Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

A New Flavonoid Derivative and Inhibitory Effects on Xanthine Oxidase and α-glucosidase from Glinus oppositifolius

Author(s): Nguyen Thi Thu Hien*, Huynh Tran Quoc Dung, Bui Hoang Minh, Tran Van Chen, Nguyen Trong Tuan and Le Tien Dung*

Volume 27, Issue 15, 2023

Published on: 10 October, 2023

Page: [1371 - 1379] Pages: 9

DOI: 10.2174/0113852728273341231006075959

Price: $65

Abstract

In previous studies on bioactivities, some extracts from Glinus oppositifolius possessed antimicrobial, antifungal, antiplasmodial, anti-inflammatory, anti-diarrhoeic, antihyperlipidemic, and hepatoprotective. However, information on the xanthine oxidase inhibitors’ properties of G. oppositifolius is still limited. For the purpose of discovering new leads with potential α-glucosidase inhibition, the less explored plant G. oppositifolius has been investigated. A new apigenin flavone glucoside, named apigenin-5-O-β-D-glucopyranosyl-8-C-β-Dglucopyranoside (7), together with seven known compounds (spergulacin (1), glinoside C (2), spergulacin A (3), spergulin B (4), spergulin A (5), vitexin (6), vicenin 2 (8)) were identified from Glinus oppositifolius (L.) Aug. DC. aerial parts. The identification of their structures involved a comprehensive analysis utilizing extensive 1D and 2D NMR techniques, mass spectrometry, and in comparison with those from references. Compound 7 (IC50 =257.90 ± 1.00 μM) showed better inhibition of α- glucosidase than acarbose (IC50 = 1021.47 ± 10.79 μM). Compound 8 (IC50 = 56.82 ± 1.95 μM) indicated a good XO inhibitory effect.

Keywords: Glinus oppositifolius, xanthine oxidase, α-glucosidase inhibition, apigenin flavonoid, saponin, anti-fungal.

« Previous
Graphical Abstract
[1]
Zhang, D.; Fu, Y.; Yang, J.; Li, X.N.; San, M.M.; Oo, T.N.; Wang, Y.; Yang, X. Triterpenoids and their glycosides from Glinus oppositifolius with antifungal activities against Microsporum gypseum and Trichophyton rubrum. Molecules, 2019, 24(12), 2206.
[http://dx.doi.org/10.3390/molecules24122206] [PMID: 31212847]
[2]
Phan, T.T.; Do, L.T.M.; Phung, T.V.; Nguyen, T.T.H.; Huynh, V.N.; Ngo, D.T.T.; Nguyen, K.P.P.; Nguyen, T.T.A. A new triterpenoid saponin from Glinus oppositifolius. Nat. Prod. Res., 2022, 36(1), 171-176.
[http://dx.doi.org/10.1080/14786419.2020.1774756] [PMID: 32498559]
[3]
Sheu, S.Y.; Yao, C.H.; Lei, Y.C.; Kuo, T.F. Recent progress in Glinus oppositifolius research. Pharm. Biol., 2014, 52(8), 1079-1084.
[http://dx.doi.org/10.3109/13880209.2013.876653] [PMID: 24617922]
[4]
Nguyen, M.T.T.; Nguyen, N.T. A new lupane triterpene from Tetracera scandens L., xanthine oxidase inhibitor. Nat. Prod. Res., 2013, 27(1), 61-67.
[http://dx.doi.org/10.1080/14786419.2011.652960] [PMID: 22260251]
[5]
Xu, C.; Liu, S.; Song, F.; Liu, Z. Liu Z.J.C.T.M. Xanthine oxidase inhibitors and the analytical methods to screen them: A review. Curr. Tradit. Med., 2015, 1(1), 41-50.
[http://dx.doi.org/10.2174/2215083801999150527115400]
[6]
Duong, N.T.; Vinh, P.D.; Thuong, P.T.; Hoai, N.T.; Thanh, L.N.; Bach, T.T.; Nam, N.H.; Anh, N.H. Xanthine oxidase inhibitors from Archidendron clypearia (Jack.) I.C. Nielsen: Results from systematic screening of Vietnamese medicinal plants. Asian Pac. J. Trop. Med., 2017, 10(6), 549-556.
[http://dx.doi.org/10.1016/j.apjtm.2017.06.002] [PMID: 28756918]
[7]
Teo, D.B.; Teng, G.G. Diabetes mellitus and gout. In: Diabetes Mellitus; Elsevier, 2020; pp. 317-343.
[http://dx.doi.org/10.1016/B978-0-12-820605-8.00015-2]
[8]
Minh, T.N.; Van, T.M.; Andriana, Y.; Vinh, L.T.; Hau, D.V.; Duyen, D.H.; Guzman-Gelani, C.; Guzman-Gelani, C.D. Antioxidant, xanthine oxidase, α-amylase and α-glucosidase inhibitory activities of bioactive compounds from Rumex crispus L. root. Molecules, 2019, 24(21), 3899.
[http://dx.doi.org/10.3390/molecules24213899] [PMID: 31671906]
[9]
Sahu, N.P.; Koike, K.; Banerjee, S.; Achari, B.; Nikaido, T. Triterpenoid saponins from Mollugo spergula. Phytochemistry, 2001, 58(8), 1177-1182.
[http://dx.doi.org/10.1016/S0031-9422(01)00346-6] [PMID: 11738403]
[10]
Kumar, D.; Shah, V.; Ghosh, R.; Pal, B.C. A new triterpenoid saponin from Glinus oppositifolius with α-glucosidase inhibitory activity. Nat. Prod. Res., 2013, 27(7), 624-630.
[http://dx.doi.org/10.1080/14786419.2012.686907] [PMID: 22594571]
[11]
Lin, Y.L.; Kuo, Y.H.; Shiao, M.S.; Chen, C.C.; Ou, J.C. Flavonoid glycosides from Terminalia catappa L. J. Chin. Chem. Soc. (Taipei), 2000, 47(1), 253-256.
[http://dx.doi.org/10.1002/jccs.200000030]
[12]
Tavakoli, S.; Khalighi-Sigaroodi, F.; Khosravi Dehaghi, N.; Yaghoobi, M.; Hajiaghaee, R.; Gholami, A.; Ghafarzadegan, R. Isolation and purification of apigenin, quercetin and apigenin 7-O-glycoside from Apium graveolens L., Petroselinum crispum (Mill.) Fuss, Allium cepa L., respectively. Faslnamah-i Giyahan-i Daruyi, 2022, 21(83), 72-86.
[http://dx.doi.org/10.52547/jmp.21.83.72]
[13]
Islam, M.N.; Ishita, I.J.; Jung, H.A.; Choi, J.S. Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem. Toxicol., 2014, 69(69), 55-62.
[http://dx.doi.org/10.1016/j.fct.2014.03.042] [PMID: 24713265]
[14]
Farzaei, M.H.; Bahramsoltani, R.; Ghobadi, A.; Farzaei, F.; Najafi, F. Pharmacological activity of Mentha longifolia and its phytoconstituents. J. Tradit. Chin. Med., 2017, 37(5), 710-720.
[http://dx.doi.org/10.1016/S0254-6272(17)30327-8] [PMID: 32188234]
[15]
Liu, F.; Deng, C.; Cao, W.; Zeng, G.; Deng, X.; Zhou, Y. Phytochemicals of Pogostemon cablin (Blanco) Benth. aqueous extract: Their xanthine oxidase inhibitory activities. Biomed. Pharmacother., 2017, 89, 544-548.
[http://dx.doi.org/10.1016/j.biopha.2017.01.040] [PMID: 28259096]
[16]
Watanabe, M. An anthocyanin compound in buckwheat sprouts and its contribution to antioxidant capacity. Biosci. Biotechnol. Biochem., 2007, 71(2), 579-582.
[http://dx.doi.org/10.1271/bbb.60471] [PMID: 17284830]
[17]
Ni, M.; Hu, X.; Gong, D.; Zhang, G. Inhibitory mechanism of vitexin on α-glucosidase and its synergy with acarbose. Food Hydrocoll., 2020, 105, 105824.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105824]
[18]
Li, H.; Song, F.; Xing, J.; Tsao, R.; Liu, Z.; Liu, S. Screening and structural characterization of α-glucosidase inhibitors from hawthorn leaf flavonoids extract by ultrafiltration LC-DAD-MSn and SORI-CID FTICR MS. J. Am. Soc. Mass Spectrom., 2009, 20(8), 1496-1503.
[http://dx.doi.org/10.1016/j.jasms.2009.04.003] [PMID: 19443236]
[19]
Chen, Y.G.; Li, P.; Li, P.; Yan, R.; Zhang, X.Q.; Wang, Y.; Zhang, X.T.; Ye, W.C.; Zhang, Q.W. α-Glucosidase inhibitory effect and simultaneous quantification of three major flavonoid glycosides in Microctis folium. Molecules, 2013, 18(4), 4221-4232.
[http://dx.doi.org/10.3390/molecules18044221] [PMID: 23612474]
[20]
Ammar, R.B.; Bhouri, W.; Sghaier, M.B.; Boubaker, J.; Skandrani, I.; Neffati, A.; Bouhlel, I.; Kilani, S.; Mariotte, A.M.; Chekir-Ghedira, L.; Dijoux-Franca, M-G.; Ghedi-ra, K. Antioxidant and free radical-scavenging properties of three flavonoids isolated from the leaves of Rhamnus alaternus L. (Rhamnaceae): A structure-activity relationship study. Food Chem., 2009, 116(1), 258-264.
[http://dx.doi.org/10.1016/j.foodchem.2009.02.043]
[21]
Lin, S.; Zhang, G.; Liao, Y.; Pan, J.; Gong, D. chemistry f. Dietary flavonoids as xanthine oxidase inhibitors: Structure-affinity and structure-activity relationships. J. Agric. Food Chem., 2015, 63(35), 7784-7794.
[http://dx.doi.org/10.1021/acs.jafc.5b03386] [PMID: 26285120]
[22]
Sarian, M.N.; Ahmed, Q.U.; Mat So’ad, S.Z.; Alhassan, A.M.; Murugesu, S.; Perumal, V.; Syed Mohamad, S.N.A.; Khatib, A. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. Biomed Res Int, 2017, 2017.
[http://dx.doi.org/10.1155/2017/8386065]
[23]
Zhao, J.; Huang, L.; Sun, C.; Zhao, D.; Tang, H. Studies on the structure-activity relationship and interaction mechanism of flavonoids and xanthine oxidase through enzyme kinetics, spectroscopy methods and molecular simulations. Food Chem., 2020, 323, 126807.
[http://dx.doi.org/10.1016/j.foodchem.2020.126807] [PMID: 32330646]
[24]
Cos, P.; Ying, L.; Calomme, M.; Hu, J.P.; Cimanga, K.; Van Poel, B.; Pieters, L.; Vlietinck, A.J.; Berghe, D.V. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod., 1998, 61(1), 71-76.
[http://dx.doi.org/10.1021/np970237h] [PMID: 9461655]
[25]
Zhang, L.; Liu, L.; Xiao, A.; Huang, S.; Li, D. Screening and analysis of xanthine oxidase inhibitors in jute leaves and their protective effects against hydrogen peroxide-induced oxidative stress in cells. Open Chem., 2020, 18(1), 1481-1494.
[http://dx.doi.org/10.1515/chem-2020-0178]
[26]
To, D.C.; Bui, T.Q.; Nhung, N.T.A.; Tran, Q.T.; Do, T.T.; Tran, M.H.; Hien, P.P.; Ngu, T.N.; Quy, P.T.; Nguyen, T.H.; Nguyen, H.T.; Nguyen, T.D.; Nguyen, P.H.; Nguyen, T-H. On the inhibitability of natural products isolated from Tetradium ruticarpum towards tyrosine phosphatase 1B (PTP1B) and α-glucosidase (3W37): An in vitro and in silico study. Molecules, 2021, 26(12), 3691.
[http://dx.doi.org/10.3390/molecules26123691] [PMID: 34204232]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy