Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Significant Advancement in Various Synthetic Strategies and Pharmacotherapy of Piperine Derivatives: A Review

Author(s): Sagar Joshi, Salahuddin*, Avijit Mazumder, Rajnish Kumar, Km Shabana, Sonakshi Tyagi, Kavita Rana, Mohamed Jawed Ahsan, Mohammad Shahar Yar, Arvind Arya and Navneet Khurana

Volume 23, Issue 25, 2023

Published on: 11 October, 2023

Page: [2394 - 2415] Pages: 22

DOI: 10.2174/0115680266256255231009075303

Price: $65

Abstract

Background: Piperine is a natural compound found in black pepper that has been traditionally used for various therapeutic purposes. In the ayurvedic system of medication there is a lot of evidence which shows that the piperine is widely used for different therapeutic purpose. In recent years, there has been an increasing interest in the pharmacological and therapeutic potential of piperine and its derivatives in modern medicine. In order to increase the bioavailability and therapeutic effectiveness of piperine and its analogs, researchers have been looking at various extraction methods and synthesis approaches. Many studies have been conducted in this area because of the promise of piperine as a natural substitute for synthetic medications.

Objectives: The objective of this review article is to provide an up-to-date analysis of the literature on the synthesis of piperine analogs, including their extraction techniques and various biological activities such as antihypertensive, antidiabetic, insecticidal, antimicrobial, and antibiotic effects. Additionally, the review aims to discuss the potential of piperine in modern medicine, given its traditional use in various medicinal systems such as Ayurveda, Siddha, and Unani. The article also provides a comprehensive analysis of the plant from which piperine is derived.

Conclusion: This review article provides a thorough examination of piperine and the source plant. The best extraction technique for the extraction of piperine and the synthesis of its analogs with various biological activities, including antihypertensive, antidiabetic, insecticidal, antibacterial, and antibiotic properties, are covered in the article. This review aims to provide an updated analysis of the literature on the synthesis of piperine analogs.

Keywords: Pharmacological, Piperine, Anti-hypertensive, Anti-microbial, Insecticidal, Isolation.

Graphical Abstract
[1]
Badmaev, V.; Majeed, M.; Prakash, L. Piperine derived from black pepper increases the plasma levels of coenzyme q10 following oral supplementation. J. Nutr. Biochem., 2000, 11(2), 109-113.
[http://dx.doi.org/10.1016/S0955-2863(99)00074-1] [PMID: 10715596]
[2]
Haq, I.U.; Imran, M.; Nadeem, M.; Tufail, T.; Gondal, T.A.; Mubarak, M.S. Piperine: A review of its biological effects. Phytother. Res., 2021, 35(2), 680-700.
[http://dx.doi.org/10.1002/ptr.6855] [PMID: 32929825]
[3]
Srinivasan, K. Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Crit. Rev. Food Sci. Nutr., 2007, 47(8), 735-748.
[http://dx.doi.org/10.1080/10408390601062054] [PMID: 17987447]
[4]
de Almeida, G.C.; Oliveira, L.F.S.; Predes, D.; Fokoue, H.H.; Kuster, R.M.; Oliveira, F.L.; Mendes, F.A.; Abreu, J.G. Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells. Sci. Rep., 2020, 10(1), 11681.
[http://dx.doi.org/10.1038/s41598-020-68574-2] [PMID: 32669593]
[5]
Quijia, C.R.; Chorilli, M. Characteristics, biological properties and analytical methods of piperine: A review. Crit. Rev. Anal. Chem., 2020, 50(1), 62-77.
[http://dx.doi.org/10.1080/10408347.2019.1573656] [PMID: 30810335]
[6]
Ahmad, N.; Fazal, H.; Abbasi, B.H.; Farooq, S.; Ali, M.; Khan, M.A. Biological role of Piper nigrum L. (Black pepper): A review. Asian Pac. J. Trop. Biomed., 2012, 2(3), S1945-S1953.
[http://dx.doi.org/10.1016/S2221-1691(12)60524-3]
[7]
Thakre, A.; Jadhav, V.; Kazi, R.; Shelar, A.; Patil, R.; Kharat, K.; Zore, G.; Karuppayil, S.M. Oxidative stress induced by piperine leads to apoptosis in Candida albicans. Med. Mycol., 2021, 59(4), 366-378.
[http://dx.doi.org/10.1093/mmy/myaa058] [PMID: 32658959]
[8]
Kurangi, B.; Jalalpure, S. validated stability-indicating rp-hplc method for piperine estimation in black pepper, marketed formulation and nanoparticles. Ind. J. Pharmac. Educ. Res., 2020, 54(3s), s677-s686.
[http://dx.doi.org/10.5530/ijper.54.3s.168]
[9]
Damanhouri, Z.A.; Ahmad, A. Medicinal and aromatic plants: A review on therapeutic potential of Piper nigrum L. (Black Pepper): The King of Spices. Med. Aromat. Plants, 2014, 3(3), 2-6.
[http://dx.doi.org/10.4172/2167-0412.1000161]
[10]
Kanaki, N.; Dave, M.; Padh, H.; Rajani, M. A rapid method for isolation of piperine from the fruits of Piper nigrum Linn. J. Nat. Med., 2008, 62(3), 281-283.
[http://dx.doi.org/10.1007/s11418-008-0234-3] [PMID: 18404304]
[11]
Shingate, P.N.; Dongre, P.P.; Kannur, D.M. New method development for extraction and isolation of piperine. Int. J. Pharm. Sci. Res., 2013, 4(8), 3165.
[http://dx.doi.org/10.13040/IJPSR]
[12]
Khare, P.; Sahu, U.; Pandey, S.C.; Samant, M. Current approaches for target-specific drug discovery using natural compounds against SARS-CoV-2 infection. Virus Res., 2020, 290, 198169.
[http://dx.doi.org/10.1016/j.virusres.2020.198169] [PMID: 32979476]
[13]
Correa, E.A.; Högestätt, E.D.; Sterner, O.; Echeverri, F.; Zygmunt, P.M. in vitro TRPV1 activity of piperine derived amides. Bioorg. Med. Chem., 2010, 18(9), 3299-3306.
[http://dx.doi.org/10.1016/j.bmc.2010.03.013] [PMID: 20381363]
[14]
Hlavačková, L.; Janegová, A.; Uličná, O.; Janega, P.; Černá, A.; Babál, P. Spice up the hypertension diet : Curcumin and piperine prevent remodeling of aorta in experimental L-NAME induced hypertension. Nutr. Metab., 2011, 8(1), 72.
[http://dx.doi.org/10.1186/1743-7075-8-72] [PMID: 22005253]
[15]
Umadevi, P.; Deepti, K.; Venugopal, D.V.R. Synthesis, anticancer and antibacterial activities of piperine analogs. Med. Chem. Res., 2013, 22(11), 5466-5471.
[http://dx.doi.org/10.1007/s00044-013-0541-4]
[16]
Mathew, A.; Varkey, J. Design, synthesis and pharmacological evaluation of isoxazole analogues derived from natural piperine. Asian J. Pharm. Hea. Sci, 2012, 2(1), 256-260.
[17]
Meghwal, M.; Goswami, T.K. Piper nigrum and piperine: An update. Phytother. Res., 2013, 27(8), 1121-1130.
[http://dx.doi.org/10.1002/ptr.4972] [PMID: 23625885]
[18]
Zarai, Z.; Boujelbene, E.; Ben Salem, N.; Gargouri, Y.; Sayari, A. Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum. Lebensm. Wiss. Technol., 2013, 50(2), 634-641.
[http://dx.doi.org/10.1016/j.lwt.2012.07.036]
[19]
Pei, Y.Q. A review of pharmacology and clinical use of piperine and its derivatives. Epilepsia, 1983, 24(2), 177-182.
[http://dx.doi.org/10.1111/j.1528-1157.1983.tb04877.x] [PMID: 6832079]
[20]
Ramaswamy, S.; Gowthamarajan, K.; Priyanka Dwarampudi, L.; Bhaskaran, M.; Kadiyala, M. Analytical method development, validation and forced degradation studies for rutin, quercetin, curcumin, and piperine by RP-UFLC method. Drug Dev. Ind. Pharm., 2021, 47(4), 562-568.
[http://dx.doi.org/10.1080/03639045.2021.1892740] [PMID: 33648389]
[21]
Ziani, N.; Mouas, T.N. Efficient extraction and structural analysis of biosourced piperine as natural adjuvant. 1st International Electronic Conference on Agronomy,, 2021, pp.1-6.
[22]
Ferreira, C.; Soares, D.C.; Barreto-Junior, C.B.; Nascimento, M.T.; Freire-de-Lima, L.; Delorenzi, J.C.; Lima, M.E.F.; Atella, G.C.; Folly, E.; Carvalho, T.M.U.; Saraiva, E.M.; Pinto-da-Silva, L.H. Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis. Phytochemistry, 2011, 72(17), 2155-2164.
[http://dx.doi.org/10.1016/j.phytochem.2011.08.006] [PMID: 21885074]
[23]
Liu, Z.; Hu, Q.; Wang, W.; Lu, S.; Wu, D.; Ze, S.; He, J.; Huang, Y.; Chen, W.; Xu, Y.; Lu, W.; Huang, J. Natural product piperine alleviates experimental allergic encephalomyelitis in mice by targeting dihydroorotate dehydrogenase. Biochem. Pharmacol., 2020, 177(2), 114000.
[http://dx.doi.org/10.1016/j.bcp.2020.114000] [PMID: 32353424]
[24]
Pourmortazavi, S.M.; Hajimirsadeghi, S.S. Supercritical fluid extraction in plant essential and volatile oil analysis. J. Chromatogr. A, 2007, 1163(1-2), 2-24.
[http://dx.doi.org/10.1016/j.chroma.2007.06.021] [PMID: 17624357]
[25]
Raman, G.; Gaikar, V.G. Extraction of piperine from Piper nigrum (black pepper) by hydrotropic solubilization. Ind. Eng. Chem. Res., 2002, 41(12), 2966-2976.
[http://dx.doi.org/10.1021/ie0107845]
[26]
Reverchon, E.; De Marco, I. Supercritical fluid extraction and fractionation of natural matter. J. Supercrit. Fluids, 2006, 38(2), 146-166.
[http://dx.doi.org/10.1016/j.supflu.2006.03.020]
[27]
Lang, Q.; Wai, C.M. Supercritical fluid extraction in herbal and natural product studies — a practical review. Talanta, 2001, 53(4), 771-782.
[http://dx.doi.org/10.1016/S0039-9140(00)00557-9] [PMID: 18968166]
[28]
Herrero, M.; Cifuentes, A.; Ibanez, E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgaeA review. Food Chem., 2006, 98(1), 136-148.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.058]
[29]
Bhagat, S.; Birah, A.; Kumar, R. Plant disease management: Prospects of pesticides of plant. Adv. Pl. Biopest, 2014, 119-129.
[http://dx.doi.org/10.1007/978-81-322-2006-0]
[30]
Herrero, M.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E. Supercritical fluid extraction: Recent advances and applications. J. Chromatogr. A, 2010, 1217(16), 2495-2511.
[http://dx.doi.org/10.1016/j.chroma.2009.12.019] [PMID: 20022016]
[31]
Ye, F.; Zhang, D.; Xue, T.; Wang, Y.; Guan, Y. Enhanced hydrogenation of ethyl levulinate by Pd–AC doped with Nb 2 O 5. Green Chem., 2014, 16(8), 3951-3957.
[http://dx.doi.org/10.1039/C4GC00972J]
[32]
Austen Angell, C.; Ansari, Y.; Zhao, Z. Ionic Liquids: Past, present and future. Faraday Discuss., 2012, 154, 9-27.
[http://dx.doi.org/10.1039/C1FD00112D] [PMID: 22455011]
[33]
Kathale, N.E.; Mandal, P. Synthesis of piperine derivatives from Isolated piperine and their antimicrobial activity introduction. Int. J. Res. Biosci. Agric. Technol, 2015, 1(1), 327-332.
[34]
Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem., 2001, 3(4), 156-164.
[http://dx.doi.org/10.1039/b103275p]
[35]
Qu, H.; Lv, M.; Yu, X.; Lian, X.; Xu, H. Discovery of some piperine-based phenylsulfonylhydrazone derivatives as potent botanically narcotic agents. Sci. Rep., 2015, 5(1), 13077.
[http://dx.doi.org/10.1038/srep13077] [PMID: 26268805]
[36]
Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng., 2013, 117(4), 426-436.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014]
[37]
Huie, C.W. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem., 2002, 373(1-2), 23-30.
[http://dx.doi.org/10.1007/s00216-002-1265-3] [PMID: 12012169]
[38]
Luque de Castro, M.D.; García-Ayuso, L.E. Soxhlet extraction of solid materials: An outdated technique with a promising innovative future. Anal. Chim. Acta, 1998, 369(1-2), 1-10.
[http://dx.doi.org/10.1016/S0003-2670(98)00233-5]
[39]
Luque de Castro, M.D.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A, 2010, 1217(16), 2383-2389.
[http://dx.doi.org/10.1016/j.chroma.2009.11.027] [PMID: 19945707]
[40]
García-Ayuso, L.; Garc, L.E. Employing focused microwaves to counteract conventional Soxhlet extraction drawbacks. Trends Analyt. Chem., 2001, 20(1), 28-34.
[http://dx.doi.org/10.1016/S0165-9936(00)00054-6]
[41]
Pattan, S.R.; Patil, A.N.; Nirmal, S.A.; Pattan, J.S.; Phanse, M.A.; Tambe, V.D. The potential scope of piperine for its verasatile application in medicine. Ind. Drugs, 2011, 48(12), 5-13.
[42]
Shityakov, S.; Bigdelian, E.; Hussein, A.A.; Hussain, M.B.; Tripathi, Y.C.; Khan, M.U.; Shariati, M.A. Phytochemical and pharmacological attributes of piperine: A bioactive ingredient of black pepper. Eur. J. Med. Chem., 2019, 176, 149-161.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.002] [PMID: 31103896]
[43]
Yu, J.; Yuan, H.; Bao, L.; Si, L. Interaction between piperine and genes associated with sciatica and its mechanism based on molecular docking technology and network pharmacology. Mol. Divers., 2021, 25(1), 233-248.
[http://dx.doi.org/10.1007/s11030-020-10055-9] [PMID: 32130644]
[44]
Momin, R.K.; Kadam, V.B. Determination of soluble extractive of some medicinal plants of genus Sesbania of Marathwada region in Maharashtra materials and methods. Int. J. Life Sci. Pharma Res., 2012, 2(2), 2-5.
[45]
Lone, F.A. Effect of Piperine supplementation on Monensin induced stress using in vitro culture method, In fulfilment of the requirement for the award of degree in Master of Science in Zoology. Int. J. Adv. Res. Ideas Innov. Technol., 2018, 4(2), 1-41.
[46]
Liu, L.N.; Ren, J.F. Organization strategies research of teacher’s forum from the perspective of collaboration knowledge construction : Take teachers BBS of teachers forum network as a research case. Int. Conf. E-Bus. E-Gov, 2010, pp. 5474-5478.
[47]
Species, F.P. United States Patent. CA127130S, 2002.
[48]
Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem., 2016, 194, 135-142.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.008] [PMID: 26471536]
[49]
Contini, M.; Baccelloni, S.; Massantini, R.; Anelli, G. Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chem., 2008, 110(3), 659-669.
[http://dx.doi.org/10.1016/j.foodchem.2008.02.060]
[50]
Bautista-Ortín, A.B.; Martínez-Cutillas, A.; Ros-García, J.M.; López-Roca, J.M.; Gómez-Plaza, E. Improving colour extraction and stability in red wines: The use of maceration enzymes and enological tannins. Int. J. Food Sci. Technol., 2005, 40(8), 867-878.
[http://dx.doi.org/10.1111/j.1365-2621.2005.01014.x]
[51]
Zhao, X.; Chen, F.; Xue, W.; Lee, L. FTIR spectra studies on the secondary structures of 7S and 11S globulins from soybean proteins using AOT reverse micellar extraction. Food Hydrocoll., 2008, 22(4), 568-575.
[http://dx.doi.org/10.1016/j.foodhyd.2007.01.019]
[52]
Nandini, K.E.; Rastogi, N.K. Reverse micellar extraction for downstream processing of lipase: Effect of various parameters on extraction. Process Biochem., 2009, 44(10), 1172-1178.
[http://dx.doi.org/10.1016/j.procbio.2009.06.020]
[53]
Gaikaiwari, R.P.; Wagh, S.A.; Kulkarni, B.D. Efficient lipase purification using reverse micellar extraction. Bioresour. Technol., 2012, 108, 224-230.
[http://dx.doi.org/10.1016/j.biortech.2011.11.126] [PMID: 22230773]
[54]
Sy Mohamad, S.F.; Mohd Said, F.; Abdul Munaim, M.S.; Mohamad, S.; Azizi Wan Sulaiman, W.M. Application of experimental designs and response surface methods in screening and optimization of reverse micellar extraction. Crit. Rev. Biotechnol., 2020, 40(3), 341-356.
[http://dx.doi.org/10.1080/07388551.2020.1712321] [PMID: 31931631]
[55]
Hebbar, U.H.; Sumana, B.; Hemavathi, A.B.; Raghavarao, K.S.M.S. separation and purification of bromelain by reverse micellar extraction coupled ultrafiltration and comparative studies with other methods. Food Bioprocess Technol., 2012, 5(3), 1010-1018.
[http://dx.doi.org/10.1007/s11947-010-0395-4]
[56]
Tan, Z.; Yi, Y.; Wang, H.; Zhou, W.; Wang, C.; McPhee, D.J. Extraction, preconcentration and isolation of flavonoids from Apocynum venetum L. leaves using ionic liquid-based ultrasonic-assisted extraction coupled with an aqueous biphasic system. Molecules, 2016, 21(3), 262.
[http://dx.doi.org/10.3390/molecules21030262] [PMID: 26959002]
[57]
Wang, L.; Bai, M.; Qin, Y.; Liu, B.; Wang, Y.; Zhou, Y. Application of ionic liquid-based ultrasonic-assisted extraction of flavonoids from bamboo leaves. Molecules, 2018, 23(9), 2309.
[http://dx.doi.org/10.3390/molecules23092309] [PMID: 30201916]
[58]
Abd Rahman, N.R.; Yunus, N.A.; Idris, A.; Mustaffa, A.A. Ionic liquid-based ultrasonic-assistedextraction model for solvent design. IOP Conf. Ser. Mater. Sci. Eng., 2020, 884, p. 012022.
[http://dx.doi.org/10.1088/1757-899X/884/1/012022]
[59]
Cao, X.; Ye, X.; Lu, Y.; Yu, Y.; Mo, W. Ionic liquid-based ultrasonic-assisted extraction of piperine from white pepper. Anal. Chim. Acta, 2009, 640(1-2), 47-51.
[http://dx.doi.org/10.1016/j.aca.2009.03.029] [PMID: 19362618]
[60]
Wang, J.H.; Cheng, D.H.; Chen, X.W.; Du, Z.; Fang, Z.L. Direct extraction of double-stranded DNA into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and its quantification. Anal. Chem., 2007, 79(2), 620-625.
[http://dx.doi.org/10.1021/ac061145c] [PMID: 17222028]
[61]
Budiastra, I.W.; Damanik, A.P.; Akbar, M.T.F. Effect of particle size of white pepper to yield and quality of oleoresin produced by using an ultrasonic-assisted extraction method. IOP Conf. Ser. Earth Environ. Sci., 2020, 542(1), 012023.
[http://dx.doi.org/10.1088/1755-1315/542/1/012023]
[62]
Amiri, S.; Shakeri, A.; Sohrabi, M.R.; Khalajzadeh, S.; Ghasemi, E. Optimization of ultrasonic assisted extraction of fatty acids from Aesculus hippocastanum fruit by response surface methodology. Food Chem., 2019, 271, 762-766.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.144] [PMID: 30236742]
[63]
Cao, X.; Zhu, C.; Wang, L.; Ye, X.; Yu, Y.; Mo, W.; Lu, J. Investigating acidic ionic liquid-based ultrasonic-assisted extraction of leonurine from Herba Leonuri. Sep. Sci. Technol., 2018, 53(3), 481-486.
[http://dx.doi.org/10.1080/01496395.2017.1385628]
[64]
Sporring, S.; Bøwadt, S.; Svensmark, B.; Björklund, E. Comprehensive comparison of classic Soxhlet extraction with Soxtec extraction, ultrasonication extraction, supercritical fluid extraction, microwave assisted extraction and accelerated solvent extraction for the determination of polychlorinated biphenyls in soil. J. Chromatogr. A, 2005, 1090(1-2), 1-9.
[http://dx.doi.org/10.1016/j.chroma.2005.07.008] [PMID: 16196129]
[65]
Alupului, A.; Călinescu, I.; Lavric, V. Microwave extraction of active principles from medicinal plants. UPB Sci. Bull. Ser. B., 2012, 74, 129-142.
[66]
Raman, G.; Gaikar, V.G. Microwave-assisted extraction of piperine from Piper nigrum. Ind. Eng. Chem. Res., 2002, 41(10), 2521-2528.
[http://dx.doi.org/10.1021/ie010359b]
[67]
Gorgani, L.; Mohammadi, M.; Najafpour, G.D.; Nikzad, M. Sequential microwave-ultrasound-assisted extraction for isolation of piperine from black pepper (Piper nigrum L.). Food Bioprocess Technol., 2017, 10(12), 2199-2207.
[http://dx.doi.org/10.1007/s11947-017-1994-0]
[68]
Rathod, S.S.; Rathod, V.K. Extraction of piperine from Piper longum using ultrasound. Ind. Crops Prod., 2014, 58, 259-264.
[http://dx.doi.org/10.1016/j.indcrop.2014.03.040]
[69]
Shaheer, K; Lakshmanan, M.D. Effect of piperine in combination with gamma radiation on A549 cells. J. Heal. All. Sci. NU., 2021, 11(2), 080-086.
[http://dx.doi.org/10.1055/s-0040-1722808]
[70]
Banerjee, B.D.; Seth, V.; Bhattacharya, A.; Pasha, S.T.; Chakraborty, A.K. Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol. Lett., 1999, 107(1-3), 33-47.
[http://dx.doi.org/10.1016/S0378-4274(99)00029-6] [PMID: 10414779]
[71]
Desai, M.A.; Parikh, J. Hydrotropic extraction of citral from Cymbopogon flexuosus (Steud.) Wats. Ind. Eng. Chem. Res., 2012, 51(9), 3750-3757.
[http://dx.doi.org/10.1021/ie202025b]
[72]
Weil, H.; Willams, T. History of Chromatography. Nature, 1950, 166(4232), 1000-1001.
[http://dx.doi.org/10.1038/1661000b0] [PMID: 14796675]
[73]
Mangal, A.; Bhadoriya, S.; Joshi, S.; Agrawal, G.; Gupta, A.; Mandoria, N. Extraction of herbal drugs by using hydrotropic solubilization phenomenon. Drugs, 2011, 5(I), 24.
[74]
Li, S.; Lei, Y.; Jia, Y.; Li, N.; Wink, M.; Ma, Y. Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells. Phytomedicine, 2011, 19(1), 83-87.
[http://dx.doi.org/10.1016/j.phymed.2011.06.031] [PMID: 21802927]
[75]
Bird, C.R.; Smith, T.A. The biosynthesis of coumarylagmatine in barley seedlings. Phytochemistry, 1981, 20(10), 2345-2346.
[http://dx.doi.org/10.1016/S0031-9422(00)82662-X]
[76]
Semler, U.; Gross, G.G. Distribution of piperine in vegetative parts of Piper nigrum. Phytochemistry, 1988, 27(5), 1566-1567.
[http://dx.doi.org/10.1016/0031-9422(88)80249-8]
[77]
Negrel, J.; Martin, C. The biosynthesis of feruloyltyramine in Nicotiana tabacum. Phytochemistry, 1984, 23(12), 2797-2801.
[http://dx.doi.org/10.1016/0031-9422(84)83018-6]
[78]
Chopra, B.; Dhingra, A.K.; Kapoor, R.P.; Prasad, D.N. Piperine and its various physicochemical and biological aspects: A review. Open Chem. J., 2016, 3(1), 75-96.
[http://dx.doi.org/10.2174/1874842201603010075]
[79]
Negrel, J.; Jeandet, P. Metabolism of tyramine and feruloyltyramine in TMV inoculated leaves of Nicotiana tabacum. Phytochemistry, 1987, 26(8), 2185-2190.
[http://dx.doi.org/10.1016/S0031-9422(00)84681-6]
[80]
Dhiman, P.; Malik, N.; Khatkar, A. Natural based piperine derivatives as potent monoamine oxidase inhibitors: An in silico ADMET analysis and molecular docking studies. BMC Chem., 2020, 14(1), 12.
[http://dx.doi.org/10.1186/s13065-020-0661-0] [PMID: 32099971]
[81]
Grosso, C.; Jäger, A.K.; Staerk, D. Coupling of a high-resolution monoamine oxidase : A inhibitor assay and HPLC-SPE-NMR for advanced bioactivity profiling of plant extracts. Phytochem. Anal., 2013, 24(2), 141-147.
[http://dx.doi.org/10.1002/pca.2393] [PMID: 22987664]
[82]
Chavarria, D.; Fernandes, C.; Silva, V.; Silva, C.; Gil-Martins, E.; Soares, P.; Silva, T.; Silva, R.; Remião, F.; Oliveira, P.J.; Borges, F. Design of novel monoamine oxidase-B inhibitors based on piperine scaffold: Structure-activity-toxicity, drug-likeness and efflux transport studies. Eur. J. Med. Chem., 2020, 185, 111770.
[http://dx.doi.org/10.1016/j.ejmech.2019.111770] [PMID: 31711793]
[83]
Kharbanda, C.; Alam, M.S.; Hamid, H.; Javed, K.; Bano, S.; Ali, Y.; Dhulap, A.; Alam, P.; Pasha, M.A.Q. Novel piperine derivatives with antidiabetic effect as PPAR- c agonists. Chem. Biol. Drug Des., 2016, 88(3), 354-362.
[http://dx.doi.org/10.1111/cbdd.12760] [PMID: 27037532]
[84]
Zaveri, M.; Khandhar, A.; Patel, S. Chemistry and pharmacology of Piper longum L. chemistry and pharmacology of Piper longum L. Int. J. Pharm. Sci. Rev. Res., 2010, 5(1), 67-76.
[85]
Takao, K.; Yamashita, M.; Yashiro, A.; Sugita, Y. Synthesis and biological evaluation of 3-benzylidene-4-chromanone derivatives as free radical scavengers and α-glucosidase inhibitors. Chem. Pharm. Bull., 2016, 64(8), 1203-1207.
[http://dx.doi.org/10.1248/cpb.c16-00327] [PMID: 27477661]
[86]
Wang, Y.; Yao, Y.; Liu, J.; Wu, L.; Liu, T.; Cui, J.; Lee, D.Y.W. Synthesis and biological activity of piperine derivatives as potential PPARγ agonists. Drug Des. Devel. Ther., 2020, 14, 2069-2078.
[http://dx.doi.org/10.2147/DDDT.S238245] [PMID: 32546971]
[87]
Manoharan, S.; Balakrishnan, S.; Menon, V.P.; Alias, L.M.; Reena, A.R. Chemopreventive efficacy of curcumin and piperine during 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Singapore Med. J., 2009, 50(2), 139-146.
[PMID: 19296028]
[88]
Franklim, T.; Freire-de-Lima, L.; de Nazareth Sá Diniz, J.; Previato, J.; Castro, R.; Mendonça-Previato, L.; de Lima, M. Design, synthesis and trypanocidal evaluation of novel 1,2,4-triazoles-3-thiones derived from natural piperine. Molecules, 2013, 18(6), 6366-6382.
[http://dx.doi.org/10.3390/molecules18066366] [PMID: 23760033]
[89]
Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol., 2006, 51(1), 45-66.
[http://dx.doi.org/10.1146/annurev.ento.51.110104.151146] [PMID: 16332203]
[90]
Mirza, Z.M.; Kumar, A.; Kalia, N.P.; Zargar, A.; Khan, I.A. Piperine as an inhibitor of the MdeA efflux pump of Staphylococcus aureus. J. Med. Microbiol., 2011, 60(10), 1472-1478.
[http://dx.doi.org/10.1099/jmm.0.033167-0] [PMID: 21680766]
[91]
Paula, V.F.; Barbosa, L.C.A.; Demuner, A.J.; Piló-Veloso, D.; Picanço, M.C.; Picanço, M.C. Synthesis and insecticidal activity of new amide derivatives of piperine. Pest Manag. Sci., 2000, 56(2), 168-174.
[http://dx.doi.org/10.1002/(SICI)1526-4998(200002)56:2<168::AID-PS110>3.0.CO;2-H]
[92]
Venugopal, D.V.R. Synthesis, of novel piperine analogs of dipeptidyl boronic acid as antimicrobial and anticancer agents. Med. Chem., 2014, 4(9), 606-610.
[http://dx.doi.org/10.4172/2161-0444.1000201]
[93]
Qin, B.; Yang, K.; Cao, R. Synthesis, radical-scavenging activities, and protective effects against AAPH-induced oxidative damage in DNA and erythrocytes of piperine derivatives. J. Chem., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/9026286]
[94]
Choochana, P.; Moungjaroen, J.; Jongkon, N.; Gritsanapan, W.; Tangyuenyongwatana, P. Development of piperic acid derivatives from Piper nigrum as UV protection agents. Pharm. Biol., 2015, 53(4), 477-482.
[http://dx.doi.org/10.3109/13880209.2014.924020] [PMID: 25471519]
[95]
Trindade, E.; Dutra, T.; Brandão, M.; Diniz Neto, H.; Lima, E.; Lira, B.; de Athayde-Filho, P.; Barbosa-Filho, J. Synthesis, in silico study and antimicrobial activity of new piperine derivatives containing substituted δ-esters. J. Braz. Chem. Soc., 2020, 31(12), 2590-2602.
[http://dx.doi.org/10.21577/0103-5053.20200140]
[96]
Rong, A.; Bao, N.; Sun, Z.; Borjihan, G.; Qiao, Y.; Jin, Z. Synthesis and antihyperlipidemic activity of piperic acid derivatives. Nat. Prod. Commun., 2015, 10(2), 1934578X1501000.
[http://dx.doi.org/10.1177/1934578X1501000218] [PMID: 25920263]
[97]
Schöffmann, A.; Wimmer, L.; Goldmann, D.; Khom, S.; Hintersteiner, J.; Baburin, I.; Schwarz, T.; Hintersteininger, M.; Pakfeifer, P.; Oufir, M.; Hamburger, M.; Erker, T.; Ecker, G.F.; Mihovilovic, M.D.; Hering, S. Efficient modulation of γ-aminobutyric acid type A receptors by piperine derivatives. J. Med. Chem., 2014, 57(13), 5602-5619.
[http://dx.doi.org/10.1021/jm5002277] [PMID: 24905252]
[98]
Huang, Q.; Yu, L.; Petros, A.M.; Gunasekera, A.; Liu, Z.; Xu, N.; Hajduk, P.; Mack, J.; Fesik, S.W.; Olejniczak, E.T. Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry, 2004, 43(20), 6059-6063.
[http://dx.doi.org/10.1021/bi036155b] [PMID: 15147189]
[99]
Tantawy, A.H.; Farag, S.M.; Hegazy, L.; Jiang, H.; Wang, M.Q. The larvicidal activity of natural inspired piperine-based dienehydrazides against Culex pipiens. Bioorg. Chem., 2020, 94, 103464.
[http://dx.doi.org/10.1016/j.bioorg.2019.103464] [PMID: 31836185]
[100]
Ferreira, R.C.; Batista, T.M.; Duarte, S.S.; Silva, D.K.F.; Lisboa, T.M.H.; Cavalcanti, R.F.P.; Leite, F.C.; Mangueira, V.M.; Sousa, T.K.G.; Abrantes, R.A.; Trindade, E.O.; Athayde-Filho, P.F.; Brandão, M.C.R.; Medeiros, K.C.P.; Farias, D.F.; Sobral, M.V. A novel piperine analogue exerts in vivo antitumor effect by inducing oxidative, antiangiogenic and immunomodulatory actions. Biomed. Pharmacother., 2020, 128(May), 110247.
[http://dx.doi.org/10.1016/j.biopha.2020.110247] [PMID: 32450524]
[101]
Yang, X.; Ji, J.; Liu, C.; Zhou, M.; Li, H.; Ye, S.; Hu, Q. HJ22, a Novel derivative of piperine, Attenuates ibotenic acid-induced cognitive impairment, oxidativestress, apoptosis and inflammation via inhibiting the protein-protein interaction of Keap1-Nrf2. Int. Immunopharmacol., 2020, 83, 106383.
[http://dx.doi.org/10.1016/j.intimp.2020.106383] [PMID: 32193099]
[102]
Wang, L.; Cai, X.; Shi, M.; Xue, L.; Kuang, S.; Xu, R.; Qi, W.; Li, Y.; Ma, X.; Zhang, R.; Hong, F.; Ye, H.; Chen, L. Identification and optimization of piperine analogues as neuroprotective agents for the treatment of Parkinson’s disease via the activation of Nrf2/keap1 pathway. Eur. J. Med. Chem., 2020, 199, 112385.
[http://dx.doi.org/10.1016/j.ejmech.2020.112385] [PMID: 32402936]
[103]
Qin, B.; Yang, K.; Cao, R. Synthesis and Antioxidative activity of piperine derivatives containing phenolic hydroxyl. J. Chem., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/2786359]
[104]
Mugnaini, L.; Nardoni, S.; Pistelli, L.; Leonardi, M.; Giuliotti, L.; Benvenuti, M.N.; Pisseri, F.; Mancianti, F. A herbal antifungal formulation of Thymus serpillum, Origanum vulgare and Rosmarinus officinalis for treating ovine dermatophytosis due to Trichophyton mentagrophytes. Mycoses, 2013, 56(3), 333-337.
[http://dx.doi.org/10.1111/myc.12034] [PMID: 23368893]
[105]
Prasanna, G.; Ujwal, A.; Diliprajudominic, S.; Marimuthu, T.; Saraswathi, N.T. A new pipeline to discover antimycotics by inhibiting ergosterol and riboflavin synthesis: The inspirations of Siddha medicine. Med. Chem. Res., 2014, 23(5), 2651-2658.
[http://dx.doi.org/10.1007/s00044-013-0858-z]
[106]
Sangwan, P.L.; Koul, J.L.; Koul, S.; Reddy, M.V.; Thota, N.; Khan, I.A.; Kumar, A.; Kalia, N.P.; Qazi, G.N. Piperine analogs as potent Staphylococcus aureus NorA efflux pump inhibitors. Bioorg. Med. Chem., 2008, 16(22), 9847-9857.
[http://dx.doi.org/10.1016/j.bmc.2008.09.042] [PMID: 18848780]
[107]
Veerareddy, P.R.; Vobalaboina, V.; Nahid, A. Formulation and evaluation of oil-in-water emulsions of piperine in visceral leishmaniasis. Pharmazie, 2004, 59(3), 194-197.
[PMID: 15074591]
[108]
Ahmad, M.; Dwivedy, A.; Mariadasse, R.; Tiwari, S.; Kar, D.; Jeyakanthan, J.; Biswal, B.K. Prediction of small molecule inhibitors targeting the severe acute respiratory syndrome coronavirus-2 RNA-dependent RNA polymerase. ACS Omega, 2020, 5(29), 18356-18366.
[http://dx.doi.org/10.1021/acsomega.0c02096] [PMID: 32743211]
[109]
Johri, R.K.; Zutshi, U. An Ayurvedic formulation ‘Trikatu’ and its constituents. J. Ethnopharmacol., 1992, 37(2), 85-91.
[http://dx.doi.org/10.1016/0378-8741(92)90067-2] [PMID: 1434692]
[110]
Joshi, V.K.; Joshi, A.; Dhiman, K.S. The ayurvedic pharmacopoeia of India, development and perspectives. J. Ethnopharmacol., 2017, 197, 32-38.
[http://dx.doi.org/10.1016/j.jep.2016.07.030] [PMID: 27404231]
[111]
Grivas, C. Non-native herbal Materia medica in greek texts of the roman period. Med. Secoli, 2018, 30(2), 531-578.
[112]
Mahmood, Z.A.; Zoha, S.M.S.; Usmanghani, K.; Hasan, M.M.; Ali, O.; Jahan, S.; Saeed, A.; Zaihd, R.; Zubair, M. Kohl (surma): Retrospect and prospect. Pak. J. Pharm. Sci., 2009, 22(1), 107-122.
[PMID: 19168431]
[113]
Patel, K.; Soni, A.; Gupta, S.N. Clinical evaluation of Vardhamana Pippali Rasayana in the management of Amavata (rhematoid arthritis). Ayu, 2011, 32(2), 177-180.
[http://dx.doi.org/10.4103/0974-8520.92555] [PMID: 22408298]
[114]
Zyoud, S.H.; Fuchs-Hanusch, D. A bibliometric-based survey on AHP and TOPSIS techniques. Expert Syst. Appl., 2017, 78, 158-181.
[http://dx.doi.org/10.1016/j.eswa.2017.02.016]
[115]
Gyawali, S.; Khan, G.M.; Lamichane, S.; Gautam, J.; Ghimire, S.; Adhikari, R.; Lamsal, R. Evaluation of anti-secretory and anti-ulcerogenic activities of avipattikar churna on the peptic ulcers in experimental rats. J. Clin. Diagn. Res., 2013, 7(6), 1135-1139.
[http://dx.doi.org/10.7860/JCDR/2013/5309.3058] [PMID: 23905120]
[116]
Ijego, A.E.; Suoton, E.R.; Okwy, A.O.; Ogbu, C.O.; Ada, O.I.; Chizoba, A.I.; U, U.D. Comparative analysis of moderate intensity aerobic and progressive resistance exercises on bone mineral density and weight of people living with HIV/AIDS in Alex-Ekwueme Federal University Teaching Hospital Ebonyi State. Asian. J. Med. Heal., 2020, 18(10), 9-20.
[http://dx.doi.org/10.9734/ajmah/2020/v18i1130264]
[117]
Majeed, M.; Badmaev, V. Process for making high purity piperine for nutritional use. US6054585, 2000.
[118]
Gaikar, V.G.; Raman, G. Council of Scientific and Industrial Research CSIR. US6365601, 2002.
[119]
Muhammad, M.; Vladimir, B.; Rajendran, R. Use of piperine as a bioavailability enhancer.. JP3953513, 2007.
[120]
Muhammad, M.; Vladimir, B.; Rajendran, R. Use of piperine as a bioavailability enhancer.. CP2247467, 2007.
[121]
Muhammad, M.; Vladimir, B.; Rajendran, R. Use of piperine to increase the bioavailability of nutritional compounds. US5536506, 1996.
[122]
Muhammad, M.; Vladimir, B.; Rajendran, R. Use of piperine as a bioavailability enhancer. US5744161, 1998.
[123]
Manjinder, S.; Dharmaraj, R.; Malhotra, G.; Dilip, R.; Sachin, V. Process for the preparation of piperine. WO2019/073491, 2018.
[124]
Raman, A.; Lin, Z. Treatment of Skin Disorders. WO00/02544, 2000.
[125]
Marini, D.; Giorgini, D. Composition Comprising Coenzyme Q10 And Piperine. EP476388B1, 2021.
[126]
Suresh, D.; Srinivasan, K. Studies on the in vitro absorption of spice principles : Curcumin, capsaicin and piperine in rat intestines. Food Chem. Toxicol., 2007, 45(8), 1437-1442.
[http://dx.doi.org/10.1016/j.fct.2007.02.002] [PMID: 17524539]
[127]
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 1998, 64(4), 353-356.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[128]
Tiwari, A.; Mahadik, K.R.; Gabhe, S.Y. Piperine: A comprehensive review of methods of isolation, purification, and biological properties. Med. Drug. Discov., 2020, 7, 100027.
[http://dx.doi.org/10.1016/j.medidd.2020.100027]
[129]
ElSayed, A.I.; Boulila, M.; Rott, P. Molecular evolutionary history of Sugarcane yellow leaf virus based on sequence analysis of RNA-dependent RNA polymerase and putative aphid transmission factor-coding genes. J. Mol. Evol., 2014, 78(6), 349-365.
[http://dx.doi.org/10.1007/s00239-014-9630-3] [PMID: 24952671]
[130]
Kakarala, M.; Brenner, D.E.; Korkaya, H.; Cheng, C.; Tazi, K.; Ginestier, C.; Liu, S.; Dontu, G.; Wicha, M.S. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res. Treat., 2010, 122(3), 777-785.
[http://dx.doi.org/10.1007/s10549-009-0612-x] [PMID: 19898931]
[131]
Shaikh, J.; Ankola, D.D.; Beniwal, V.; Singh, D.; Kumar, M.N.V.R. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci., 2009, 37(3-4), 223-230.
[http://dx.doi.org/10.1016/j.ejps.2009.02.019] [PMID: 19491009]
[132]
Ganga, B.; Wadud, A.; Jahan, N.; Ajij Ahmed Makbul, S. Anti-inflammatory and analgesic activity of Habbe Gule Aakh, A polyherbal Unani formulation in animal models. J. Ayurveda Integr. Med., 2021, 12(1), 9-12.
[http://dx.doi.org/10.1016/j.jaim.2018.01.001] [PMID: 30414716]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy