Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Role of Cerium Oxide Nanoparticles and Doxorubicin in Improving Cancer Management: A Mini Review

Author(s): Agnishwar Girigoswami, Harini Adhikesavan, Shurfa Mudenkattil, Sobita Devi and Koyeli Girigoswami*

Volume 29, Issue 33, 2023

Published on: 07 November, 2023

Page: [2640 - 2654] Pages: 15

DOI: 10.2174/0113816128270290231029161741

Price: $65

Abstract

Cancer is one of the significant issues with public health and the second leading cause of death worldwide. The three most lethal cancers in the general population are stomach, lung, and liver cancers, in which lung and breast cancers cause the majority of cancer-associated deaths among men and women, respectively. CeO2 nanoparticles have a cytoprotectant effect in normal cells and a cytotoxic effect in cancer cells that enables them to induce the reactive oxygen species (ROS) production within cancer cells, which in turn develops reactive nitrogen species (RNS) that interfere with intracellular activities, and this property makes them an excellent anticancer agent. Because of its biofilm suppression, free radical scavenging ability, redox activity, and other unique properties, attention has been bestowed on cerium oxide nanoparticles as a potential alternative to solve many biomedical issues in the future. This review mainly focuses on the combinatorial effect of cerium dioxide nanoparticles and Doxorubicin in cancer management.

Keywords: Cancer, cerium oxide, doxorubicin, nanoparticles, bionanotechnology, doxorubicin.

[1]
Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett 2021; 16(1): 173.
[http://dx.doi.org/10.1186/s11671-021-03628-6] [PMID: 34866166]
[2]
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73(1): 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[3]
Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health 2019; 9(4): 217-22.
[http://dx.doi.org/10.2991/jegh.k.191008.001] [PMID: 31854162]
[4]
Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv Healthc Mater 2020; 9(9): 1901058.
[http://dx.doi.org/10.1002/adhm.201901058] [PMID: 32196144]
[5]
Kashyap D, Tuli HS, Yerer MB, Sharma A, Sak K, Srivastava S, Eds. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges Seminars in cancer biology. Elsevier 2021.
[6]
Bor G, Mat Azmi ID, Yaghmur A. Nanomedicines for cancer therapy: Current status, challenges and future prospects. Ther Deliv 2019; 10(2): 113-32.
[http://dx.doi.org/10.4155/tde-2018-0062] [PMID: 30678550]
[7]
Girigoswami K, Pallavi P, Girigoswami A. Targeting cancer stem cells by nanoenabled drug delivery. Cancer Stem Cells New Horiz Cancer Ther 2020; pp. 313-37.
[http://dx.doi.org/10.1007/978-981-15-5120-8_17]
[8]
Ghosh S, Girigoswami K, Girigoswami A. Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine 2019; 14(15): 2067-82.
[http://dx.doi.org/10.2217/nnm-2019-0155] [PMID: 31355709]
[9]
Sharmiladevi P, Girigoswami K, Haribabu V, Girigoswami A. Nano-enabled theranostics for cancer. Mater Adv 2021; 2(9): 2876-91.
[http://dx.doi.org/10.1039/D1MA00069A]
[10]
Beik J, Khateri M, Khosravi Z, et al. Gold nanoparticles in combinatorial cancer therapy strategies. Coord Chem Rev 2019; 387: 299-324.
[http://dx.doi.org/10.1016/j.ccr.2019.02.025]
[11]
Sarlis N. Metastatic thyroid cancer unresponsive to conventional therapies: Novel management approaches through translational clinical research. Curr Drug Targets Immune Endocr Metabol Disord 2001; 1(2): 103-15.
[http://dx.doi.org/10.2174/1568005310101020103] [PMID: 12476792]
[12]
Naser R, Dilabazian H, Bahr H, Barakat A, El-Sibai M. A guide through conventional and modern cancer treatment modalities: A specific focus on glioblastoma cancer therapy (Review). Oncol Rep 2022; 48(5): 190.
[http://dx.doi.org/10.3892/or.2022.8405] [PMID: 36102321]
[13]
Ikegawa S, Saida T, Obayashi H, et al. Cisplatin combination chemotherapy in squamous cell carcinoma and adenoid cystic carcinoma of the skin. J Dermatol 1989; 16(3): 227-30.
[http://dx.doi.org/10.1111/j.1346-8138.1989.tb01254.x] [PMID: 2551943]
[14]
Guthrie TH Jr, McElveen LJ, Porubsky ES, Harmon JD. Cisplatin and doxorubicin. An effective chemotherapy combination in the treatment of advanced basal cell and squamous carcinoma of the skin. Cancer 1985; 55(8): 1629-32.
[http://dx.doi.org/10.1002/1097-0142(19850415)55:8<1629::AID-CNCR2820550802>3.0.CO;2-I] [PMID: 4038911]
[15]
Poulsen MG, Rischin D, Porter I, Walpole E, Harvey J, Hamilton C. Does chemotherapy improve survival in high-risk stage I and II Merkel cell carcinoma of the skin? Int J Radiat Oncol Biol Phys 2006; 64(1): 114-9.
[http://dx.doi.org/10.1016/j.ijrobp.2005.04.042]
[16]
Desch L, Kunstfeld R. Merkel cell carcinoma: Chemotherapy and emerging new therapeutic options. J Skin Cancer 2013; 2013: 327150.
[http://dx.doi.org/10.1155/2013/327150]
[17]
Kalal BS, Upadhya D, Pai VR. Chemotherapy resistance mechanisms in advanced skin cancer. Oncol Rev 2017; 11(1): 326.
[http://dx.doi.org/10.4081/oncol.2017.326] [PMID: 28382191]
[18]
Capanema NSV, Carvalho IC, Mansur AAP, Carvalho SM, Lage AP, Mansur HS. Hybrid hydrogel composed of carboxymethylcellulose–silver nanoparticles–doxorubicin for anticancer and antibacterial therapies against melanoma skin cancer cells. ACS Appl Nano Mater 2019; 2(11): 7393-408.
[http://dx.doi.org/10.1021/acsanm.9b01924]
[19]
DeConti RC, Ed. Chemotherapy of squamous cell carcinoma of the skin Seminars in oncology. Elsevier 2012.
[20]
De Iuliis F, Amoroso L, Taglieri L, et al. Chemotherapy of rare skin adnexal tumors: A review of literature. Anticancer Res 2014; 34(10): 5263-8.
[PMID: 25275018]
[21]
Kirby JS, Miller CJ. Intralesional chemotherapy for nonmelanoma skin cancer: A practical review. J Am Acad Dermatol 2010; 63(4): 689-702.
[http://dx.doi.org/10.1016/j.jaad.2009.09.048] [PMID: 20605654]
[22]
Girigoswami A, Girigoswami K. Potential applications of nanoparticles in improving the outcome of lung cancer treatment. Genes 2023; 14(7): 1370.
[http://dx.doi.org/10.3390/genes14071370] [PMID: 37510275]
[23]
Amsaveni G, Farook AS, Haribabu V, Murugesan R, Girigoswami A. Engineered multifunctional nanoparticles for DLA cancer cells targeting, sorting, MR imaging and drug delivery. Adv Sci Eng Med 2013; 5(12): 1340-8.
[http://dx.doi.org/10.1166/asem.2013.1425]
[24]
Gopikrishna A, Girigoswami A, Girigoswami K. Controlled drug delivery systems for improved efficacy and bioavailability of flavonoids. J Achiev Mater Manuf Eng 2023; 116(2): 49-60.
[http://dx.doi.org/10.5604/01.3001.0053.4033]
[25]
Girigoswami A, Pallavi P, Sharmiladevi P, Haribabu V, Girigoswami K. A nano approach to formulate photosensitizers for photodynamic therapy. Curr Nanosci 2022; 18(6): 675-89.
[http://dx.doi.org/10.2174/1573413718666211222162041]
[26]
Pallavi P, Harini K, Crowder S, et al. Rhodamine-conjugated anti-stokes gold nanoparticles with higher ROS quantum yield as theranostic probe to arrest cancer and MDR bacteria. Appl Biochem Biotechnol 2023; pp. 1-15.
[http://dx.doi.org/10.1007/s12010-023-04475-0] [PMID: 36976503]
[27]
Harini K, Girigoswami K, Pallavi P, et al. MoS2 nanocomposites for biomolecular sensing, disease monitoring, and therapeutic applications. Nano Futures 2023; 7(3): 032001.
[http://dx.doi.org/10.1088/2399-1984/ace178]
[28]
Akhtar N, Metkar SK, Girigoswami A, Girigoswami K. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater Sci Eng C 2017; 78: 960-8.
[http://dx.doi.org/10.1016/j.msec.2017.04.118] [PMID: 28576073]
[29]
Metkar SK, Girigoswami K. Diagnostic biosensors in medicine – A review. Biocatal Agric Biotechnol 2019; 17: 271-83.
[http://dx.doi.org/10.1016/j.bcab.2018.11.029]
[30]
Shwetha M, Girigoswami A, Deepika B, Gopikrishna A, Girigoswami K. Versatile applications of nanotechnology-based electronic nose. Nanosci Nanotechnol Asia 2022; 12(5): 33-43.
[31]
Balasubramanian D, Girigoswami A, Girigoswami K. Nano resveratrol and its anticancer activity. Curr Appl Sci Tech 2023; 23(3): 10-55003.
[http://dx.doi.org/10.55003/cast.2022.03.23.0107]
[32]
Balasubramanian D, Girigoswami A, Girigoswami K. Antimicrobial, pesticidal and food preservative applications of lemongrass oil nanoemulsion: A mini-review. Recent Pat Food Nutr Agric 2022; 13(1): 51-8.
[http://dx.doi.org/10.2174/2212798412666220527154707] [PMID: 35638282]
[33]
Mercy DJ, Harini K, Madhumitha S, et al. pH-responsive polymeric nanostructures for cancer theranostics. J Met Mater Miner 2023; 33(2): 1-15.
[http://dx.doi.org/10.55713/jmmm.v33i2.1609]
[34]
Sharmiladevi P, Akhtar N, Haribabu V, Girigoswami K, Chattopadhyay S, Girigoswami A. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Appl Bio Mater 2019; 2(4): 1634-42.
[http://dx.doi.org/10.1021/acsabm.9b00039] [PMID: 35026897]
[35]
Atchaya J, Girigoswami A, Girigoswami K. Versatile applications of nanosponges in biomedical field: A glimpse on SARS-CoV-2 management. Bionanoscience 2022; 12(3): 1018-31.
[http://dx.doi.org/10.1007/s12668-022-01000-1] [PMID: 35755139]
[36]
Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011; 3(4): 1411-20.
[http://dx.doi.org/10.1039/c0nr00875c] [PMID: 21369578]
[37]
Thendral V, Dharshni T, Ramalakshmi M, Girigoswami A, Girigoswami K. Cerium oxide nanocluster based nanobiosensor for ROS detection. Biocatal Agric Biotechnol 2019; 19: 101124.
[http://dx.doi.org/10.1016/j.bcab.2019.101124]
[38]
Pansambal S, Oza R, Borgave S, et al. Bioengineered cerium oxide (CeO2) nanoparticles and their diverse applications: A review. Appl Nanosci 2023; 13(9): 6067-92.
[http://dx.doi.org/10.1007/s13204-022-02574-8]
[39]
Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine 2013; 8(9): 1483-508.
[http://dx.doi.org/10.2217/nnm.13.133] [PMID: 23987111]
[40]
Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM. Anti-inflammatory properties of cerium oxide nanoparticles. Small 2009; 5(24): 2848-56.
[http://dx.doi.org/10.1002/smll.200901048] [PMID: 19802857]
[41]
Oró D, Yudina T, Fernández-Varo G, et al. Cerium oxide nanoparticles reduce steatosis, portal hypertension and display anti-inflammatory properties in rats with liver fibrosis. J Hepatol 2016; 64(3): 691-8.
[http://dx.doi.org/10.1016/j.jhep.2015.10.020] [PMID: 26519601]
[42]
Niu J, Azfer A, Rogers L, Wang X, Kolattukudy P. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res 2007; 73(3): 549-59.
[http://dx.doi.org/10.1016/j.cardiores.2006.11.031] [PMID: 17207782]
[43]
Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem 2017; 86(1): 715-48.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[44]
Ghosh R, Girigoswami K, Dipanjan G. Suppression of apoptosis leads to cisplatin resistance in V79 cells subjected to chronic oxidative stress. Indian J Biochem Biophys 2012; 49(5): 363-70.
[PMID: 23259323]
[45]
Zuo J, Zhang Z, Li M, et al. The crosstalk between reactive oxygen species and noncoding RNAs: From cancer code to drug role. Mol Cancer 2022; 21(1): 30.
[http://dx.doi.org/10.1186/s12943-021-01488-3] [PMID: 35081965]
[46]
Inbaraj BS, Chen B-H. An overview on recent in vivo biological application of cerium oxide nanoparticles. Asian J Pharm Sci 2020; 15(5): 558-75.
[47]
Wu Y, Ta HT. Different approaches to synthesising cerium oxide nanoparticles and their corresponding physical characteristics, and ROS scavenging and anti-inflammatory capabilities. J Mater Chem B Mater Biol Med 2021; 9(36): 7291-301.
[http://dx.doi.org/10.1039/D1TB01091C] [PMID: 34355717]
[48]
Yokel RA, Hancock ML, Cherian B, et al. Simulated biological fluid exposure changes nanoceria’s surface properties but not its biological response. Eur J Pharm Biopharm 2019; 144: 252-65.
[http://dx.doi.org/10.1016/j.ejpb.2019.09.023] [PMID: 31563633]
[49]
Rubio L, Marcos R, Hernández A. Nanoceria acts as antioxidant in tumoral and transformed cells. Chem Biol Interact 2018; 291: 7-15.
[http://dx.doi.org/10.1016/j.cbi.2018.06.002] [PMID: 29879412]
[50]
Hajinezhad MR, Hajian Shahri S, Rahdar A, Zamanian H. Effects of cerium oxide nanoparticles on biochemical parameters and histopathological changes in lead-intoxicated rats. Dis Diagn 2020; 9(4): 134-9.
[http://dx.doi.org/10.34172/ddj.2020.01]
[51]
Chen G, Xu Y. Biosynthesis of cerium oxide nanoparticles and their effect on lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction in male Sprague Dawley rats. Mater Sci Eng C 2018; 83: 148-53.
[http://dx.doi.org/10.1016/j.msec.2017.11.014] [PMID: 29208272]
[52]
Xia T, Kovochich M, Liong M, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008; 2(10): 2121-34.
[http://dx.doi.org/10.1021/nn800511k] [PMID: 19206459]
[53]
Shao Y, Saredy J, Yang WY, et al. Vascular endothelial cells and innate immunity. Arterioscler Thromb Vasc Biol 2020; 40(6): e138-52.
[http://dx.doi.org/10.1161/ATVBAHA.120.314330] [PMID: 32459541]
[54]
Selvaraj V, Nepal N, Rogers S, et al. Inhibition of MAP kinase/NF-kB mediated signaling and attenuation of lipopolysaccharide induced severe sepsis by cerium oxide nanoparticles. Biomaterials 2015; 59: 160-71.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.025] [PMID: 25968464]
[55]
Perez JM, Asati A, Nath S, Kaittanis C. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small 2008; 4(5): 552-6.
[http://dx.doi.org/10.1002/smll.200700824] [PMID: 18433077]
[56]
Waris G, Ahsan H. Reactive oxygen species: Role in the development of cancer and various chronic conditions. J Carcinog 2006; 5(1): 14.
[http://dx.doi.org/10.1186/1477-3163-5-14] [PMID: 16689993]
[57]
Alili L, Sack M, Karakoti AS, et al. Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor–stroma interactions. Biomaterials 2011; 32(11): 2918-29.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.056] [PMID: 21269688]
[58]
Wason MS, Colon J, Das S, et al. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine 2013; 9(4): 558-69.
[http://dx.doi.org/10.1016/j.nano.2012.10.010] [PMID: 23178284]
[59]
Madero-Visbal RA, Alvarado BE, Colon JF, et al. Harnessing nanoparticles to improve toxicity after head and neck radiation. Nanomedicine 2012; 8(7): 1223-31.
[http://dx.doi.org/10.1016/j.nano.2011.12.011] [PMID: 22248817]
[60]
Colon J, Hsieh N, Ferguson A, et al. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 2010; 6(5): 698-705.
[http://dx.doi.org/10.1016/j.nano.2010.01.010] [PMID: 20172051]
[61]
Rhodes JM, Campbell BJ. Inflammation and colorectal cancer: IBD-associated and sporadic cancer compared. Trends Mol Med 2002; 8(1): 10-6.
[http://dx.doi.org/10.1016/S1471-4914(01)02194-3] [PMID: 11796261]
[62]
Gopi J, Gopinath M, Sun X-F, Pathak S, Banerjee A. Functionality of intron-specific genes and cancer stem cells in the progression of colorectal cancer. Cancer Stem Cells New Horiz Cancer Ther 2020; pp. 223-39.
[http://dx.doi.org/10.1007/978-981-15-5120-8_13]
[63]
Iyshwarya B, Mohammed V, Veerabathiran R. Genetics of endometriosis and its association with ovarian cancer. Gynecol Obstet Clin Med 2021; 1(4): 177-85.
[http://dx.doi.org/10.1016/j.gocm.2021.09.001]
[64]
Feng N, Liu Y, Dai X, Wang Y, Guo Q, Li Q. Advanced applications of cerium oxide based nanozymes in cancer. RSC Adv 2022; 12(3): 1486-93.
[http://dx.doi.org/10.1039/D1RA05407D] [PMID: 35425183]
[65]
Adebayo OA, Akinloye O, Adaramoye OA. Cerium oxide nanoparticles elicit antitumourigenic effect in experimental breast cancer induced by N-methyl-N-nitrosourea and benzo(a)pyrene in female Wistar rats. J Biochem Mol Toxicol 2021; 35(4): e22687.
[http://dx.doi.org/10.1002/jbt.22687] [PMID: 33314526]
[66]
Vazirov R, Sokovnin S, Ilves V, Myshkina A, Bazhukova I, Eds. Application of cerium oxide nanoparticles as modificators in radiation therapy. AIP Conference Proceedings. 2018; p. 020110.
[http://dx.doi.org/10.1063/1.5055183]
[67]
Ulitko M, Naumova A, Sultanova T, Vazirov R, Agdantseva E, Olshvang OY, Eds. Investigation of the effect of cerium dioxide nanoparticles on the radiosensitivity of various cell types. AIP Conference Proceedings 2020.
[http://dx.doi.org/10.1063/5.0032878]
[68]
Vazirov R, Sokovnin S, Ulitko M. Radiomodification of cell cultures of line Hela by cerium oxide nanoparticles to X-ray irradiation. Radiat Appl 2017; 2(2): 139.
[69]
Amaldoss MJN, Mehmood R, Yang JL, et al. Anticancer therapeutic effect of cerium-based nanoparticles: Known and unknown molecular mechanisms. Biomater Sci 2022; 10(14): 3671-94.
[http://dx.doi.org/10.1039/D2BM00334A] [PMID: 35686620]
[70]
Nourmohammadi E, Khoshdel-sarkarizi H, Nedaeinia R, et al. Evaluation of anticancer effects of cerium oxide nanoparticles on mouse fibrosarcoma cell line. J Cell Physiol 2019; 234(4): 4987-96.
[http://dx.doi.org/10.1002/jcp.27303] [PMID: 30187476]
[71]
Singh KRB, Nayak V, Sarkar T, Singh RP. Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application. RSC Adv 2020; 10(45): 27194-214.
[http://dx.doi.org/10.1039/D0RA04736H] [PMID: 35515804]
[72]
Pourkhalili N, Hosseini A, Nili-Ahmadabadi A, et al. Biochemical and cellular evidence of the benefit of a combination of cerium oxide nanoparticles and selenium to diabetic rats. World J Diabetes 2011; 2(11): 204-10.
[http://dx.doi.org/10.4239/wjd.v2.i11.204] [PMID: 22087357]
[73]
Solgi T, Amiri I, Soleimani Asl S, Saidijam M, Mirzaei Seresht B, Artimani T. Antiapoptotic and antioxidative effects of cerium oxide nanoparticles on the testicular tissues of streptozotocin-induced diabetic rats: An experimental study. Int J Reprod Biomed 2021; 19(7): 589-98.
[http://dx.doi.org/10.18502/ijrm.v19i7.9465] [PMID: 34458667]
[74]
Shanker K, Naradala J, Mohan GK, Kumar GS, Pravallika PL. A sub-acute oral toxicity analysis and comparative in vivo anti-diabetic activity of zinc oxide, cerium oxide, silver nanoparticles, and Momordica charantia in streptozotocin-induced diabetic Wistar rats. RSC Adv 2017; 7(59): 37158-67.
[http://dx.doi.org/10.1039/C7RA05693A]
[75]
Chai WF, Tang KS. Protective potential of cerium oxide nanoparticles in diabetes mellitus. J Trace Elem Med Biol 2021; 66: 126742.
[http://dx.doi.org/10.1016/j.jtemb.2021.126742] [PMID: 33773280]
[76]
Zhai J, Wu Y, Wang X, et al. Antioxidation of cerium oxide nanoparticles to several series of oxidative damage related to type II diabetes mellitus in vitro. Med Sci Monit 2016; 22: 3792-7.
[http://dx.doi.org/10.12659/MSM.901068] [PMID: 27752033]
[77]
Artimani T, Amiri I, Soleimani Asl S, Saidijam M, Hasanvand D, Afshar S. Amelioration of diabetes-induced testicular and sperm damage in rats by cerium oxide nanoparticle treatment. Andrologia 2018; 50(9): e13089.
[http://dx.doi.org/10.1111/and.13089] [PMID: 30022501]
[78]
Das M, Patil S, Bhargava N, et al. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 2007; 28(10): 1918-25.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.036] [PMID: 17222903]
[79]
Yiling W, Murakonda GK, Jarubula R. Application of green-synthesized cerium oxide nanoparticles to treat spinal cord injury and cytotoxicity evaluation on paediatric leukaemia cells. Mater Res Express 2021; 8(7): 075006.
[http://dx.doi.org/10.1088/2053-1591/ac0fad]
[80]
Arzanipur Y, Abdolmaleki A, Asadi A, Zahri S. Synthesis, characterization, evaluation of supportive properties, and neuroprotective effects of cerium oxide nanoparticles as a candidate for neural tissue engineering. Neurosci J Shefaye Khatam 2021; 9(3): 55-63.
[http://dx.doi.org/10.52547/shefa.9.3.55]
[81]
Kang DW, Cha BG, Lee JH, et al. Ultrasmall polymer-coated cerium oxide nanoparticles as a traumatic brain injury therapy. Nanomedicine 2022; 45: 102586.
[http://dx.doi.org/10.1016/j.nano.2022.102586] [PMID: 35868519]
[82]
Zhang M, Zhang C, Zhai X, Luo F, Du Y, Yan C. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci China Mater 2019; 62(11): 1727-39.
[http://dx.doi.org/10.1007/s40843-019-9471-7]
[83]
Farias IAP. Antimicrobial activity of cerium oxide nanoparticles on opportunistic microorganisms: A systematic review. Biomed Res Int 2018; 2018: 1923606.
[84]
Shah V, Shah S, Shah H, et al. Antibacterial activity of polymer coated cerium oxide nanoparticles. PLoS One 2012; 7(10): e47827.
[http://dx.doi.org/10.1371/journal.pone.0047827] [PMID: 23110109]
[85]
Qi M, Li W, Zheng X, et al. Cerium and its oxidant-based nanomaterials for antibacterial applications: A state-of-the-art review. Front Mater 2020; 7: 213.
[http://dx.doi.org/10.3389/fmats.2020.00213]
[86]
Alpaslan E, Geilich BM, Yazici H, Webster TJ. pH-controlled cerium oxide nanoparticle inhibition of both gram-positive and gram-negative bacteria growth. Sci Rep 2017; 7(1): 45859.
[http://dx.doi.org/10.1038/srep45859] [PMID: 28387344]
[87]
Yefimova S, Klochkov V, Kavok N, et al. Antimicrobial activity and cytotoxicity study of cerium oxide nanoparticles with two different sizes. J Biomed Mater Res B Appl Biomater 2023; 111(4): 872-80.
[http://dx.doi.org/10.1002/jbm.b.35197] [PMID: 36420776]
[88]
Zamani K, Allah-Bakhshi N, Akhavan F, et al. Antibacterial effect of cerium oxide nanoparticle against Pseudomonas aeruginosa. BMC Biotechnol 2021; 21(1): 68.
[http://dx.doi.org/10.1186/s12896-021-00727-1] [PMID: 34876083]
[89]
Xu Y, Wang C, Hou J, Wang P, You G, Miao L. Effects of cerium oxide nanoparticles on bacterial growth and behaviors: Induction of biofilm formation and stress response. Environ Sci Pollut Res Int 2019; 26(9): 9293-304.
[http://dx.doi.org/10.1007/s11356-019-04340-w] [PMID: 30725258]
[90]
Xu Y, Wang C, Hou J, Wang P, You G, Miao L. Mechanistic understanding of cerium oxide nanoparticle-mediated biofilm formation in Pseudomonas aeruginosa. Environ Sci Pollut Res Int 2018; 25(34): 34765-76.
[http://dx.doi.org/10.1007/s11356-018-3418-8] [PMID: 30324376]
[91]
Sritharan S, Sivalingam N. A comprehensive review on time-tested anticancer drug doxorubicin. Life Sci 2021; 278: 119527.
[http://dx.doi.org/10.1016/j.lfs.2021.119527] [PMID: 33887349]
[92]
Barranco SC, Gerner EW, Burk KH, Humphrey RM. Survival and cell kinetics effects of adriamycin on mammalian cells. Cancer Res 1973; 33(1): 11-6.
[PMID: 4734161]
[93]
Kiyomiya K, Matsuo S, Kurebe M. Mechanism of specific nuclear transport of adriamycin: The mode of nuclear translocation of adriamycin-proteasome complex. Cancer Res 2001; 61(6): 2467-71.
[PMID: 11289116]
[94]
Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 1984; 226(4673): 466-8.
[http://dx.doi.org/10.1126/science.6093249] [PMID: 6093249]
[95]
Zu Y, Yang Z, Tang S, Han Y, Ma J. Effects of P-glycoprotein and its inhibitors on apoptosis in K562 cells. Molecules 2014; 19(9): 13061-75.
[http://dx.doi.org/10.3390/molecules190913061] [PMID: 25157469]
[96]
Forrest RA, Swift LP, Rephaeli A, et al. Activation of DNA damage response pathways as a consequence of anthracycline-DNA adduct formation. Biochem Pharmacol 2012; 83(12): 1602-12.
[http://dx.doi.org/10.1016/j.bcp.2012.02.026] [PMID: 22414726]
[97]
Coldwell KE, Cutts SM, Ognibene TJ, Henderson PT, Phillips DR. Detection of Adriamycin-NA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations. Nucleic Acids Res 2008; 36(16): e100.
[http://dx.doi.org/10.1093/nar/gkn439] [PMID: 18632763]
[98]
Davies KJ, Doroshow JH. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 1986; 261(7): 3060-7.
[http://dx.doi.org/10.1016/S0021-9258(17)35746-0] [PMID: 3456345]
[99]
Doroshow JH. Role of hydrogen peroxide and hydroxyl radical formation in the killing of Ehrlich tumor cells by anticancer quinones. Proc Natl Acad Sci USA 1986; 83(12): 4514-8.
[http://dx.doi.org/10.1073/pnas.83.12.4514] [PMID: 3086887]
[100]
Thorn CF, Oshiro C, Marsh S, et al. Doxorubicin pathways. Pharmacogenet Genomics 2011; 21(7): 440-6.
[http://dx.doi.org/10.1097/FPC.0b013e32833ffb56] [PMID: 21048526]
[101]
Zweier JL, Gianni L, Muindi J, Myers CE. Differences in O2 reduction by the iron complexes of adriamycin and daunomycin: The importance of the sidechain hydroxyl group. Biochim Biophys Acta, Gen Subj 1986; 884(2): 326-36.
[http://dx.doi.org/10.1016/0304-4165(86)90181-9] [PMID: 2823890]
[102]
Minotti G, Recalcati S, Mordente A, et al. The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. FASEB J 1998; 12(7): 541-52.
[http://dx.doi.org/10.1096/fasebj.12.7.541] [PMID: 9576481]
[103]
Ji C, Yang B, Yang Y-L, et al. Exogenous cell-permeable C6 ceramide sensitizes multiple cancer cell lines to Doxorubicin-induced apoptosis by promoting AMPK activation and mTORC1 inhibition. Oncogene 2010; 29(50): 6557-68.
[http://dx.doi.org/10.1038/onc.2010.379] [PMID: 20802518]
[104]
Denard B, Lee C, Ye J. Doxorubicin blocks proliferation of cancer cells through proteolytic activation of CREB3L1. elife 2012; 1: e00090.
[105]
Liu YY, Yu JY, Yin D, et al. A role for ceramide in driving cancer cell resistance to doxorubicin. FASEB J 2008; 22(7): 2541-51.
[http://dx.doi.org/10.1096/fj.07-092981] [PMID: 18245173]
[106]
Hanna AD, Lam A, Tham S, Dulhunty AF, Beard NA. Adverse effects of doxorubicin and its metabolic product on cardiac RyR2 and SERCA2A. Mol Pharmacol 2014; 86(4): 438-49.
[http://dx.doi.org/10.1124/mol.114.093849] [PMID: 25106424]
[107]
Gorini S, De Angelis A, Berrino L, Malara N, Rosano G, Ferraro E. Chemotherapeutic drugs and mitochondrial dysfunction: Focus on doxorubicin, trastuzumab, and sunitinib. Oxid Med Cell Longev 2018; 2018: 7582730.
[http://dx.doi.org/10.1155/2018/7582730]
[108]
Velez JM, Miriyala S, Nithipongvanitch R, et al. p53 Regulates oxidative stress-mediated retrograde signaling: A novel mechanism for chemotherapy-induced cardiac injury. PLoS One 2011; 6(3): e18005.
[http://dx.doi.org/10.1371/journal.pone.0018005] [PMID: 21479164]
[109]
Kawano M, Tanaka K, Itonaga I, et al. Dendritic cells combined with doxorubicin induces immunogenic cell death and exhibits antitumor effects for osteosarcoma. Oncol Lett 2016; 11(3): 2169-75.
[http://dx.doi.org/10.3892/ol.2016.4175] [PMID: 26998143]
[110]
De S, Gopikrishna A, Keerthana V, Girigoswami A, Girigoswami K. An overview of nanoformulated nutraceuticals and their therapeutic approaches. Curr Nutr Food Sci 2021; 17(4): 392-407.
[http://dx.doi.org/10.2174/1573401316999200901120458]
[111]
Chatterjee S, Harini K, Girigoswami A, Nag M, Lahiri D, Girigoswami K. Nanodecoys: A quintessential candidate to augment theranostic applications for a plethora of diseases. Pharmaceutics 2022; 15(1): 73.
[http://dx.doi.org/10.3390/pharmaceutics15010073] [PMID: 36678701]
[112]
Vega-Vásquez P, Mosier NS, Irudayaraj J. Nanoscale drug delivery systems: From medicine to agriculture. Front Bioeng Biotechnol 2020; 8: 79.
[http://dx.doi.org/10.3389/fbioe.2020.00079] [PMID: 32133353]
[113]
Poornima G, Harini K, Pallavi P, Gowtham P, Girigoswami K, Girigoswami A. RNA-A choice of potential drug delivery system. Int J Polym Mater Polym Biomater 2022; 72(10).
[http://dx.doi.org/10.1080/00914037.2022.2058946]
[114]
Rajpoot K. Solid lipid nanoparticles: A promising nanomaterial in drug delivery. Curr Pharm Des 2019; 25(37): 3943-59.
[http://dx.doi.org/10.2174/1381612825666190903155321] [PMID: 31481000]
[115]
Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 2020; 19(10): 673-94.
[http://dx.doi.org/10.1038/s41573-020-0075-7] [PMID: 32782413]
[116]
Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev 2021; 176: 113851.
[http://dx.doi.org/10.1016/j.addr.2021.113851] [PMID: 34224787]
[117]
Yu J, Wang Y, Zhou S, et al. Remote loading paclitaxel-doxorubicin prodrug into liposomes for cancer combination therapy. Acta Pharm Sin B 2020; 10(9): 1730-40.
[http://dx.doi.org/10.1016/j.apsb.2020.04.011] [PMID: 33088692]
[118]
Sharifi S, Fathi N, Memar MY, et al. Anti-microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytother Res 2020; 34(8): 1926-46.
[http://dx.doi.org/10.1002/ptr.6658] [PMID: 32166813]
[119]
Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine 2016; 12(1): 143-61.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[120]
Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol 2016; 44(1): 27-40.
[http://dx.doi.org/10.3109/21691401.2014.909822] [PMID: 24813223]
[121]
Joye IJ, McClements DJ. Julian McClements D. Biopolymer-based delivery systems: Challenges and opportunities. Curr Top Med Chem 2016; 16(9): 1026-39.
[http://dx.doi.org/10.2174/1568026615666150825143130] [PMID: 26303423]
[122]
Ps SS, Guha A, Deepika B, et al. Nanocargos designed with synthetic and natural polymers for ovarian cancer management. Naunyn Schmiedebergs Arch Pharmacol 2023; pp: 1-9.
[http://dx.doi.org/10.1007/s00210-023-02608-0] [PMID: 37421430]
[123]
Jacob J, Haponiuk JT, Thomas S, Gopi S. Biopolymer based nanomaterials in drug delivery systems: A review. Mater Today Chem 2018; 9: 43-55.
[http://dx.doi.org/10.1016/j.mtchem.2018.05.002]
[124]
Li P, Dai Y-N, Zhang J-P, Wang A-Q, Wei Q. Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci 2008; 4(3): 221-8.
[PMID: 23675094]
[125]
Shurfa MK, Girigoswami A, Sakthi Devi R, et al. Combinatorial effect of Doxorubicin entrapped in Alginate-Chitosan hybrid polymer and Cerium oxide nanocomposites on skin cancer management in mice. J Pharm Sci 2023; 112(11): 2891-900.
[http://dx.doi.org/10.1016/j.xphs.2023.08.014] [PMID: 37611665]
[126]
Vithani K, Jannin V, Pouton CW, Boyd BJ. Colloidal aspects of dispersion and digestion of self-dispersing lipid-based formulations for poorly water-soluble drugs. Adv Drug Deliv Rev 2019; 142: 16-34.
[http://dx.doi.org/10.1016/j.addr.2019.01.008] [PMID: 30677448]
[127]
Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm 2000; 50(1): 179-88.
[http://dx.doi.org/10.1016/S0939-6411(00)00089-8] [PMID: 10840200]
[128]
McClements DJ. Design of nano-laminated coatings to control bioavailability of lipophilic food components. J Food Sci 2010; 75(1): R30-42.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01452.x] [PMID: 20492193]
[129]
Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther 2014; 10(4): 853-8.
[http://dx.doi.org/10.4103/0973-1482.139267] [PMID: 25579518]
[130]
Roychoudhury S, Kumar A, Bhatkar D, Sharma NK. Molecular avenues in targeted doxorubicin cancer therapy. Future Oncol 2020; 16(11): 687-700.
[http://dx.doi.org/10.2217/fon-2019-0458] [PMID: 32253930]
[131]
Jafari M, Sriram V, Xu Z, Harris GM, Lee JY. Fucoidan-doxorubicin nanoparticles targeting p-selectin for effective breast cancer therapy. Carbohydr Polym 2020; 249: 116837.
[http://dx.doi.org/10.1016/j.carbpol.2020.116837] [PMID: 32933681]
[132]
Maksimenko O, Malinovskaya J, Shipulo E, et al. Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development. Int J Pharm 2019; 572: 118733.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118733] [PMID: 31689481]
[133]
Saepudin E, Fadhilah HR, Khalil M. The influence of carboxylate moieties for efficient loading and pH-controlled release of doxorubicin in Fe3O4 magnetic nanoparticles. Colloids Surf A Physicochem Eng Asp 2020; 602: 125137.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125137]
[134]
Kovrigina E, Poletaeva Y, Zheng Y, Chubarov A, Dmitrienko E. Nylon-6-coated doxorubicin-loaded magnetic nanoparticles and nanocapsules for cancer treatment. Magnetochemistry 2023; 9(4): 106.
[http://dx.doi.org/10.3390/magnetochemistry9040106]
[135]
Alemzadeh E, Dehshahri A, Dehghanian AR, et al. Enhanced anti-tumor efficacy and reduced cardiotoxicity of doxorubicin delivered in a novel plant virus nanoparticle. Colloids Surf B Biointerfaces 2019; 174: 80-6.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.008] [PMID: 30445253]
[136]
Zhou Y, Han Y, Li G, Yang S, Xiong F, Chu F. Preparation of targeted lignin-based hollow nanoparticles for the delivery of doxorubicin. Nanomaterials 2019; 9(2): 188.
[http://dx.doi.org/10.3390/nano9020188] [PMID: 30717357]
[137]
Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: A combinational approach for enhanced delivery of nanoparticles. Sci Rep 2020; 10(1): 11292.
[http://dx.doi.org/10.1038/s41598-020-68017-y] [PMID: 32647151]
[138]
Jović DS, Seke MN, Djordjevic AN, et al. Fullerenol nanoparticles as a new delivery system for doxorubicin. RSC Adv 2016; 6(45): 38563-78.
[http://dx.doi.org/10.1039/C6RA03879D]
[139]
D’Angelo NA, Noronha MA, Câmara MCC, et al. Doxorubicin nanoformulations on therapy against cancer: An overview from the last 10 years. Biomater Adv 2022; 133: 112623.
[http://dx.doi.org/10.1016/j.msec.2021.112623] [PMID: 35525766]
[140]
Sack M, Alili L, Karaman E, et al. Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles-a novel aspect in cancer therapy. Mol Cancer Ther 2014; 13(7): 1740-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0950] [PMID: 24825856]
[141]
Brenneisen P, Reichert A. Nanotherapy and reactive oxygen species (ROS) in cancer: A novel perspective. Antioxidants 2018; 7(2): 31.
[http://dx.doi.org/10.3390/antiox7020031] [PMID: 29470419]
[142]
Tapeinos C, Battaglini M, Prato M, La Rosa G, Scarpellini A, Ciofani G. CeO2 nanoparticles-loaded pH-responsive microparticles with antitumoral properties as therapeutic modulators for osteosarcoma. ACS Omega 2018; 3(8): 8952-62.
[http://dx.doi.org/10.1021/acsomega.8b01060] [PMID: 31459028]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy