Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Recent Advances in Molecular Imprinting for Proteins on Magnetic Microspheres

Author(s): Jing Zhang, Shujie Yuan, Shujuan Beng, Wenhui Luo, Xiaoqun Wang, Lei Wang and Can Peng*

Volume 25, Issue 4, 2024

Published on: 04 January, 2024

Page: [286 - 306] Pages: 21

DOI: 10.2174/0113892037277894231208065403

Price: $65

Abstract

The separation of proteins in biological samples plays an essential role in the development of disease detection, drug discovery, and biological analysis. Protein imprinted polymers (PIPs) serve as a tool to capture target proteins specifically and selectively from complex media for separation purposes. Whereas conventional molecularly imprinted polymer is time-consuming in terms of incubation studies and solvent removal, magnetic particles are introduced using their magnetic properties for sedimentation and separation, resulting in saving extraction and centrifugation steps. Magnetic protein imprinted polymers (MPIPs), which combine molecularly imprinting materials with magnetic properties, have emerged as a new area of research hotspot. This review provides an overview of MPIPs for proteins, including synthesis, preparation strategies, and applications. Moreover, it also looks forward to the future directions for research in this emerging field.

Keywords: Protein imprinting, magnetic molecularly imprinted polymers, magnetic microspheres, selective separation, drug discovery, magnetic particles.

[1]
Egas, D.A.; Wirth, M.J. Fundamentals of protein separations: 50 years of nanotechnology, and growing. Annu. Rev. Anal. Chem., 2008, 1(1), 833-855.
[http://dx.doi.org/10.1146/annurev.anchem.1.031207.112912] [PMID: 20636099]
[2]
Link, A.J.; Washburn, M.P. Analysis of protein composition using multidimensional chromatography and mass spectrometry. Curr. Protoc. Protein Sci., 2014, 78(1), 1.1-, 25.
[http://dx.doi.org/10.1002/0471140864.ps2301s78] [PMID: 25367006]
[3]
Darrouzain, F.; Bian, S.; Desvignes, C.; Bris, C.; Watier, H.; Paintaud, G.; de Vries, A. Immunoassays for measuring serum concentrations of monoclonal antibodies and anti-biopharmaceutical antibodies in patients. Ther. Drug Monit., 2017, 39(4), 316-321.
[http://dx.doi.org/10.1097/FTD.0000000000000419] [PMID: 28570370]
[4]
Cao, H.; Huang, Y.; Liu, Z. Interplay between binding affinity and kinetics in protein–protein interactions. Proteins, 2016, 84(7), 920-933.
[http://dx.doi.org/10.1002/prot.25041] [PMID: 27018856]
[5]
Zhu, Z.; Lu, J.J.; Liu, S. Protein separation by capillary gel electrophoresis: A review. Anal. Chim. Acta, 2012, 709, 21-31.
[http://dx.doi.org/10.1016/j.aca.2011.10.022] [PMID: 22122927]
[6]
Yu, L.; Sun, Y. Recent advances in protein chromatography with polymer-grafted media. J. Chromatogr. A.,, 2021, 1638, 461865.
[http://dx.doi.org/10.1016/j.chroma.2020.461865] [PMID: 33453656]
[7]
Stastna, M. Continuous flow electrophoretic separation-recent developments and applications to biological sample analysis. Electrophoresis, 2020, 41(1-2), 36-55.
[http://dx.doi.org/10.1002/elps.201900288] [PMID: 31650578]
[8]
Josic, D.; Kovac, S. Reversed-phase high performance liquid chromatography of proteins. Curr. Prot. Protein Sci., 2010, Chapter 8, 8.7.1-8.7.22.
[http://dx.doi.org/10.1002/0471140864.ps0807s61]
[9]
Armenta, J.M.; Gu, B.; Thulin, C.D.; Lee, M.L. Coupled affinity-hydrophobic monolithic column for on-line removal of immunoglobulin G, preconcentration of low abundance proteins and separation by capillary zone electrophoresis. J. Chromatogr. A.,, 2007, 1148(1), 115-122.
[http://dx.doi.org/10.1016/j.chroma.2007.02.089] [PMID: 17379232]
[10]
Wang, Y.; Xianyu, Y. Nanobody and nanozyme-enabled immunoassays with enhanced specificity and sensitivity. Small Methods, 2022, 6(4), 2101576.
[http://dx.doi.org/10.1002/smtd.202101576] [PMID: 35266636]
[11]
Jahanban-Esfahlan, A.; Roufegarinejad, L.; Jahanban-Esfahlan, R.; Tabibiazar, M.; Amarowicz, R. Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta, 2020, 207, 120317.
[http://dx.doi.org/10.1016/j.talanta.2019.120317] [PMID: 31594596]
[12]
Dinc, M.; Esen, C.; Mizaikoff, B. Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. Trends Analyt. Chem., 2019, 114, 202-217.
[http://dx.doi.org/10.1016/j.trac.2019.03.008]
[13]
Pan, J.; Chen, W.; Ma, Y.; Pan, G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev., 2018, 47(15), 5574-5587.
[http://dx.doi.org/10.1039/C7CS00854F] [PMID: 29876564]
[14]
Zhang, Q.; Li, Y.; Yang, Q.; Chen, H.; Chen, X.; Jiao, T.; Peng, Q. Distinguished Cr(VI) capture with rapid and superior capability using polydopamine microsphere: Behavior and mechanism. J. Hazard. Mater., 2018, 342, 732-740.
[http://dx.doi.org/10.1016/j.jhazmat.2017.08.061] [PMID: 28918291]
[15]
Zhu, X.; Li, H.; Liu, H.; Peng, W.; Zhong, S.; Wang, Y. Halloysite-based dopamine-imprinted polymer for selective protein capture. J. Sep. Sci., 2016, 39(12), 2431-2437.
[http://dx.doi.org/10.1002/jssc.201600168] [PMID: 27121654]
[16]
Yin, Y.; Yan, L.; Zhang, Z.; Wang, J.; Luo, N. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. J. Sep. Sci., 2016, 39(8), 1480-1488.
[http://dx.doi.org/10.1002/jssc.201600026] [PMID: 26989004]
[17]
Yan, L.; Wang, J.; Lv, P.; Xie, D.; Zhang, Z. A facile synthesis of novel three-dimensional magnetic imprinted polymers for rapid extraction of bovine serum albumin in bovine calf serum. Anal. Bioanal. Chem., 2017, 409(13), 3453-3463.
[http://dx.doi.org/10.1007/s00216-017-0283-0] [PMID: 28341987]
[18]
Çakir, P.; Cutivet, A.; Resmini, M.; Bui, B.T.S.; Haupt, K. Protein-size molecularly imprinted polymer nanogels as synthetic antibodies, by localized polymerization with multi-initiators. Adv. Mater., 2013, 25(7), 1048-1051.
[http://dx.doi.org/10.1002/adma.201203400] [PMID: 23135892]
[19]
Tamahkar, E.; Kutsal, T.; Denizli, A. Surface imprinted bacterial cellulose nanofibers for cytochrome c purification. Process Biochem., 2015, 50(12), 2289-2297.
[http://dx.doi.org/10.1016/j.procbio.2015.09.026]
[20]
Chen, F.; Zhao, W.; Zhang, J.; Kong, J. Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins. Phys. Chem. Chem. Phys., 2016, 18(2), 718-725.
[http://dx.doi.org/10.1039/C5CP04218F] [PMID: 26388494]
[21]
Zhang, N.; Zhang, N.; Xu, Y.; Li, Z.; Yan, C.; Mei, K.; Ding, M.; Ding, S.; Guan, P.; Qian, L.; Du, C.; Hu, X. Molecularly imprinted materials for selective biological recognition. Macromol. Rapid Commun., 2019, 40(17), 1900096.
[http://dx.doi.org/10.1002/marc.201900096] [PMID: 31111979]
[22]
Boitard, C.; Bée, A.; Ménager, C.; Griffete, N. Magnetic protein imprinted polymers: A review. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(11), 1563-1580.
[http://dx.doi.org/10.1039/C7TB02985C] [PMID: 32254273]
[23]
Abe, H.; Naka, T.; Sato, K.; Suzuki, Y.; Nakano, M. Shape-controlled syntheses of magnetite microparticles and their magnetorheology. Int. J. Mol. Sci., 2019, 20(15), 3617.
[http://dx.doi.org/10.3390/ijms20153617] [PMID: 31344866]
[24]
Wu, W.; Jiang, C.Z.; Roy, V.A.L. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale, 2016, 8(47), 19421-19474.
[http://dx.doi.org/10.1039/C6NR07542H] [PMID: 27812592]
[25]
Zoppellaro, G. Iron Oxide Magnetic Nanoparticles (NPs) tailored for biomedical applications. In: Magnetic Nanoheterostructures; , 2020; pp. 57-102.
[26]
Gao, R.; Mu, X.; Hao, Y.; Zhang, L.; Zhang, J.; Tang, Y. Combination of surface imprinting and immobilized template techniques for preparation of core–shell molecularly imprinted polymers based on directly amino-modified Fe3O4 nanoparticles for specific recognition of bovine hemoglobin. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(12), 1733-1741.
[http://dx.doi.org/10.1039/C3TB21684E] [PMID: 32261403]
[27]
Gao, R.; Hao, Y.; Zhang, L.; Cui, X.; Liu, D.; Zhang, M.; Tang, Y.; Zheng, Y. A facile method for protein imprinting on directly carboxyl-functionalized magnetic nanoparticles using non-covalent template immobilization strategy. Chem. Eng. J., 2016, 284, 139-148.
[http://dx.doi.org/10.1016/j.cej.2015.08.123]
[28]
Hao, Y.; Gao, R.; Liu, D.; Zhang, B.; Tang, Y.; Guo, Z. Preparation of biocompatible molecularly imprinted shell on superparamagnetic iron oxide nanoparticles for selective depletion of bovine hemoglobin in biological sample. J. Colloid Interface Sci., 2016, 470, 100-107.
[http://dx.doi.org/10.1016/j.jcis.2016.02.051] [PMID: 26939073]
[29]
Lin, M.; Huang, H.; Liu, Z.; Liu, Y.; Ge, J.; Fang, Y. Growth-dissolution-regrowth transitions of Fe33O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions. Langmuir, 2013, 29(49), 15433-15441.
[http://dx.doi.org/10.1021/la403577y] [PMID: 24256401]
[30]
Xuan, S.; Wang, Y.X.J.; Yu, J.C.; Cham-Fai Leung, K. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem. Mater., 2009, 21(21), 5079-5087.
[http://dx.doi.org/10.1021/cm901618m]
[31]
Li, Y.; Wang, Z.; Ali, Z.; Tian, K.; Xu, J.; Li, W.; Hou, Y. Monodisperse Fe3O4 spheres: Large-scale controlled synthesis in the absence of surfactants and chemical kinetic process. Sci. China Mater., 2019, 62(10), 1488-1495.
[http://dx.doi.org/10.1007/s40843-019-9466-x]
[32]
Gao, R.; Hao, Y.; Cui, X.; Zhang, L.; Liu, D.; Tang, Y. One-step synthesis of aldehyde-functionalized magnetic nanoparticles as adsorbent for fast and effective adsorption of proteins. J. Alloys Compd., 2015, 637, 461-465.
[http://dx.doi.org/10.1016/j.jallcom.2015.03.037]
[33]
Zhu, W.; Ma, W.; Li, C.; Pan, J.; Dai, X. Well-designed multihollow magnetic imprinted microspheres based on cellulose nanocrystals (CNCs) stabilized Pickering double emulsion polymerization for selective adsorption of bifenthrin. Chem. Eng. J., 2015, 276, 249-260.
[http://dx.doi.org/10.1016/j.cej.2015.04.084]
[34]
Liu, Y.; Yu, J. Oriented immobilization of proteins on solid supports for use in biosensors and biochips: A review. Mikrochim. Acta, 2016, 183(1), 1-19.
[http://dx.doi.org/10.1007/s00604-015-1623-4]
[35]
Jiang, L.; Lu, R.; Ye, L. Towards detection of glycoproteins using molecularly imprinted nanoparticles and boronic acid-modified fluorescent probe. Polymers, 2019, 11(1), 173.
[http://dx.doi.org/10.3390/polym11010173] [PMID: 30960157]
[36]
Chen, F.; Mao, M.; Wang, J.; Liu, J.; Li, F. A dual-step immobilization/imprinting approach to prepare magnetic molecular imprinted polymers for selective removal of human serum albumin. Talanta, 2020, 209, 120509.
[http://dx.doi.org/10.1016/j.talanta.2019.120509] [PMID: 31891993]
[37]
Xing, R.; Wang, S.; Bie, Z.; He, H.; Liu, Z. Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable–oriented surface imprinting. Nat. Protoc., 2017, 12(5), 964-987.
[http://dx.doi.org/10.1038/nprot.2017.015] [PMID: 28384137]
[38]
Stephenson-Brown, A.; Acton, A.L.; Preece, J.A.; Fossey, J.S.; Mendes, P.M. Selective glycoprotein detection through covalent templating and allosteric click-imprinting. Chem. Sci., 2015, 6(9), 5114-5119.
[http://dx.doi.org/10.1039/C5SC02031J] [PMID: 29142730]
[39]
Ding, X.; Li, G.; Xiao, C.; Chen, X. Enhancing the stability of hydrogels by doubling the schiff base linkages. Macromol. Chem. Phys., 2018, 220.
[40]
Baggiani, C.; Giovannoli, C.; Anfossi, L.; Passini, C.; Baravalle, P.; Giraudi, G. A connection between the binding properties of imprinted and nonimprinted polymers: A change of perspective in molecular imprinting. J. Am. Chem. Soc., 2012, 134(3), 1513-1518.
[http://dx.doi.org/10.1021/ja205632t] [PMID: 22188653]
[41]
Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev., 2016, 45(8), 2137-2211.
[http://dx.doi.org/10.1039/C6CS00061D] [PMID: 26936282]
[42]
Wang, X.; Wang, L.; He, X.; Zhang, Y.; Chen, L. A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta, 2009, 78(2), 327-332.
[http://dx.doi.org/10.1016/j.talanta.2008.11.024] [PMID: 19203590]
[43]
Zaidi, S.A. Molecular imprinting polymers and their composites: A promising material for diverse applications. Biomater. Sci., 2017, 5(3), 388-402.
[http://dx.doi.org/10.1039/C6BM00765A] [PMID: 28138673]
[44]
Bossi, A.; Bonini, F.; Turner, A.P.F.; Piletsky, S.A. Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosens. Bioelectron., 2007, 22(6), 1131-1137.
[http://dx.doi.org/10.1016/j.bios.2006.06.023] [PMID: 16891110]
[45]
Lu, S.; Cheng, G.; Pang, X. Protein-imprinted soft-wet gel composite microspheres with magnetic susceptibility. II. Characteristics. J. Appl. Polym. Sci., 2006, 99(5), 2401-2407.
[http://dx.doi.org/10.1002/app.22812]
[46]
Wang, Y.; Chai, Z.; Sun, Y.; Gao, M.; Fu, G. Preparation of lysozyme imprinted magnetic nanoparticles via surface graft copolymerization. J. Biomater. Sci. Polym. Ed., 2015, 26(11), 644-656.
[http://dx.doi.org/10.1080/09205063.2015.1053215] [PMID: 26073534]
[47]
Zhou, J.; Wang, Y.; Ma, Y.; Zhang, B.; Zhang, Q. Surface molecularly imprinted thermo-sensitive polymers based on light-weight hollow magnetic microspheres for specific recognition of BSA. Appl. Surf. Sci., 2019, 486, 265-273.
[http://dx.doi.org/10.1016/j.apsusc.2019.04.159]
[48]
Guo, H.; Yuan, D.; Fu, G. Enhanced surface imprinting of lysozyme over a new kind of magnetic chitosan submicrospheres. J. Colloid Interface Sci., 2015, 440, 53-59.
[http://dx.doi.org/10.1016/j.jcis.2014.10.059] [PMID: 25460689]
[49]
Xie, J.; Zhong, G.; Cai, C.; Chen, C.; Chen, X. Rapid and efficient separation of glycoprotein using pH double-responsive imprinted magnetic microsphere. Talanta, 2017, 169, 98-103.
[http://dx.doi.org/10.1016/j.talanta.2017.03.065] [PMID: 28411829]
[50]
Saiz-Poseu, J.; Mancebo-Aracil, J.; Nador, F.; Busqué, F.; Ruiz-Molina, D. The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed., 2019, 58(3), 696-714.
[http://dx.doi.org/10.1002/anie.201801063] [PMID: 29573319]
[51]
Chen, W.; Fu, M.; Zhu, X.; Liu, Q. Protein recognition by polydopamine-based molecularly imprinted hollow spheres. Biosens. Bioelectron., 2019, 142, 111492.
[http://dx.doi.org/10.1016/j.bios.2019.111492] [PMID: 31299590]
[52]
Ding, S.; Lyu, Z.; Niu, X.; Zhou, Y.; Liu, D.; Falahati, M.; Du, D.; Lin, Y. Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: A review. Biosens. Bioelectron., 2020, 149, 111830.
[http://dx.doi.org/10.1016/j.bios.2019.111830] [PMID: 31710919]
[53]
Wei, X.; Wang, Y.; Chen, J.; Ni, R.; Meng, J.; Liu, Z.; Xu, F.; Zhou, Y. Ionic liquids skeleton typed magnetic core-shell molecularly imprinted polymers for the specific recognition of lysozyme. Anal. Chim. Acta, 2019, 1081, 81-92.
[http://dx.doi.org/10.1016/j.aca.2019.07.025] [PMID: 31446968]
[54]
Xu, K.; Wang, Y.; Wei, X.; Chen, J.; Xu, P.; Zhou, Y. Preparation of magnetic molecularly imprinted polymers based on a deep eutectic solvent as the functional monomer for specific recognition of lysozyme. Mikrochim. Acta, 2018, 185(2), 146.
[http://dx.doi.org/10.1007/s00604-018-2707-8] [PMID: 29594602]
[55]
Liu, Y.; Wang, Y.; Dai, Q.; Zhou, Y. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein. Anal. Chim. Acta, 2016, 936, 168-178.
[http://dx.doi.org/10.1016/j.aca.2016.07.003] [PMID: 27566352]
[56]
Liu, Z.; Wang, Y.; Xu, F.; Wei, X.; Chen, J.; Li, H.; He, X.; Zhou, Y. A new magnetic molecularly imprinted polymer based on deep eutectic solvents as functional monomer and cross-linker for specific recognition of bovine hemoglobin. Anal. Chim. Acta, 2020, 1129, 49-59.
[http://dx.doi.org/10.1016/j.aca.2020.06.052] [PMID: 32891390]
[57]
Wang, P.; Yin, Y.; Xu, J.; Chen, S.; Wang, H. Facile synthesis of Cu2+-immobilized imprinted cotton for the selective adsorption of bovine hemoglobin. Cellulose, 2020, 27(2), 867-877.
[http://dx.doi.org/10.1007/s10570-019-02816-z]
[58]
Tao, Q.L.; Li, Y.; Shi, Y.; Liu, R.J.; Zhang, Y.W.; Guo, J. Application of molecular imprinted magnetic Fe3O4@SiO2 nanoparticles for selective immobilization of cellulase. J. Nanosci. Nanotechnol., 2016, 16(6), 6055-6060.
[http://dx.doi.org/10.1166/jnn.2016.10853] [PMID: 27427671]
[59]
Kuhn, J.; Aylaz, G.; Sari, E.; Marco, M.; Yiu, H.H.P.; Duman, M. Selective binding of antibiotics using magnetic molecular imprint polymer (MMIP) networks prepared from vinyl-functionalized magnetic nanoparticles. J. Hazard. Mater., 2020, 387, 121709.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121709] [PMID: 31812475]
[60]
Chang, T.; Liu, Y.; Yan, X.; Liu, S.; Zheng, H. One-pot synthesis of uniform and monodisperse superparamagnetic molecularly imprinted polymer nanospheres through a sol–gel process for selective recognition of bisphenol A in aqueous media. RSC Advances, 2016, 6(70), 66297-66306.
[http://dx.doi.org/10.1039/C6RA10740K]
[61]
Wan, W.; Han, Q.; Zhang, X.; Xie, Y.; Sun, J.; Ding, M. Selective enrichment of proteins for MALDI-TOF MS analysis based on molecular imprinting. Chem. Commun., 2015, 51(17), 3541-3544.
[http://dx.doi.org/10.1039/C4CC10205C] [PMID: 25644218]
[62]
Zhang, M.; Zhang, X.; He, X.; Chen, L.; Zhang, Y. A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein. Nanoscale, 2012, 4(10), 3141-3147.
[http://dx.doi.org/10.1039/c2nr30316g] [PMID: 22535306]
[63]
Kan, X.; Zhao, Q.; Shao, D.; Geng, Z.; Wang, Z.; Zhu, J.J. Preparation and recognition properties of bovine hemoglobin magnetic molecularly imprinted polymers. J. Phys. Chem. B, 2010, 114(11), 3999-4004.
[http://dx.doi.org/10.1021/jp910060c] [PMID: 20184298]
[64]
Xu, J.; Medina-Rangel, P.X.; Haupt, K.; Tse Sum Bui, B. Guide to the preparation of molecularly imprinted polymer nanoparticles for protein recognition by solid-phase synthesis. Methods Enzymol., 2017, 590, 115-141.
[http://dx.doi.org/10.1016/bs.mie.2017.02.004] [PMID: 28411635]
[65]
Bie, Z.; Chen, Y.; Ye, J.; Wang, S.; Liu, Z. Boronate-affinity glycan-oriented surface imprinting: a new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angew. Chem. Int. Ed., 2015, 54(35), 10211-10215.
[http://dx.doi.org/10.1002/anie.201503066] [PMID: 26179149]
[66]
Li, D.; Tu, T.; Yang, M.; Xu, C. Efficient preparation of surface imprinted magnetic nanoparticles using poly (2-anilinoethanol) as imprinting coating for the selective recognition of glycoprotein. Talanta, 2018, 184, 316-324.
[http://dx.doi.org/10.1016/j.talanta.2018.03.012] [PMID: 29674048]
[67]
Chen, G.; Shu, H.; Wang, L.; Bashir, K.; Wang, Q.; Cui, X.; Li, X.; Luo, Z.; Chang, C.; Fu, Q. Facile one-step targeted immobilization of an enzyme based on silane emulsion self-assembled molecularly imprinted polymers for visual sensors. Analyst, 2020, 145(1), 268-276.
[http://dx.doi.org/10.1039/C9AN01777A] [PMID: 31746832]
[68]
Liu, Z.; He, H. Synthesis and applications of boronate affinity materials: From class selectivity to biomimetic specificity. Acc. Chem. Res., 2017, 50(9), 2185-2193.
[http://dx.doi.org/10.1021/acs.accounts.7b00179] [PMID: 28849912]
[69]
Zhu, H.; Yao, H.; Xia, K.; Liu, J.; Yin, X.; Zhang, W.; Pan, J. Magnetic nanoparticles combining teamed boronate affinity and surface imprinting for efficient selective recognition of glycoproteins under physiological pH. Chem. Eng. J., 2018, 346, 317-328.
[http://dx.doi.org/10.1016/j.cej.2018.03.170]
[70]
Sun, X.Y.; Ma, R.T.; Chen, J.; Shi, Y.P. Magnetic boronate modified molecularly imprinted polymers on magnetite microspheres modified with porous TiO2 (Fe3O4@pTiO2@MIP) with enhanced adsorption capacity for glycoproteins and with wide operational pH range. Mikrochim. Acta, 2018, 185(12), 565.
[http://dx.doi.org/10.1007/s00604-018-3092-z] [PMID: 30498865]
[71]
Kartal, F.; Denizli, A. Surface molecularly imprinted magnetic microspheres for the recognition of albumin. J. Sep. Sci., 2014, 37(15), 2077-2086.
[http://dx.doi.org/10.1002/jssc.201400086] [PMID: 24825245]
[72]
Chen, H.; Kong, J.; Yuan, D.; Fu, G. Synthesis of surface molecularly imprinted nanoparticles for recognition of lysozyme using a metal coordination monomer. Biosens. Bioelectron., 2014, 53, 5-11.
[http://dx.doi.org/10.1016/j.bios.2013.09.037] [PMID: 24099918]
[73]
Gao, R.; Zhang, L.; Hao, Y.; Cui, X.; Liu, D.; Zhang, M.; Tang, Y. One-step preparation of magnetic imprinted nanoparticles adopting dopamine-cupric ion as a co-monomer for the specific recognition of bovine hemoglobin. J. Sep. Sci., 2015, 38(20), 3568-3574.
[http://dx.doi.org/10.1002/jssc.201500677] [PMID: 26332617]
[74]
Shi, L.; Tang, Y.; Hao, Y.; He, G.; Gao, R.; Tang, X. Selective adsorption of protein by a high-efficiency Cu2+ -cooperated magnetic imprinted nanomaterial. J. Sep. Sci., 2016, 39(14), 2876-2883.
[http://dx.doi.org/10.1002/jssc.201600413] [PMID: 27234958]
[75]
Zhao, M.; Huang, S.; Xie, H.; Wang, J.; Zhao, X.; Li, M.; Zhao, M. Construction of specific and reversible nanoreceptors for proteins via sequential surface-imprinting strategy. Anal. Chem., 2020, 92(15), 10540-10547.
[http://dx.doi.org/10.1021/acs.analchem.0c01366] [PMID: 32605364]
[76]
Zhou, J.; Wang, Y.; Bu, J.; Zhang, B.; Zhang, Q Ni2+-BSA directional coordination-assisted magnetic molecularly imprinted microspheres with enhanced specific rebinding to target proteins. ACS Appl. Mater. Interfaces, 2019, 11(29), 25682-25690.
[http://dx.doi.org/10.1021/acsami.9b06507] [PMID: 31246393]
[77]
Gai, Q.Q.; Qu, F.; Zhang, T.; Zhang, Y.K. The preparation of bovine serum albumin surface-imprinted superparamagnetic polymer with the assistance of basic functional monomer and its application for protein separation. J. Chromatogr. A, 2011, 1218(22), 3489-3495.
[http://dx.doi.org/10.1016/j.chroma.2011.03.069] [PMID: 21511265]
[78]
Verheyen, E.; Schillemans, J.P.; van Wijk, M.; Demeniex, M.A.; Hennink, W.E.; van Nostrum, C.F. Challenges for the effective molecular imprinting of proteins. Biomaterials, 2011, 32(11), 3008-3020.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.007] [PMID: 21288565]
[79]
Zhang, Z.; Wang, H.; Wang, H.; Wu, C.; Li, M.; Li, L. Fabrication and evaluation of molecularly imprinted magnetic nanoparticles for selective recognition and magnetic separation of lysozyme in human urine. Analyst, 2018, 143(23), 5849-5856.
[http://dx.doi.org/10.1039/C8AN01746H] [PMID: 30382260]
[80]
Liu, Y.; Wang, S.; Zhang, C.; Su, X.; Huang, S.; Zhao, M. Enhancing the selectivity of enzyme detection by using tailor-made nanoparticles. Anal. Chem., 2013, 85(10), 4853-4857.
[http://dx.doi.org/10.1021/ac4007914] [PMID: 23654199]
[81]
Men, H.F.; Liu, H.Q.; Zhang, Z.L.; Huang, J.; Zhang, J.; Zhai, Y.Y.; Li, L. Synthesis, properties and application research of atrazine Fe3O4@SiO2 magnetic molecularly imprinted polymer. Environ. Sci. Pollut. Res. Int., 2012, 19(6), 2271-2280.
[http://dx.doi.org/10.1007/s11356-011-0732-9] [PMID: 22246642]
[82]
Li, W.; Chen, M.; Xiong, H.; Wen, W.; He, H.; Zhang, X.; Wang, S. Surface protein imprinted magnetic nanoparticles for specific recognition of bovine hemoglobin. New J. Chem., 2016, 40(1), 564-570.
[http://dx.doi.org/10.1039/C5NJ02879E]
[83]
Su, Y.; Qiu, B.; Chang, C.; Li, X.; Zhang, M.; Zhou, B.; Yang, Y. Separation of bovine hemoglobin using novel magnetic molecular imprinted nanoparticles. RSC Advances, 2018, 8(11), 6192-6199.
[http://dx.doi.org/10.1039/C7RA12457K] [PMID: 35539629]
[84]
Liu, Y.; Gu, Y.; Li, M.; Wei, Y. Protein imprinting over magnetic nanospheres via a surface grafted polymer for specific capture of hemoglobin. New J. Chem., 2014, 38(12), 6064-6072.
[http://dx.doi.org/10.1039/C4NJ01262C]
[85]
Cheng, Y.; Nie, J.; Li, J.; Liu, H.; Yan, Z.; Kuang, L. Synthesis and characterization of core–shell magnetic molecularly imprinted polymers for selective recognition and determination of quercetin in apple samples. Food Chem., 2019, 287, 100-106.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.069] [PMID: 30857677]
[86]
Li, Y.; Hong, M.; Miaomiao; Bin, Q.; Lin, Z.; Cai, Z.; Chen, G. Novel composites of multifunctional Fe3O4@Au nanofibers for highly efficient glycoprotein imprinting. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(7), 1044-1051.
[http://dx.doi.org/10.1039/c2tb00149g] [PMID: 32262368]
[87]
Liu, Z.; Jin, L.; Jin, H.; Xu, N.; Yu, X.; Yu, S. Core-shell regeneration magnetic molecularly imprinted polymers-based SERS for sibutramine rapid detection. ACS Sustain. Chem.& Eng., 2019.
[88]
Li, Y.; Chen, Y.; Huang, L.; Lou, B.; Chen, G. Creating BHb-imprinted magnetic nanoparticles with multiple binding sites. Analyst, 2017, 142(2), 302-309.
[http://dx.doi.org/10.1039/C6AN02121B] [PMID: 27924985]
[89]
Niu, M.; Pham-Huy, C.; He, H. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Mikrochim. Acta, 2016, 183(10), 2677-2695.
[http://dx.doi.org/10.1007/s00604-016-1930-4]
[90]
Li, Y.; Huang, L.; Wang, X.; Chen, Y. A study of electrochemical sensor based on BHb-imprinted magnetic nanoparticles. Anal. Sci., 2017, 33(10), 1105-1110.
[http://dx.doi.org/10.2116/analsci.33.1105] [PMID: 28993582]
[91]
Ma, W.; Dai, Y.; Row, K.H. Molecular imprinted polymers based on magnetic chitosan with different deep eutectic solvent monomers for the selective separation of catechins in black tea. Electrophoresis, 2018, 39(15), 2039-2046.
[http://dx.doi.org/10.1002/elps.201800034] [PMID: 29450897]
[92]
Yuan, B.; Yang, X.; Xue, L.; Feng, Y.; Jiang, J. A novel recycling system for nano-magnetic molecular imprinting immobilised cellulases: Synergistic recovery of anthocyanin from fruit and vegetable waste. Bioresour. Technol., 2016, 222, 14-23.
[http://dx.doi.org/10.1016/j.biortech.2016.09.088] [PMID: 27697733]
[93]
Zhang, W.; Zhu, Z.; Zhang, H.; Qiu, Y. Selective removal of the genotoxic compound 2-aminopyridine in water using molecularly imprinted polymers based on magnetic chitosan and β-cyclodextrin. Int. J. Environ. Res. Public Health, 2017, 14(9), 991.
[http://dx.doi.org/10.3390/ijerph14090991] [PMID: 28858259]
[94]
Lv, Y.; Tan, T.; Svec, F. Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules. Biotechnol. Adv., 2013, 31(8), 1172-1186.
[http://dx.doi.org/10.1016/j.biotechadv.2013.02.005] [PMID: 23466364]
[95]
Yang, S.; Zhang, X.; Zhao, W.; Sun, L.; Luo, A. Preparation and evaluation of Fe3O4 nanoparticles incorporated molecularly imprinted polymers for protein separation. J. Mater. Sci., 2015, 51, 937-949.
[96]
Bagheri, A.R.; Arabi, M.; Ghaedi, M.; Ostovan, A.; Wang, X.; Li, J.; Chen, L. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta, 2019, 195, 390-400.
[http://dx.doi.org/10.1016/j.talanta.2018.11.065] [PMID: 30625559]
[97]
Lee, M.H.; Ahluwalia, A.; Hsu, K.M.; Chin, W.T.; Lin, H.Y. Extraction of alpha-fetoprotein (AFP) with magnetic albuminoid-imprinted poly(ethylene-co-vinyl alcohol) nanoparticles from human hepatocellular carcinoma HepG2 cellular culture medium. RSC Advances, 2014, 4(70), 36990-36995.
[http://dx.doi.org/10.1039/C4RA07378A]
[98]
Fresco-Cala, B.; Mizaikoff, B. Surrogate imprinting strategies: Molecular imprints via fragments and dummies. ACS Appl. Polym. Mater., 2020, 2(9), 3714-3741.
[http://dx.doi.org/10.1021/acsapm.0c00555]
[99]
Kwaśniewska, K.; Gadzała-Kopciuch, R.; Buszewski, B. Magnetic molecular imprinted polymers as a tool for isolation and purification of biological samples. Open Chem., 2015, 13(1)
[http://dx.doi.org/10.1515/chem-2015-0137]
[100]
Xu, W.; Wang, Y.; Wei, X.; Chen, J.; Xu, P.; Ni, R.; Meng, J.; Zhou, Y. Fabrication of magnetic polymers based on deep eutectic solvent for separation of bovine hemoglobin via molecular imprinting technology. Anal. Chim. Acta, 2019, 1048, 1-11.
[http://dx.doi.org/10.1016/j.aca.2018.10.044] [PMID: 30598138]
[101]
Stevenson, D.; El-Sharif, H.F.; Reddy, S.M. Selective extraction of proteins and other macromolecules from biological samples using molecular imprinted polymers. Bioanalysis, 2016, 8(21), 2255-63.
[102]
Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Electrochemical sensors based on magnetic molecularly imprinted polymers: A review. Anal. Chim. Acta, 2017, 960, 1-17.
[http://dx.doi.org/10.1016/j.aca.2017.01.003] [PMID: 28193351]
[103]
Lahcen, A.A.; Amine, A. Recent advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials. Electroanalysis, 2019, 31(2), 188-201.
[http://dx.doi.org/10.1002/elan.201800623]
[104]
Sun, B.; Ni, X.; Cao, Y.; Cao, G. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb. Biosens. Bioelectron., 2017, 91, 354-358.
[http://dx.doi.org/10.1016/j.bios.2016.12.056] [PMID: 28049107]
[105]
He, J.Y.; Li, Q.Y.; Yang, L.L.; Ma, R.R.; Wang, C.Z.; Zhou, L.D.; Zhang, Q.H.; Xia, Z.N.; Yuan, C.S. Synergistic recognition of transferrin by using performance dual epitope imprinted polymers. Anal. Chim. Acta, 2021, 1186, 339117.
[http://dx.doi.org/10.1016/j.aca.2021.339117] [PMID: 34756250]
[106]
Pan, Z.H.; Yu, S.S.; Bai, C.C.; Yin, W.Y.; Ma, Y.R.; Xue, Z.A.; Lu, Q.Y.; Dong, L.Y.; Wang, X.H. Poly(caffeic acid)-coated molecularly imprinted magnetic nanoparticles for specific and ultrasensitive detection of glycoprotein. Talanta, 2022, 241, 123240.
[http://dx.doi.org/10.1016/j.talanta.2022.123240] [PMID: 35065346]
[107]
Turan, E.; Zengin, A.; Suludere, Z.; Kalkan, N.Ö.; Tamer, U. Construction of a sensitive and selective plasmonic biosensor for prostate specific antigen by combining magnetic molecularly-imprinted polymer and surface-enhanced Raman spectroscopy. Talanta, 2022, 237, 122926.
[http://dx.doi.org/10.1016/j.talanta.2021.122926] [PMID: 34736663]
[108]
Zhang, J.; Hao, Y.; Tian, X.; Liang, Y.; He, X.; Gao, R.; Chen, L.; Zhang, Y. Multi-stimuli responsive molecularly imprinted nanoparticles with tailorable affinity for modulated specific recognition of human serum albumin. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(35), 6634-6643.
[http://dx.doi.org/10.1039/D2TB00076H] [PMID: 35257137]
[109]
Bie, Z.; Chen, Y. Selective analysis of interferon-alpha in human serum with boronate affinity oriented imprinting based plastic antibody. Talanta, 2021, 230, 122338.
[http://dx.doi.org/10.1016/j.talanta.2021.122338] [PMID: 33934790]
[110]
Hao, Y.; Gao, Y.; Song, H.; Niu, Y.; Chen, X.; Liu, X.; Gao, R.; Wang, S. Fabrication of metal coordination-synergistic magnetic imprinted microspheres based on ligand-free Fe3O4–Cu for specific recognition of bovine hemoglobin. Talanta, 2021, 233, 122496.
[http://dx.doi.org/10.1016/j.talanta.2021.122496] [PMID: 34215114]
[111]
Guan, H.; Wang, J.; Tan, S.; Han, Q.; Liang, Q.; Ding, M. A facile method to synthesize magnetic nanoparticles chelated with Copper(II) for selective adsorption of bovine hemoglobin. Korean J. Chem. Eng., 2020, 37(6), 1097-1106.
[http://dx.doi.org/10.1007/s11814-020-0532-3]
[112]
Goudarzi, F.; Hejazi, P. Effect of biomolecule chemical structure on the synthesis of surface magnetic molecularly imprinted polymer in aqueous solution using various monomers for high-capacity selective recognition of human insulin. React. Funct. Polym., 2019, 143, 104322.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104322]
[113]
Wang, Y.; Ma, Y.; Zhou, J.; Su, K.; Zhang, B.; Zhang, Q. Thermo-sensitive surface molecularly imprinted magnetic microspheres based on bio-macromolecules and their specific recognition of bovine serum albumin. J. Sep. Sci., 2020, 43(5), 996-1002.
[http://dx.doi.org/10.1002/jssc.201901024] [PMID: 31837090]
[114]
Ashley, J.; Feng, X.; Halder, A.; Zhou, T.; Sun, Y. Dispersive solid-phase imprinting of proteins for the production of plastic antibodies. Chem. Commun., 2018, 54(27), 3355-3358.
[http://dx.doi.org/10.1039/C8CC00343B] [PMID: 29542760]
[115]
Fan, J.P.; Yu, J.X.; Yang, X.M.; Zhang, X.H.; Yuan, T.T.; Peng, H.L. Preparation, characterization, and application of multiple stimuli-responsive rattle-type magnetic hollow molecular imprinted poly (ionic liquids) nanospheres (Fe3O4@void@PILMIP) for specific recognition of protein. Chem. Eng. J., 2018, 337, 722-732.
[http://dx.doi.org/10.1016/j.cej.2017.12.159]
[116]
Zhai, J.; Zhao, M.; Cao, X.; Li, M.; Zhao, M. Metal-ion-responsive bionanocomposite for selective and reversible enzyme inhibition. J. Am. Chem. Soc., 2018, 140(49), 16925-16928.
[http://dx.doi.org/10.1021/jacs.8b10848] [PMID: 30484642]
[117]
Mahajan, R.; Rouhi, M.; Shinde, S.; Bedwell, T.; Incel, A.; Mavliutova, L.; Piletsky, S.; Nicholls, I.A.; Sellergren, B. Highly efficient synthesis and assay of protein-imprinted nanogels by using magnetic templates. Angew. Chem. Int. Ed., 2019, 58(3), 727-730.
[http://dx.doi.org/10.1002/anie.201805772] [PMID: 30308085]
[118]
Qian, L.; Sun, J.; Hou, C.; Yang, J.; Li, Y.; Lei, D.; Yang, M.; Zhang, S. Immobilization of BSA on ionic liquid functionalized magnetic Fe3O4 nanoparticles for use in surface imprinting strategy. Talanta, 2017, 168, 174-182.
[http://dx.doi.org/10.1016/j.talanta.2017.03.044] [PMID: 28391839]
[119]
Hao, Y.; Gao, R.; Liu, D.; He, G.; Tang, Y.; Guo, Z. A facile and general approach for preparation of glycoprotein-imprinted magnetic nanoparticles with synergistic selectivity. Talanta, 2016, 153, 211-220.
[http://dx.doi.org/10.1016/j.talanta.2016.03.005] [PMID: 27130111]
[120]
Ji, S.; Li, N.; Shen, Y.; Li, Q.; Qiao, J.; Li, Z. Poly(amino acid)-based thermoresponsive molecularly imprinted magnetic nanoparticles for specific recognition and release of lysozyme. Anal. Chim. Acta, 2016, 909, 60-66.
[http://dx.doi.org/10.1016/j.aca.2016.01.005] [PMID: 26851085]
[121]
Riveros G, D.; Cordova, K.; Michiels, C.; Verachtert, H.; Derdelinckx, G. Polydopamine imprinted magnetic nanoparticles as a method to purify and detect class II hydrophobins from heterogeneous mixtures. Talanta, 2016, 160, 761-767.
[http://dx.doi.org/10.1016/j.talanta.2016.08.024] [PMID: 27591673]
[122]
Zhang, L.; Tang, Y.; Hao, Y.; He, G.; Zhang, B.; Gao, R.; Zhang, M. Preparation of magnetic glycoprotein-imprinted nanoparticles with dendritic polyethyleneimine as a monomer for the specific recognition of ovalbumin from egg white. J. Sep. Sci., 2016, 39(10), 1919-1925.
[http://dx.doi.org/10.1002/jssc.201600112] [PMID: 26991459]
[123]
Gao, R.; Cui, X.; Hao, Y.; He, G.; Zhang, M.; Tang, Y. Preparation of Cu2+-mediated magnetic imprinted polymers for the selective sorption of bovine hemoglobin. Talanta, 2016, 150, 46-53.
[http://dx.doi.org/10.1016/j.talanta.2015.12.017] [PMID: 26838380]
[124]
Ma, R.T.; Ha, W.; Chen, J.; Shi, Y.P. Highly dispersed magnetic molecularly imprinted nanoparticles with well-defined thin film for the selective extraction of glycoprotein. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(15), 2620-2627.
[http://dx.doi.org/10.1039/C6TB00409A] [PMID: 32263286]
[125]
Chen, J.; Lei, S.; Xie, Y.; Wang, M.; Yang, J.; Ge, X. Fabrication of high-performance magnetic lysozyme-imprinted microsphere and its NIR-responsive controlled release property. ACS Appl. Mater. Interfaces, 2015, 7(51), 28606-28615.
[http://dx.doi.org/10.1021/acsami.5b10126] [PMID: 26642106]
[126]
Taguchi, H.; Sunayama, H.; Takano, E.; Kitayama, Y.; Takeuchi, T. Preparation of molecularly imprinted polymers for the recognition of proteins via the generation of peptide-fragment binding sites by semi-covalent imprinting and enzymatic digestion. Analyst, 2015, 140(5), 1448-1452.
[http://dx.doi.org/10.1039/C4AN02299H] [PMID: 25629605]
[127]
Li, Y.; Wang, X.Y.; Zhang, R.Z.; Zhang, X.Y.; Liu, W.; Xu, X.M.; Zhang, Y.W. Molecular imprinting and immobilization of cellulase onto magnetic Fe3O4@SiO2 nanoparticles. J. Nanosci. Nanotechnol., 2014, 14(4), 2931-2936.
[http://dx.doi.org/10.1166/jnn.2014.8625] [PMID: 24734713]
[128]
Lan, F.; Ma, S.; Yang, Q.; Xie, L.; Wu, Y.; Gu, Z. Polydopamine-based superparamagnetic molecularly imprinted polymer nanospheres for efficient protein recognition. Colloids Surf. B Biointerfaces, 2014, 123, 213-218.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.018] [PMID: 25288533]
[129]
Zhou, J.; Gan, N.; Li, T.; Hu, F.; Li, X.; Wang, L.; Zheng, L. A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. Biosens. Bioelectron., 2014, 54, 199-206.
[http://dx.doi.org/10.1016/j.bios.2013.10.044] [PMID: 24280050]
[130]
Sun, S.; Chen, L.; Shi, H.; Li, Y.; He, X. Magnetic glass carbon electrode, modified with magnetic ferriferrous oxide nanoparticles coated with molecularly imprinted polymer films for electrochemical determination of bovine hemoglobin. J. Electroanal. Chem., 2014, 734, 18-24.
[http://dx.doi.org/10.1016/j.jelechem.2014.09.034]
[131]
Cao, J.; Zhang, X.; He, X.; Chen, L.; Zhang, Y. The synthesis of magnetic lysozyme-imprinted polymers by means of distillation-precipitation polymerization for selective protein enrichment. Chem. Asian J., 2014, 9(2), 526-533.
[http://dx.doi.org/10.1002/asia.201300937] [PMID: 24203562]
[132]
Li, X.; Zhang, B.; Li, W.; Lei, X.; Fan, X.; Tian, L.; Zhang, H.; Zhang, Q. Preparation and characterization of bovine serum albumin surface-imprinted thermosensitive magnetic polymer microsphere and its application for protein recognition. Biosens. Bioelectron., 2014, 51, 261-267.
[http://dx.doi.org/10.1016/j.bios.2013.07.008] [PMID: 23973936]
[133]
Jia, X.; Xu, M.; Wang, Y.; Ran, D.; Yang, S.; Zhang, M. Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin. Analyst, 2013, 138(2), 651-658.
[http://dx.doi.org/10.1039/C2AN36313E] [PMID: 23175702]
[134]
Ouyang, R.; Lei, J.; Ju, H. Artificial receptor-functionalized nanoshell: Facile preparation, fast separation and specific protein recognition. Nanotechnology, 2010, 21(18), 185502.
[http://dx.doi.org/10.1088/0957-4484/21/18/185502] [PMID: 20388981]
[135]
Jing, T.; Du, H.; Dai, Q.; Xia, H.; Niu, J.; Hao, Q.; Mei, S.; Zhou, Y. Magnetic molecularly imprinted nanoparticles for recognition of lysozyme. Biosens. Bioelectron., 2010, 26(2), 301-306.
[http://dx.doi.org/10.1016/j.bios.2010.08.044] [PMID: 20829022]
[136]
Li, L.; He, X.; Chen, L.; Zhang, Y. Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin. Chem. Asian J., 2009, 4(2), 286-293.
[http://dx.doi.org/10.1002/asia.200800300] [PMID: 19040251]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy