Kumar, A.; Mazinder Boruah, B.; Liang, X.-J. Gold nanoparticles: Promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J. Nanomater., 2011, 2011
[123]
Gulati, S.; Singh, P.; Diwan, A.; Mongia, A.; Kumar, S. Functionalized gold nanoparticles: promising and efficient diagnostic and therapeutic tools for HIV/AIDS. RSC Med. Chem., 2020, 11(11), 1252-1266.
[http://dx.doi.org/10.1039/D0MD00298D] [PMID: 34095839]
[124]
Fu, X.; Cheng, Z.; Yu, J.; Choo, P.; Chen, L.; Choo, J. A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens. Bioelectron., 2016, 78, 530-537.
[http://dx.doi.org/10.1016/j.bios.2015.11.099] [PMID: 26669705]
[125]
Unser, S.; Bruzas, I.; He, J.; Sagle, L. Localized surface plasmon resonance biosensing: Current challenges and approaches. Sensors, 2015, 15(7), 15684-15716.
[http://dx.doi.org/10.3390/s150715684] [PMID: 26147727]
[126]
Ferrari, E. Gold nanoparticle-based plasmonic biosensors. Biosensors, 2023, 13(3), 411.
[http://dx.doi.org/10.3390/bios13030411] [PMID: 36979623]
[127]
Castellana, E.T.; Gamez, R.C.; Russell, D.H. Label-free biosensing with lipid-functionalized gold nanorods. J. Am. Chem. Soc., 2011, 133(12), 4182-4185.
[http://dx.doi.org/10.1021/ja109936h] [PMID: 21384858]
[128]
Moabelo, K.L.; Lerga, T.M.; Jauset-Rubio, M.; Sibuyi, N.R.S.; O’Sullivan, C.K.; Meyer, M.; Madiehe, A.M. A label-free gold nanoparticles-based optical aptasensor for the detection of retinol binding protein 4. Biosensors, 2022, 12(12), 1061.
[http://dx.doi.org/10.3390/bios12121061] [PMID: 36551028]
[129]
Bauch, M.; Toma, K.; Toma, M.; Zhang, Q.; Dostalek, J. Plasmon-enhanced fluorescence biosensors: A review. Plasmonics, 2014, 9(4), 781-799.
[http://dx.doi.org/10.1007/s11468-013-9660-5] [PMID: 27330521]
[130]
Abel, B.; Odukoya, B.; Mohammed, M.; Aslan, K. Enhancement of the chemiluminescence response of enzymatic reactions by plasmonic surfaces for biosensing applications. Nano Biomed. Eng., 2015, 7(3), 92-101.
[http://dx.doi.org/10.5101/nbe.v7i3.p92-101] [PMID: 26582101]
[131]
Tort, N.; Salvador, J.P.; Marco, M.P. Multimodal plasmonic biosensing nanostructures prepared by DNA-directed immobilization of multifunctional DNA-gold nanoparticles. Biosens. Bioelectron., 2017, 90, 13-22.
[http://dx.doi.org/10.1016/j.bios.2016.11.022] [PMID: 27866079]
[132]
Verma, M.S.; Rogowski, J.L.; Jones, L.; Gu, F.X. Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnol. Adv., 2015, 33(6), 666-680.
[http://dx.doi.org/10.1016/j.biotechadv.2015.03.003] [PMID: 25792228]
[133]
Song, L.; Chen, J.; Xu, B.B.; Huang, Y. Flexible plasmonic biosensors for healthcare monitoring: Progress and prospects. ACS Nano, 2021, 15(12), 18822-18847.
[http://dx.doi.org/10.1021/acsnano.1c07176] [PMID: 34841852]
[134]
Nilghaz, A.; Mousavi, S.M.; Tian, J.; Cao, R.; Guijt, R.M.; Wang, X. Noble-metal nanoparticle-based colorimetric diagnostic assays for point-of-need applications. ACS Appl. Nano Mater., 2021, 4(12), 12808-12824.
[http://dx.doi.org/10.1021/acsanm.1c01545]
[135]
Vo-Dinh, T.; Wang, H.N.; Scaffidi, J. Plasmonic nanoprobes for SERS biosensing and bioimaging. J. Biophotonics, 2010, 3(1-2), 89-102.
[http://dx.doi.org/10.1002/jbio.200910015] [PMID: 19517422]
[136]
Zorlu, T.; Becerril-Castro, I.B.; Puertolas, B.; Giannini, V.; Correa-Duarte, M.A.; Alvarez-Puebla, R.A. Yolk-shell nanostars@Metal organic frameworks as molecular sieves for optical sensing and catalysis. Angew. Chem. Int. Ed., 2023, 62(26), e202305299.
[http://dx.doi.org/10.1002/anie.202305299] [PMID: 37186430]
[137]
Linh, V.T.N.; Yim, S.G.; Mun, C.; Yang, J.Y.; Lee, S.; Yoo, Y.W.; Sung, D.K.; Lee, Y.I.; Kim, D.H.; Park, S.G.; Yang, S.Y.; Jung, H.S. Bioinspired plasmonic nanoflower-decorated microneedle for label-free intradermal sensing. Appl. Surf. Sci., 2021, 551, 149411.
[http://dx.doi.org/10.1016/j.apsusc.2021.149411]
[138]
Koh, E.H.; Lee, W.C.; Choi, Y.J.; Moon, J.I.; Jang, J.; Park, S.G.; Choo, J.; Kim, D.H.; Jung, H.S. A wearable surface-enhanced Raman scattering sensor for label-free molecular detection. ACS Appl. Mater. Interfaces, 2021, 13(2), 3024-3032.
[http://dx.doi.org/10.1021/acsami.0c18892] [PMID: 33404230]
[139]
Jeong, J.W.; Arnob, M.M.P.; Baek, K.M.; Lee, S.Y.; Shih, W.C.; Jung, Y.S. 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis. Adv. Mater., 2016, 28(39), 8695-8704.
[http://dx.doi.org/10.1002/adma.201602603] [PMID: 27511881]
[140]
Bhardwaj, H.; Sumana, G.; Marquette, C.A. Gold nanobipyramids integrated ultrasensitive optical and electrochemical biosensor for Aflatoxin B1 detection. Talanta, 2021, 222, 121578.
[http://dx.doi.org/10.1016/j.talanta.2020.121578] [PMID: 33167265]
[141]
Xu, M.; Lin, L.; Jin, G.; Lin, Y.; Zhang, K. Two-in-one: Portable piezoelectric and plasmonic exciton effect-based co-enhanced photoelectrochemical biosensor for point-of-care testing of low-abundance cancer markers. Biosens. Bioelectron., 2022, 211, 114413.
[http://dx.doi.org/10.1016/j.bios.2022.114413] [PMID: 35613530]
[142]
Skládal, P. Piezoelectric biosensors. Trends Analyt. Chem., 2016, 79, 127-133.
[http://dx.doi.org/10.1016/j.trac.2015.12.009]
[143]
Wu, X.; Chai, Y.; Yuan, R.; Su, H.; Han, J. A novel label-free electrochemical microRNA biosensor using Pd nanoparticles as enhancer and linker. Analyst, 2013, 138(4), 1060-1066.
[http://dx.doi.org/10.1039/c2an36506e] [PMID: 23291596]
[144]
Park, J.A.; Kwon, N.; Park, E.; Kim, Y.; Jang, H.; Min, J.; Lee, T. Electrochemical biosensor with aptamer/porous platinum nanoparticle on round-type micro-gap electrode for saxitoxin detection in fresh water. Biosens. Bioelectron., 2022, 210, 114300.
[http://dx.doi.org/10.1016/j.bios.2022.114300] [PMID: 35489276]
[145]
Hou, Z.; Wang, Z.; Liu, R.; Li, H.; Zhang, Z.; Su, T.; Yang, J.; Liu, H. The effect of phospho-peptide on the stability of gold nanoparticles and drug delivery. J. Nanobiotechnol., 2019, 17(1), 88.
[http://dx.doi.org/10.1186/s12951-019-0522-y] [PMID: 31426815]
[146]
Kamal, Z.; Su, J.; Qiu, M. Erythrocytes modified (coated) gold nanoparticles for effective drug delivery. In: Metal Nanoparticles for Drug Delivery and Diagnostic Applications; Elsevier, 2020; pp. 13-29.
[http://dx.doi.org/10.1016/B978-0-12-816960-5.00002-1]
[147]
Huang, Y.; Li, M.; Huang, D.; Qiu, Q.; Lin, W.; Liu, J.; Yang, W.; Yao, Y.; Yan, G.; Qu, N.; Tuchin, V.V.; Fan, S.; Liu, G.; Zhao, Q.; Chen, X. Depth-resolved enhanced spectral-domain OCT imaging of live mammalian embryos using gold nanoparticles as contrast agent. Small, 2019, 15(35), 1902346.
[http://dx.doi.org/10.1002/smll.201902346] [PMID: 31304667]
[148]
Wu, Y.; Ali, M.R.K.; Chen, K.; Fang, N.; El-Sayed, M.A. Gold nanoparticles in biological optical imaging. Nano Today, 2019, 24, 120-140.
[http://dx.doi.org/10.1016/j.nantod.2018.12.006]
[149]
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine, 2012, 8(2), 147-166.
[http://dx.doi.org/10.1016/j.nano.2011.05.016] [PMID: 21703993]
[150]
Zhou, W.; Gao, X.; Liu, D.; Chen, X. Gold nanoparticles for in vitro diagnostics. Chem. Rev., 2015, 115(19), 10575-10636.
[http://dx.doi.org/10.1021/acs.chemrev.5b00100] [PMID: 26114396]
[151]
Sargazi, S.; Laraib, U.; Er, S.; Rahdar, A.; Hassanisaadi, M.; Zafar, M.N.; Díez-Pascual, A.M.; Bilal, M. Application of green gold nanoparticles in cancer therapy and diagnosis. Nanomaterials, 2022, 12(7), 1102.
[http://dx.doi.org/10.3390/nano12071102] [PMID: 35407220]
[152]
Karakuş, E.; Erdemir, E.; Demirbilek, N.; Liv, L. Colorimetric and electrochemical detection of SARS-CoV-2 spike antigen with a gold nanoparticle-based biosensor. Anal. Chim. Acta, 2021, 1182, 338939.
[http://dx.doi.org/10.1016/j.aca.2021.338939] [PMID: 34602210]
[153]
Zhang, Y.; Jiao, J.; Wei, Y.; Wang, D.; Yang, C.; Xu, Z. Plasmonic colorimetric biosensor for sensitive exosome detection via enzyme-induced etching of gold nanobipyramid@MnO2 nanosheet nanostructures. Anal. Chem., 2020, 92(22), 15244-15252.
[http://dx.doi.org/10.1021/acs.analchem.0c04136] [PMID: 33108733]
[154]
Mei, W.; Zhou, Y.; Xia, L.; Liu, X.; Huang, W.; Wang, H.; Zou, L.; Wang, Q.; Yang, X.; Wang, K. DNA tetrahedron-based valency controlled signal probes for tunable protein detection. ACS Sens., 2023, 8(1), 381-387.
[http://dx.doi.org/10.1021/acssensors.2c02476] [PMID: 36600539]
[155]
Bai, T.; Wang, L.; Wang, M.; Zhu, Y.; Li, W.; Guo, Z.; Zhang, Y. Strategic synthesis of trimetallic Au@Ag-Pt nanorattles for ultrasensitive colorimetric detection in lateral flow immunoassay. Biosens. Bioelectron., 2022, 208, 114218.
[http://dx.doi.org/10.1016/j.bios.2022.114218] [PMID: 35358773]
[156]
Zeng, F.; Xu, D.; Zhan, C.; Liang, C.; Zhao, W.; Zhang, J.; Feng, H.; Ma, X. Surfactant-free synthesis of graphene oxide coated silver nanoparticles for SERS biosensing and intracellular drug delivery. ACS Appl. Nano Mater., 2018, 1(6), 2748-2753.
[http://dx.doi.org/10.1021/acsanm.8b00444]
[157]
Maksuk, C.; Tinala, C.; Somboot, W.; Jakmunee, J.; Marken, F.; Kanyanee, T. Rapid determination of hydrogen peroxide in milk with non-enzymatic amperometric sensor based on porous gold modified screen-printed electrode in online dialysis system. Electroanalysis, 2023, 35(2), e202100691.
[http://dx.doi.org/10.1002/elan.202100691]
[158]
Ferreira, L.M.C.; Reis, I.F.; Martins, P.R.; Marcolino-Junior, L.H.; Bergamini, M.F.; Camargo, J.R.; Janegitz, B.C.; Vicentini, F.C. Using low-cost disposable immunosensor based on flexible PET screen-printed electrode modified with carbon black and gold nanoparticles for sensitive detection of SARS-CoV-2. Talanta Open, 2023, 7, 100201.
[http://dx.doi.org/10.1016/j.talo.2023.100201] [PMID: 36959870]
[159]
Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 2020, 14(5), 5268-5277.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[160]
Cen, S.Y.; Ge, X.Y.; Chen, Y.; Wang, A.J.; Feng, J.J. Label-free electrochemical immunosensor for ultrasensitive determination of cardiac troponin I based on porous fluffy-like AuPtPd trimetallic alloyed nanodendrites. Microchem. J., 2021, 169, 106568.
[http://dx.doi.org/10.1016/j.microc.2021.106568]
[161]
Pothipor, C.; Bamrungsap, S.; Jakmunee, J.; Ounnunkad, K. A gold nanoparticle-dye/poly(3-aminobenzylamine)/two dimensional MoSe2/graphene oxide electrode towards label-free electrochemical biosensor for simultaneous dual-mode detection of cancer antigen 15-3 and microRNA-21. Colloids Surf. B Biointerfaces, 2022, 210, 112260.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112260] [PMID: 34894598]
[162]
Wang, J.; Katz, E. Digital biosensors with built-in logic for biomedical applications-biosensors based on a biocomputing concept. Anal. Bioanal. Chem., 2010, 398(4), 1591-1603.
[http://dx.doi.org/10.1007/s00216-010-3746-0] [PMID: 20464382]
[163]
Shan, B.; Broza, Y.Y.; Li, W.; Wang, Y.; Wu, S.; Liu, Z.; Wang, J.; Gui, S.; Wang, L.; Zhang, Z.; Liu, W.; Zhou, S.; Jin, W.; Zhang, Q.; Hu, D.; Lin, L.; Zhang, Q.; Li, W.; Wang, J.; Liu, H.; Pan, Y.; Haick, H. Multiplexed nanomaterial-based sensor array for detection of COVID-19 in exhaled breath. ACS Nano, 2020, 14(9), 12125-12132.
[http://dx.doi.org/10.1021/acsnano.0c05657] [PMID: 32808759]
[164]
Wang, K.; Sun, D.W.; Pu, H.; Wei, Q.; Huang, L. Stable, flexible, and high-performance SERS chip enabled by a ternary film-packaged plasmonic nanoparticle array. ACS Appl. Mater. Interfaces, 2019, 11(32), 29177-29186.
[http://dx.doi.org/10.1021/acsami.9b09746] [PMID: 31317741]
[165]
Negm, A.; Howlader, M.M.R.; Belyakov, I.; Bakr, M.; Ali, S.; Irannejad, M.; Yavuz, M. Materials perspectives of integrated plasmonic biosensors. Materials, 2022, 15(20), 7289.
[http://dx.doi.org/10.3390/ma15207289] [PMID: 36295354]
[166]
Agrawal, N.; Saxena, R.; Singh, L.; Saha, C.; Kumar, S. Recent advancements in plasmonic optical biosensors: A review. ISSS J. Micro Smart Syst., 2022, 11(1), 31-42.
[http://dx.doi.org/10.1007/s41683-021-00079-0]
[167]
Oh, H.K.; Kim, K.; Park, J.; Im, H.; Maher, S.; Kim, M.G. Plasmon color-preserved gold nanoparticle clusters for high sensitivity detection of SARS-CoV-2 based on lateral flow immunoassay. Biosens. Bioelectron., 2022, 205, 114094.
[http://dx.doi.org/10.1016/j.bios.2022.114094] [PMID: 35202985]
[168]
Ren, Z.; Xu, L.; Yang, L.; Cui, Y. Minimizing cross-reactivity for the chemiluminescent lateral flow immunoassay of cardiac troponin I based on PEGylation of gold nanoparticles. Anal. Chem., 2023, 95(16), 6646-6654.
[http://dx.doi.org/10.1021/acs.analchem.3c00057] [PMID: 37026585]
[169]
Omidfar, K.; Riahi, F.; Kashanian, S. Lateral flow assay: A summary of recent progress for improving assay performance. Biosensors, 2023, 13(9), 837.
[http://dx.doi.org/10.3390/bios13090837] [PMID: 37754072]
[170]
Sharifi, M.; Attar, F.; Saboury, A.A.; Akhtari, K.; Hooshmand, N.; Hasan, A.; El-Sayed, M.A.; Falahati, M. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. J. Control. Release, 2019, 311-312, 170-189.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.032] [PMID: 31472191]
[171]
Gao, Q.; Zhang, J.; Gao, J.; Zhang, Z.; Zhu, H.; Wang, D. Gold nanoparticles in cancer theranostics. Front. Bioeng. Biotechnol., 2021, 9, 647905.
[http://dx.doi.org/10.3389/fbioe.2021.647905] [PMID: 33928072]
[172]
Mao, Q.; Fang, J.; Wang, A.; Zhang, Y.; Cui, C.; Ye, S.; Zhao, Y.; Feng, Y.; Li, J.; Shi, H. Aggregation of gold nanoparticles triggered by hydrogen peroxide-initiated chemiluminescence for activated tumor theranostics. Angew. Chem. Int. Ed., 2021, 60(44), 23805-23811.
[http://dx.doi.org/10.1002/anie.202109863] [PMID: 34472168]
[173]
Kwon, K.C.; Jo, E.; Kwon, Y.W.; Lee, B.; Ryu, J.H.; Lee, E.J.; Kim, K.; Lee, J. Superparamagnetic gold nanoparticles synthesized on protein particle scaffolds for cancer theragnosis. Adv. Mater., 2017, 29(38), 1701146.
[http://dx.doi.org/10.1002/adma.201701146] [PMID: 28741689]
[174]
He, J.; Liu, S.; Zhang, Y.; Chu, X.; Lin, Z.; Zhao, Z.; Qiu, S.; Guo, Y.; Ding, H.; Pan, Y.; Pan, J. The application of and strategy for gold nanoparticles in cancer immunotherapy. Front. Pharmacol., 2021, 12, 687399.
[http://dx.doi.org/10.3389/fphar.2021.687399] [PMID: 34163367]
[175]
Medici, S.; Peana, M.; Coradduzza, D.; Zoroddu, M.A. Gold nanoparticles and cancer: Detection, diagnosis and therapy. Semin. Cancer Biol., 2021, 76, 27-37.
[http://dx.doi.org/10.1016/j.semcancer.2021.06.017] [PMID: 34153434]
[176]
Rastinehad, A.R.; Anastos, H.; Wajswol, E.; Winoker, J.S.; Sfakianos, J.P.; Doppalapudi, S.K. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci., 2019, 18590-18596.
[177]
Yin, K.; Pandian, V.; Kadimisetty, K.; Zhang, X.; Ruiz, C.; Cooper, K.; Liu, C. Real-time colorimetric quantitative molecular detection of infectious diseases on smartphone-based diagnostic platform. Sci. Rep., 2020, 10(1), 9009.
[http://dx.doi.org/10.1038/s41598-020-65899-w] [PMID: 32488061]
[178]
Zhu, Y.; Xu, J.; Wang, Y.; Chen, C.; Gu, H.; Chai, Y.; Wang, Y. Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Res., 2020, 13(2), 389-400.
[http://dx.doi.org/10.1007/s12274-020-2621-3]
[179]
Nguyen, T.M.T.; Huynh, T.T.T.; Dang, C.H.; Mai, D.T.; Nguyen, T.T.N.; Nguyen, D.T.; Dang, V.S.; Nguyen, T.D.; Nguyen, T.D. Novel biogenic silver nanoparticles used for antibacterial effect and catalytic degradation of contaminants. Res. Chem. Intermed., 2020, 46(3), 1975-1990.
[http://dx.doi.org/10.1007/s11164-019-04075-w]
[180]
Sonseca, A.; Madani, S.; Rodríguez, G.; Hevilla, V.; Echeverría, C.; Fernández-García, M.; Muñoz-Bonilla, A.; Charef, N.; López, D. Multifunctional PLA blends containing chitosan mediated silver nanoparticles: Thermal, mechanical, antibacterial, and degradation properties. Nanomaterials, 2019, 10(1), 22.
[http://dx.doi.org/10.3390/nano10010022] [PMID: 31861765]
[181]
Ballesteros, C.A.S.; Correa, D.S.; Zucolotto, V. Polycaprolactone nanofiber mats decorated with photoresponsive nanogels and silver nanoparticles: Slow release for antibacterial control. Mater. Sci. Eng. C, 2020, 107, 110334.
[http://dx.doi.org/10.1016/j.msec.2019.110334] [PMID: 31761214]
[182]
Gunputh, U.F.; Le, H.; Lawton, K.; Besinis, A.; Tredwin, C.; Handy, R.D. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus. Nanotoxicology, 2020, 14(1), 97-110.
[http://dx.doi.org/10.1080/17435390.2019.1665727] [PMID: 31566471]
[183]
Tiryaki, E.; Özarslan, A.C.; Yücel, S.; Correa-Duarte, M.A. Plasmon-sensitized silica-titanium aerogels as potential photocatalysts for organic pollutants and bacterial strains. ACS Omega, 2023, 8(37), 33857-33869.
[http://dx.doi.org/10.1021/acsomega.3c04556] [PMID: 37744791]
[184]
Haes, A.J.; Van Duyne, R.P. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc., 2002, 124(35), 10596-10604.
[http://dx.doi.org/10.1021/ja020393x] [PMID: 12197762]
[185]
Rad, A.S.; Mirabi, A.; Binaian, E.; Tayebi, H. A review on glucose and hydrogen peroxide biosensor based on modified electrode included silver nanoparticles. Int. J. Electrochem. Sci., 2011, 6(8), 3671-3683.
[http://dx.doi.org/10.1016/S1452-3981(23)18279-4]
[186]
Li, J.; Cheng, R.; Cheng, Z.; Duan, C.; Wang, B.; Zeng, J.; Xu, J.; Tian, X.; Chen, H.; Gao, W.; Chen, K. Silver-nanoparticle-embedded hybrid nanopaper with significant thermal conductivity enhancement. ACS Appl. Mater. Interfaces, 2021, 13(30), 36171-36181.
[http://dx.doi.org/10.1021/acsami.1c08894] [PMID: 34275277]
[187]
Alshehri, A.H.; Jakubowska, M.; Młożniak, A.; Horaczek, M.; Rudka, D.; Free, C.; Carey, J.D. Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Appl. Mater. Interfaces, 2012, 4(12), 7007-7010.
[http://dx.doi.org/10.1021/am3022569] [PMID: 23151185]
[188]
Jiang, Y.; Zhang, X.; Pei, L.; Yue, S.; Ma, L.; Zhou, L.; Huang, Z.; He, Y.; Gao, J. Silver nanoparticles modified two-dimensional transition metal carbides as nanocarriers to fabricate acetycholinesterase-based electrochemical biosensor. Chem. Eng. J., 2018, 339, 547-556.
[http://dx.doi.org/10.1016/j.cej.2018.01.111]
[189]
Lai, G.; Yan, F.; Wu, J.; Leng, C.; Ju, H. Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction. Anal. Chem., 2011, 83(7), 2726-2732.
[http://dx.doi.org/10.1021/ac103283p] [PMID: 21370869]
[190]
Ham, J.; Yun, B.J.; Koh, W.G. SERS-based biosensing platform using shape-coded hydrogel microparticles incorporating silver nanoparticles. Sens. Actuators B Chem., 2021, 341, 129989.
[http://dx.doi.org/10.1016/j.snb.2021.129989]
[191]
Abdellatif, A.A.H.; Younis, M.A.; Alsharidah, M.; Al Rugaie, O.; Tawfeek, H.M. Biomedical applications of quantum dots: Overview, challenges, and clinical potential. Int. J. Nanomedicine, 2022, 17, 1951-1970.
[http://dx.doi.org/10.2147/IJN.S357980] [PMID: 35530976]
[192]
Li, Z.; Wang, Y.; Wang, J.; Tang, Z.; Pounds, J.G.; Lin, Y. Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal. Chem., 2010, 82(16), 7008-7014.
[http://dx.doi.org/10.1021/ac101405a] [PMID: 20704391]
[193]
Zhou, D. Quantum dot–nucleic acid/aptamer bioconjugate-based fluorimetric biosensors. Biochem. Soc. Trans., 2012, 40(4), 635-639.
[http://dx.doi.org/10.1042/BST20120059] [PMID: 22817707]
[194]
Yang, Y.; Mao, G.; Ji, X.; He, Z. DNA-templated quantum dots and their applications in biosensors, bioimaging, and therapy. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(1), 9-17.
[http://dx.doi.org/10.1039/C9TB01870K] [PMID: 31750850]
[195]
He, Y.; Wang, X.; Sun, J.; Jiao, S.; Chen, H.; Gao, F.; Wang, L. Fluorescent blood glucose monitor by hemin-functionalized graphene quantum dots based sensing system. Anal. Chim. Acta, 2014, 810, 71-78.
[http://dx.doi.org/10.1016/j.aca.2013.11.059] [PMID: 24439507]
[196]
Yu, S.; Ding, L.; Lin, H.; Wu, W.; Huang, J. A novel optical fiber glucose biosensor based on carbon quantum dots-glucose oxidase/cellulose acetate complex sensitive film. Biosens. Bioelectron., 2019, 146, 111760.
[http://dx.doi.org/10.1016/j.bios.2019.111760] [PMID: 31605987]
[197]
Kalkal, A.; Pradhan, R.; Kadian, S.; Manik, G.; Packirisamy, G. Biofunctionalized graphene quantum dots based fluorescent biosensor toward efficient detection of small cell lung cancer. ACS Appl. Bio Mater., 2020, 3(8), 4922-4932.
[http://dx.doi.org/10.1021/acsabm.0c00427] [PMID: 35021736]
[198]
Wang, C.; Yang, X.; Gu, B.; Liu, H.; Zhou, Z.; Shi, L.; Cheng, X.; Wang, S. Sensitive and simultaneous detection of SARS-CoV-2-specific IgM/IgG using lateral flow immunoassay based on dual-mode quantum dot nanobeads. Anal. Chem., 2020, 92(23), 15542-15549.
[http://dx.doi.org/10.1021/acs.analchem.0c03484] [PMID: 33207872]
[199]
Sanjayan, C.; Ravikumar, C.H.; Balakrishna, R.G. Perovskite QD based paper microfluidic device for simultaneous detection of lung cancer biomarkers-Carcinoembryonic antigen and neuron specific enolase. Chem. Eng. J., 2023, 464, 142581.
[http://dx.doi.org/10.1016/j.cej.2023.142581]
[200]
Zhao, L.; Wu, Z.; Liu, G.; Lu, H.; Gao, Y.; Liu, F.; Wang, C.; Cui, J.; Lu, G. High-activity Mo, S co-doped carbon quantum dot nanozyme-based cascade colorimetric biosensor for sensitive detection of cholesterol. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(44), 7042-7051.
[http://dx.doi.org/10.1039/C9TB01731C] [PMID: 31638638]
[201]
Khaliq, N.; Rasheed, M.A.; Khan, M.; Maqbool, M.; Ahmad, M.; Karim, S.; Nisar, A.; Schmuki, P.; Cho, S.O.; Ali, G. Voltage-switchable biosensor with gold nanoparticles on TiO2 nanotubes decorated with CdS quantum dots for the detection of cholesterol and H2O2. ACS Appl. Mater. Interfaces, 2021, 13(3), 3653-3668.
[http://dx.doi.org/10.1021/acsami.0c19979] [PMID: 33439005]
[202]
Hatamluyi, B.; Rezayi, M.; Amel Jamehdar, S.; Rizi, K.S.; Mojarrad, M.; Meshkat, Z.; Choobin, H.; Soleimanpour, S.; Boroushaki, M.T. Sensitive and specific clinically diagnosis of SARS-CoV-2 employing a novel biosensor based on boron nitride quantum dots/flower-like gold nanostructures signal amplification. Biosens. Bioelectron., 2022, 207, 114209.
[http://dx.doi.org/10.1016/j.bios.2022.114209] [PMID: 35339072]
[203]
Feng, S.; Hu, W.; Pei, F.; Liu, Z.; Du, B.; Mu, X.; Liu, B.; Hao, Q.; Lei, W.; Tong, Z. A highly sensitive fluorescence and screen-printed electrodes-electrochemiluminescence immunosensor for ricin detection based on CdSe/ZnS QDs with dual signal. Toxins, 2022, 14(10), 710.
[http://dx.doi.org/10.3390/toxins14100710] [PMID: 36287978]
[204]
Rocha-Santos, T.A.P. Sensors and biosensors based on magnetic nanoparticles. Trends Analyt. Chem., 2014, 62, 28-36.
[http://dx.doi.org/10.1016/j.trac.2014.06.016]
[205]
Hao, L.; Xue, L.; Huang, F.; Cai, G.; Qi, W.; Zhang, M.; Han, Q.; Wang, Z.; Lin, J. A microfluidic biosensor based on magnetic nanoparticle separation, quantum dots labeling and mno2 nanoflower amplification for rapid and sensitive detection of salmonella typhimurium. Micromachines, 2020, 11(3), 281.
[http://dx.doi.org/10.3390/mi11030281] [PMID: 32182880]
[206]
kianfar, E. Magnetic nanoparticles in targeted drug delivery: A review. J. Supercond. Nov. Magn., 2021, 34(7), 1709-1735.
[http://dx.doi.org/10.1007/s10948-021-05932-9]
[207]
Chang, Y.; Wang, Y.; Zhang, J.; Xing, Y.; Li, G.; Deng, D.; Liu, L. Overview on the design of magnetically assisted electrochemical biosensors. Biosensors, 2022, 12(11), 954.
[http://dx.doi.org/10.3390/bios12110954] [PMID: 36354462]
[208]
Huang, L.; Liu, S.; Ren, S.; Zhang, M.; Wang, T.; Wang, X.; Gao, Z. Magnetic relaxation switch biosensors based on self-assembly of polystyrene microspheres and magnetic nanoparticles for detection of bisphenol A. ACS Appl. Nano Mater., 2021, 4(6), 5963-5971.
[http://dx.doi.org/10.1021/acsanm.1c00845]
[209]
Campanile, R.; Acunzo, A.; Scardapane, E.; Minopoli, A.; Martins, V.C.; Di Girolamo, R.; Cardoso, S.; Velotta, R.; Della Ventura, B.; Iannotti, V. Multifunctional core@satellite magnetic particles for magnetoresistive biosensors. ACS Omega, 2022, 7(41), 36543-36550.
[http://dx.doi.org/10.1021/acsomega.2c04442] [PMID: 36278054]
[210]
Shao, H.; Min, C.; Issadore, D.; Liong, M.; Yoon, T.J.; Weissleder, R.; Lee, H. Magnetic nanoparticles and microNMR for diagnostic applications. Theranostics, 2012, 2(1), 55-65.
[http://dx.doi.org/10.7150/thno.3465] [PMID: 22272219]
[211]
Hasanzadeh, M.; Shadjou, N.; de la Guardia, M. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. Trends Analyt. Chem., 2015, 72, 1-9.
[http://dx.doi.org/10.1016/j.trac.2015.03.016]
[212]
Hushiarian, R.; Yusof, N.A.; Abdullah, A.H.; Ahmad, S.A.A.; Dutse, S.W. Facilitating the indirect detection of genomic DNA in an electrochemical DNA biosensor using magnetic nanoparticles and DNA ligase. Anal. Chem. Res., 2015, 6, 17-25.
[http://dx.doi.org/10.1016/j.ancr.2015.10.004]
[213]
Lee, C.Y.; Wu, L.P.; Chou, T.T.; Hsieh, Y.Z. Functional magnetic nanoparticles–assisted electrochemical biosensor for eosinophil cationic protein in cell culture. Sens. Actuators B Chem., 2018, 257, 672-677.
[http://dx.doi.org/10.1016/j.snb.2017.11.033]
[214]
Gessner, I.; Fries, J.W.U.; Brune, V.; Mathur, S. Magnetic nanoparticle-based amplification of microRNA detection in body fluids for early disease diagnosis. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(1), 9-22.
[http://dx.doi.org/10.1039/D0TB02165B] [PMID: 33179710]
[215]
Islam, M.A.; Ahsan, M.Z. Plausible approach for rapid detection of SARS-CoV-2 virus by magnetic nanoparticle based biosensors. Am. J. Nanosci, 2020, 6(6)
[216]
Su, L.; Feng, J.; Zhou, X.; Ren, C.; Li, H.; Chen, X. Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal. Chem., 2012, 84(13), 5753-5758.
[http://dx.doi.org/10.1021/ac300939z] [PMID: 22702236]
[217]
Xu, T.; Chi, B.; Wu, F.; Ma, S.; Zhan, S.; Yi, M.; Xu, H.; Mao, C. A sensitive label-free immunosensor for detection α-Fetoprotein in whole blood based on anticoagulating magnetic nanoparticles. Biosens. Bioelectron., 2017, 95, 87-93.
[http://dx.doi.org/10.1016/j.bios.2017.04.015] [PMID: 28419916]
[218]
Farzin, A.; Etesami, S.A.; Quint, J.; Memic, A.; Tamayol, A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv. Healthc. Mater., 2020, 9(9), 1901058.
[http://dx.doi.org/10.1002/adhm.201901058] [PMID: 32196144]
[219]
Materón, E.M.; Miyazaki, C.M.; Carr, O.; Joshi, N.; Picciani, P.H.S.; Dalmaschio, C.J.; Davis, F.; Shimizu, F.M. Magnetic nanoparticles in biomedical applications: A review. Appl. Surf. Sci. Adv., 2021, 6, 100163.
[http://dx.doi.org/10.1016/j.apsadv.2021.100163]
[220]
Danafar, H.; Sharafi, A.; Kheiri, S.; Kheiri Manjili, H. Co-delivery of sulforaphane and curcumin with PEGylated iron oxide-gold core shell nanoparticles for delivery to breast cancer cell line. Iran. J. Pharm. Res., 2018, 17(2), 480-494.
[PMID: 29881406]
[221]
Kheiri Manjili, H.; Ma’mani, L.; Tavaddod, S.; Mashhadikhan, M.; Shafiee, A.; Naderi-Manesh, H. D, L-sulforaphane loaded Fe3O4@ gold core shell nanoparticles: A potential sulforaphane delivery system. PLoS One, 2016, 11(3), e0151344.
[http://dx.doi.org/10.1371/journal.pone.0151344] [PMID: 26982588]
[222]
Kumagai, M.; Sarma, T.K.; Cabral, H.; Kaida, S.; Sekino, M.; Herlambang, N.; Osada, K.; Kano, M.R.; Nishiyama, N.; Kataoka, K. Enhanced in vivo magnetic resonance imaging of tumors by PEGylated iron-oxide-gold core-shell nanoparticles with prolonged blood circulation properties. Macromol. Rapid Commun., 2010, 31(17), 1521-1528.
[http://dx.doi.org/10.1002/marc.201000341] [PMID: 21567561]
[223]
Kayal, S.; Ramanujan, R.V. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting. J. Nanosci. Nanotechnol., 2010, 10(9), 5527-5539.
[http://dx.doi.org/10.1166/jnn.2010.2461] [PMID: 21133071]
[224]
Dzudzevic Cancar, H.; Soylemez, S.; Akpinar, Y.; Kesik, M.; Göker, S.; Gunbas, G.; Volkan, M.; Toppare, L. A novel acetylcholinesterase biosensor: Core–shell magnetic nanoparticles incorporating a conjugated polymer for the detection of organophosphorus pesticides. ACS Appl. Mater. Interfaces, 2016, 8(12), 8058-8067.
[http://dx.doi.org/10.1021/acsami.5b12383] [PMID: 26956086]
[225]
Veloso, S.R.S.; Tiryaki, E.; Spuch, C.; Hilliou, L.; Amorim, C.O.; Amaral, V.S.; Coutinho, P.J.G.; Ferreira, P.M.T.; Salgueiriño, V.; Correa-Duarte, M.A.; Castanheira, E.M.S. Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels. Nanoscale, 2022, 14(14), 5488-5500.
[http://dx.doi.org/10.1039/D1NR08158F] [PMID: 35332904]
[226]
Altenschmidt, L.; Sánchez-Paradinas, S.; Lübkemann, F.; Zámbó, D.; Abdelmonem, A.M.; Bradtmüller, H.; Masood, A.; Morales, I.; de la Presa, P.; Knebel, A.; García-Tuñón, M.A.G.; Pelaz, B.; Hindricks, K.D.J.; Behrens, P.; Parak, W.J.; Bigall, N.C. Aerogelation of polymer-coated photoluminescent, plasmonic, and magnetic nanoparticles for biosensing applications. ACS Appl. Nano Mater., 2021, 4(7), 6678-6688.
[http://dx.doi.org/10.1021/acsanm.1c00636] [PMID: 34327308]
[227]
Kamalzare, S.; Noormohammadi, Z.; Rahimi, P.; Atyabi, F.; Irani, S.; Tekie, F.S.M.; Mottaghitalab, F. Carboxymethyl dextran-trimethyl chitosan coated superparamagnetic iron oxide nanoparticles: An effective siRNA delivery system for HIV-1 Nef. J. Cell. Physiol., 2019, 234(11), 20554-20565.
[http://dx.doi.org/10.1002/jcp.28655] [PMID: 31144311]
[228]
Arami, H.; Stephen, Z.; Veiseh, O.; Zhang, M. Chitosan-coated iron oxide nanoparticles for molecular imaging and drug delivery. Adv. Polym. Sci., 2011, 243, 163-184.
[http://dx.doi.org/10.1007/12_2011_121]
[229]
Kania, G.; Sternak, M.; Jasztal, A.; Chlopicki, S.; Błażejczyk, A.; Nasulewicz-Goldeman, A.; Wietrzyk, J.; Jasiński, K.; Skórka, T.; Zapotoczny, S.; Nowakowska, M. Uptake and bioreactivity of charged chitosan-coated superparamagnetic nanoparticles as promising contrast agents for magnetic resonance imaging. Nanomedicine, 2018, 14(1), 131-140.
[http://dx.doi.org/10.1016/j.nano.2017.09.004] [PMID: 28939490]
[230]
Kim, Y.K.; Zhang, M.; Lu, J.J.; Xu, F.; Chen, B.A.; Xing, L.; Jiang, H.L. PK11195-chitosan- graft -polyethylenimine-modified SPION as a mitochondria-targeting gene carrier. J. Drug Target., 2016, 24(5), 457-467.
[http://dx.doi.org/10.3109/1061186X.2015.1087527] [PMID: 26390926]
[231]
Aliabadi, M.; Shagholani, H.; Yunessnia lehi, A. Synthesis of a novel biocompatible nanocomposite of graphene oxide and magnetic nanoparticles for drug delivery. Int. J. Biol. Macromol., 2017, 98, 287-291.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.012] [PMID: 28167110]
[232]
Carrasco, S. Metal-organic frameworks for the development of biosensors: A current overview. Biosensors, 2018, 8(4), 92.
[http://dx.doi.org/10.3390/bios8040092] [PMID: 30332786]
[233]
Zhao, Y.; Zeng, H.; Zhu, X.W.; Lu, W.; Li, D. Metal–organic frameworks as photoluminescent biosensing platforms: Mechanisms and applications. Chem. Soc. Rev., 2021, 50(7), 4484-4513.
[http://dx.doi.org/10.1039/D0CS00955E] [PMID: 33595006]
[234]
Xu, W.; Jiao, L.; Wu, Y.; Hu, L.; Gu, W.; Zhu, C. Metal-organic frameworks enhance biomimetic cascade catalysis for biosensing. Adv. Mater., 2021, 33(22), 2005172.
[http://dx.doi.org/10.1002/adma.202005172] [PMID: 33893661]
[235]
Zorlu, T.; Correa-Duarte, M.A.; Alvarez-Puebla, R.A. Composite nanoparticle-metal-organic frameworks for SERS sensing. J. Chem. Phys., 2023, 158(17), 171001.
[http://dx.doi.org/10.1063/5.0144695] [PMID: 37125707]
[236]
Liu, B.; Jiang, M.; Zhu, D.; Zhang, J.; Wei, G. Metal-organic frameworks functionalized with nucleic acids and amino acids for structure- and function-specific applications: A tutorial review. Chem. Eng. J., 2022, 428, 131118.
[http://dx.doi.org/10.1016/j.cej.2021.131118]
[237]
Pashazadeh-Panahi, P.; Belali, S.; Sohrabi, H.; Oroojalian, F.; Hashemzaei, M.; Mokhtarzadeh, A.; de la Guardia, M. Metal-organic frameworks conjugated with biomolecules as efficient platforms for development of biosensors. Trends Analyt. Chem., 2021, 141, 116285.
[http://dx.doi.org/10.1016/j.trac.2021.116285]
[238]
Xue, Y.; Wang, Y.; Feng, S.; Yan, M.; Huang, J.; Yang, X. A dual-amplification mode and Cu-based metal-organic frameworks mediated electrochemical biosensor for sensitive detection of microRNA. Biosens. Bioelectron., 2022, 202, 113992.
[http://dx.doi.org/10.1016/j.bios.2022.113992] [PMID: 35033827]
[239]
Saeidi, M.; Chenani, H.; Amidian, M.; Rajabi, N.; Alimohammadi, H.; Zarrabi, A.; Simchi, A. Functionalization of metal-organic frameworks with metallic nanoclusters for ultra-sensitive monitoring of morphine in biological fluids. Sens. Actuators B Chem., 2023, 393, 134175.
[http://dx.doi.org/10.1016/j.snb.2023.134175]
[240]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.S.; Hwang, Y.K.; Marsaud, V.; Bories, P.N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9(2), 172-178.
[http://dx.doi.org/10.1038/nmat2608] [PMID: 20010827]
[241]
Zhuang, J.; Kuo, C.H.; Chou, L.Y.; Liu, D.Y.; Weerapana, E.; Tsung, C.K. Optimized metal-organic-framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation. ACS Nano, 2014, 8(3), 2812-2819.
[http://dx.doi.org/10.1021/nn406590q] [PMID: 24506773]
[242]
Ke, F.; Yuan, Y.P.; Qiu, L.G.; Shen, Y.H.; Xie, A.J.; Zhu, J.F.; Tian, X.Y.; Zhang, L.D. Facile fabrication of magnetic metal-organic framework nanocomposites for potential targeted drug delivery. J. Mater. Chem., 2011, 21(11), 3843-3848.
[http://dx.doi.org/10.1039/c0jm01770a]
[243]
Cai, W.; Chu, C.C.; Liu, G.; Wáng, Y.X.J. Metal-organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small, 2015, 11(37), 4806-4822.
[http://dx.doi.org/10.1002/smll.201500802] [PMID: 26193176]
[244]
Hu, Q.; Yu, J.; Liu, M.; Liu, A.; Dou, Z.; Yang, Y. A low cytotoxic cationic metal-organic framework carrier for controllable drug release. J. Med. Chem., 2014, 57(13), 5679-5685.
[http://dx.doi.org/10.1021/jm5004107] [PMID: 24922463]
[245]
Nagata, S.; Kokado, K.; Sada, K. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution. Chem. Commun., 2015, 51(41), 8614-8617.
[http://dx.doi.org/10.1039/C5CC02339D] [PMID: 25896867]
[246]
An, J.; Geib, S.J.; Rosi, N.L. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J. Am. Chem. Soc., 2009, 131(24), 8376-8377.
[http://dx.doi.org/10.1021/ja902972w] [PMID: 19489551]
[247]
Ma, H.; Li, M.; Yu, T.; Zhang, H.; Xiong, M.; Li, F. Magnetic ZIF-8-based mimic multi-enzyme system as a colorimetric biosensor for detection of aryloxyphenoxypropionate herbicides. ACS Appl. Mater. Interfaces, 2021, 13(37), 44329-44338.
[http://dx.doi.org/10.1021/acsami.1c11815] [PMID: 34494423]
[248]
Meng, L.; Xiao, K.; Zhang, X.; Du, C.; Chen, J. A novel signal-off photoelectrochemical biosensor for M.SssI MTase activity assay based on GQDs@ZIF-8 polyhedra as signal quencher. Biosens. Bioelectron., 2020, 150, 111861.
[http://dx.doi.org/10.1016/j.bios.2019.111861] [PMID: 31740258]
[249]
Hatamluyi, B.; Sadeghzadeh, S.; Rezayi, M.; Tavakoly Sany, S.B. Diazinon electrochemical biosensor mediated by aptamer and nanoscale porous carbon derived from ZIF-8. Sens. Actuators B Chem., 2023, 381, 133424.
[http://dx.doi.org/10.1016/j.snb.2023.133424]
[250]
Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci., 2006, 103(27), 10186-10191.
[http://dx.doi.org/10.1073/pnas.0602439103] [PMID: 16798880]
[251]
Jiang, Q.; Chandar, Y.J.; Cao, S.; Kharasch, E.D.; Singamaneni, S.; Morrissey, J.J. Rapid, point-of-care, paper-based plasmonic biosensor for Zika virus diagnosis. Adv. Biosyst., 2017, 1(9), 1700096.
[http://dx.doi.org/10.1002/adbi.201700096] [PMID: 32646188]
[252]
Li, J.; Zhang, N.; Yang, X.; Yang, X.; Wang, Z.; Liu, H. Rhb@ MOF-5 composite film as a fluorescence sensor for detection of chilled pork freshness. Biosensors, 2022, 12(7), 544.
[http://dx.doi.org/10.3390/bios12070544] [PMID: 35884347]
[253]
Dong, X.; Du, Y.; Zhao, G.; Cao, W.; Fan, D.; Kuang, X.; Wei, Q.; Ju, H. Dual-signal electrochemiluminescence immunosensor for Neuron-specific enolase detection based on “dual-potential” emitter Ru(bpy)32+ functionalized zinc-based metal-organic frameworks. Biosens. Bioelectron., 2021, 192, 113505.
[http://dx.doi.org/10.1016/j.bios.2021.113505] [PMID: 34298497]
[254]
Li, Z.; Zhao, S.; Wang, H.; Peng, Y.; Tan, Z.; Tang, B. Functional groups influence and mechanism research of UiO-66-type metal-organic frameworks for ketoprofen delivery. Colloids Surf. B Biointerfaces, 2019, 178, 1-7.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.027] [PMID: 30822680]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy