Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Mini-Review Article

Research and Patents Status of Selected Phytochemicals Against Cancer: How Close and How Far?

Author(s): Homa Fatma and Hifzur R Siddique*

Volume 18, Issue 4, 2023

Published on: 15 November, 2022

Page: [428 - 447] Pages: 20

DOI: 10.2174/1574892818666221107113648

Price: $65

Abstract

Background: Cancer is a global health issue and economic burden with a continuous increase in incidence and mortality. Over the years, the underlying molecular mechanism of cancers was thoroughly researched, leading to multiple drugs' development. Unfortunately, most drugs have some serious drawbacks, such as therapy resistance and toxicity. Epidemiological studies have shown that a diet rich in fruits and vegetables has cancer prevention properties, which shifted the attention to the potential role of phytochemicals in anti-carcinogenic activity.

Objective: To review the present status of phytochemicals research and patents in cancer prevention and chemosensitization.

Methods: We explored the relevant published articles and patents to review the phytochemicals showing cancer preventive role in preclinical settings from 1997 onwards.

Results: We summarise the role of phytochemicals on anti-carcinogenic, anti-inflammatory, antiproliferative, anti-metastatic, and pro-apoptotic activities in both in vitro and in vivo. Thus, phytochemicals might be an excellent chemosensitizing agent against chemoresistant cells and possibly one of the safest and most effective options for cancer therapy. However, one of the limitations of phytochemicals is their poor bioavailability and rapid excretion. Several analogs have been introduced to increase bioavailability, better biological efficacy, absorption, and retention. In fact, various phytochemicals and their analogs have been patented for their anti-cancerous properties.

Conclusion: This mini-review discusses various phytochemicals and their anti-cancerous and chemosensitizing roles. Due to their clinical relevance, recent trends in phytochemical extraction and exploration have shown that more and more phytochemicals are being patented.

Keywords: Phytochemicals, chemotherapy, patents, chemosensitization, molecular mechanism, therapy resistance.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Bajaj J, Diaz E, Reya T. Stem cells in cancer initiation and progression. J Cell Biol 2020; 219(1): e201911053.
[http://dx.doi.org/10.1083/jcb.201911053] [PMID: 31874116]
[3]
Fatma H, Siddique HR. Role of long non-coding RNAs and Myc interaction in cancer metastasis: A possible target for therapeutic intervention. Toxicol Appl Pharmacol 2020; 399: 115056.
[http://dx.doi.org/10.1016/j.taap.2020.115056] [PMID: 32445756]
[4]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[5]
Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res 2017; 7(5): 1016-36.
[PMID: 28560055]
[6]
Zhang L, Virgous C, Si H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J Nutr Biochem 2019; 69: 19-30.
[http://dx.doi.org/10.1016/j.jnutbio.2019.03.009] [PMID: 31048206]
[7]
Martinez KB, Mackert JD, McIntosh MK. Polyphenols and intestinal health. In: Watson R R, Ed. Nutrition and Functional Foods for Healthy Aging. Cambridge, MA, USA: Academic Press 2017; pp. 191-210. Chapter 18
[http://dx.doi.org/10.1016/B978-0-12-805376-8.00018-6]
[8]
Siddique HR, Saleem M. Beneficial health effects of lupeol triterpene: A review of preclinical studies. Life Sci 2011; 88(7-8): 285-93.
[http://dx.doi.org/10.1016/j.lfs.2010.11.020] [PMID: 21118697]
[9]
Singh D, Khan MA, Siddique HR, Apigenin A. Plant flavone playing noble roles in cancer prevention via modulation of key cell signaling networks. Recent Patents Anticancer Drug Discov 2020; 14(4): 298-311.
[http://dx.doi.org/10.2174/1574892814666191026095728] [PMID: 31746310]
[10]
Fatma H, Siddique HR. 19-Herbal Medicines-A Boon for Healthy Human Life. Siddique HR Sarwat M (eds.) Vol 1: pp409-435. http://dx.doi.org/10.1016/B978-0-323-90572-5.00023-8
[11]
Siamof CM, Goel S, Cai W. Moving beyond the pillars of cancer treatment: perspectives from nanotechnology. Front Chem 2020; 8: 598100.
[http://dx.doi.org/10.3389/fchem.2020.598100] [PMID: 33240859]
[12]
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front Pharmacol 2020; 10: 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[13]
Khatoon E, Banik K, Harsha C, et al. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2022; 80: 306-39.
[http://dx.doi.org/10.1016/j.semcancer.2020.06.014] [PMID: 32610149]
[14]
Koche D, Shirsat R, Kawale M. An overerview of major classes of phytochemicals: Their types and role in disease prevention. Hisopia J 2018; 9: 1-11.
[http://dx.doi.org/10.3390/plants11091117]
[15]
Thakur M, Singh K, Khedkar R. Phytochemicals: Extraction process, safety assessment, toxicological evaluations, and regulatory issues. In: Functional and Preservative Properties of Phytochemicals. US: Academic Press 2020; pp. 341-61.
[http://dx.doi.org/10.1016/B978-0-12-818593-3.00011-7]
[16]
Bayir AG, Kiziltan HS, Kocyigit A. Plant Family, carvacrol, and putative protection in gastric cancer. Dietary Interventions in Gastrointestinal Diseases. US: Academic Press 2019; pp. 3-18.
[http://dx.doi.org/10.1016/B978-0-12-814468-8.00001-6]
[17]
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009; 2(5): 270-8.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[18]
Briguglio G, Costa C, Pollicino M, Giambò F, Catania S, Fenga C. Polyphenols in cancer prevention: New insights (Review). Inter J Funct Nut 2020; 1(2): 9.
[http://dx.doi.org/10.3892/ijfn.2020.9]
[19]
Solanki I, Parihar P, Mansuri ML, Parihar MS. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr 2015; 6(1): 64-72.
[http://dx.doi.org/10.3945/an.114.007500] [PMID: 25593144]
[20]
Zhou Y, Zheng J, Li Y, et al. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016; 8(8): 515.
[http://dx.doi.org/10.3390/nu8080515] [PMID: 27556486]
[21]
Fraga CG, Croft KD, Kennedy DO, Tomás-Barberán FA. The effects of polyphenols and other bioactives on human health. Food Funct 2019; 10(2): 514-28.
[http://dx.doi.org/10.1039/C8FO01997E] [PMID: 30746536]
[22]
Křížová L, Dadáková K, Kašparovská J, Kašparovský T. Isoflavones. Molecules 2019; 24(6): 1076.
[http://dx.doi.org/10.3390/molecules24061076] [PMID: 30893792]
[23]
Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 2017; 61(1): 1361779.
[http://dx.doi.org/10.1080/16546628.2017.1361779] [PMID: 28970777]
[24]
Najmanová I, Vopršalová M, Saso L. Mladěnka P. The pharmacokinetics of flavanones. Crit Rev Food Sci Nutr 2020; 60(18): 3155-71.
[http://dx.doi.org/10.1080/10408398.2019.1679085] [PMID: 31650849]
[25]
Hostetler GL, Ralston RA, Schwartz SJ. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr 2017; 8(3): 423-35.
[http://dx.doi.org/10.3945/an.116.012948] [PMID: 28507008]
[26]
Miller DD, Li T, Liu RH. Antioxidants and phytochemicals. In: Reference Module in Biomedical Sciences. Amsterdam: Elsevier 2014.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.00236-1]
[27]
Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients 2020; 12(2): 457.
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[28]
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5: e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[29]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Scien World J 2013; 2013: 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[30]
Bouderias S, Teszlák P, Jakab G. Kőrösi L. Age- and season-dependent pattern of flavonol glycosides in Cabernet Sauvignon grapevine leaves. Sci Rep 2020; 10(1): 14241.
[http://dx.doi.org/10.1038/s41598-020-70706-7] [PMID: 32859977]
[31]
Vafadar A, Shabaninejad Z, Movahedpour A, et al. Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell Biosci 2020; 10(1): 32.
[http://dx.doi.org/10.1186/s13578-020-00397-0] [PMID: 32175075]
[32]
Kashyap D, Mittal S, Sak K, Singhal P, Tuli HS. Molecular mechanisms of action of quercetin in cancer: recent advances. Tumour Biol 2016; 37(10): 12927-39.
[http://dx.doi.org/10.1007/s13277-016-5184-x] [PMID: 27448306]
[33]
Yousuf M, Khan P, Shamsi A, et al. Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy. ACS Omega 2020; 5(42): 27480-91.
[http://dx.doi.org/10.1021/acsomega.0c03975] [PMID: 33134711]
[34]
Singh D, Kesharwani P, Alhakamy NA, Siddique HR. Accentuating CircRNA-miRNA-transcription factors axis: a conundrum in cancer research. Front Pharmacol 2022; 12: 784801.
[http://dx.doi.org/10.3389/fphar.2021.784801] [PMID: 35087404]
[35]
Kim DH, Khan H, Ullah H, et al. MicroRNA targeting by quercetin in cancer treatment and chemoprotection. Pharmacol Res 2019; 147: 104346.
[http://dx.doi.org/10.1016/j.phrs.2019.104346] [PMID: 31295570]
[36]
Imran M, Salehi B, Sharifi-Rad J, et al. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019; 24(12): 2277.
[http://dx.doi.org/10.3390/molecules24122277] [PMID: 31248102]
[37]
Ashrafizadeh M, Tavakol S, Ahmadi Z, Roomiani S, Mohammadinejad R, Samarghandian S. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytother Res 2020; 34(5): 911-23.
[http://dx.doi.org/10.1002/ptr.6577] [PMID: 31829475]
[38]
Nouri Z, Fakhri S, Nouri K, Wallace CE, Farzaei MH, Bishayee A. Targeting multiple signaling pathways in cancer: the rutin therapeutic approach. Cancers 2020; 12(8): 2276.
[http://dx.doi.org/10.3390/cancers12082276] [PMID: 32823876]
[39]
Song X, Tan L, Wang M, et al. Myricetin: A review of the most recent research. Biomed Pharmacother 2021; 134: 111017.
[http://dx.doi.org/10.1016/j.biopha.2020.111017] [PMID: 33338751]
[40]
Yang C, Wang H. Cancer preventive activities of tea catechins. Molecules 2016; 21(12): 1679.
[http://dx.doi.org/10.3390/molecules21121679] [PMID: 27941682]
[41]
Almatroodi SA, Almatroudi A, Khan AA, Alhumaydhi FA, Alsahli MA, Rahmani AH. Potential therapeutic targets of Epigallocatechin Gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules 2020; 25(14): 3146.
[http://dx.doi.org/10.3390/molecules25143146] [PMID: 32660101]
[42]
Gu Q, Chen F, Chen N, Wang J, Li Z, Deng X. Effect of EGCG on bronchial epithelial cell premalignant lesions induced by cigarette smoke and on its CYP1A1 expression. Int J Mol Med 2021; 48(6): 220.
[http://dx.doi.org/10.3892/ijmm.2021.5053] [PMID: 34676878]
[43]
Fujii W, Toda K, Matsumoto K, et al. Syntheses of prodelphinidin B1, B2, and B4 and their antitumor activities against human PC-3 prostate cancer cell lines. Tetrahedron Lett 2013; 54(52): 7188-92.
[http://dx.doi.org/10.1016/j.tetlet.2013.10.113]
[44]
Wu MH, Lin LC, Lee TC. Augmentation of response to therapeutic agents by (-)-gallocatechin gallate through inhibition of RAD51 nuclear translocation. Cancer Res 2016; 76(S14): 3733.
[http://dx.doi.org/10.1158/1538-7445.AM2016-3733]
[45]
Cappelletti V, Fioravanti L, Miodini P, Di Fronzo G. Genistein blocks breast cancer cells in the G2M phase of the cell cycle. J Cell Biochem 2000; 79(4): 594-600.
[http://dx.doi.org/10.1002/1097-4644(20001215)79:4<594:AID-JCB80>3.0.CO;2-4] [PMID: 10996850]
[46]
Donovan MG, Selmin OI, Doetschman TC, Romagnolo DF. Epigenetic activation of brca1 by genistein in vivo and triple negative breast cancer cells linked to antagonism toward aryl hydrocarbon receptor. Nutrients 2019; 11(11): 2559.
[http://dx.doi.org/10.3390/nu11112559] [PMID: 31652854]
[47]
Ye D, Li Z, Wei C. Genistein inhibits the S phase kinase associated protein 2 expression in breast cancer cells. Exp Ther Med 2017; 15(1): 1069-75.
[http://dx.doi.org/10.3892/etm.2017.5489] [PMID: 29434697]
[48]
Li Y, Yu H, Han F, et al. Biochanin A induces S phase arrest and apoptosis in lung cancer cells. BioMed Res Int 2018; 2018: 1-12.
[http://dx.doi.org/10.1155/2018/3545376] [PMID: 30402472]
[49]
Xu J, Yang X, Pan J, et al. Biochanin a suppresses tumor progression and pd-l1 expression via inhibiting zeb1 expression in colorectal cancer. J Oncol 2022; 2022: 1-12.
[http://dx.doi.org/10.1155/2022/3224373] [PMID: 35242187]
[50]
Salama AAA, Allam RM. Promising targets of chrysin and daidzein in colorectal cancer: Amphiregulin, CXCL1, and MMP-9. Eur J Pharmacol 2021; 892: 173763.
[http://dx.doi.org/10.1016/j.ejphar.2020.173763] [PMID: 33249075]
[51]
Cvorovic J, Tramer F, Granzotto M, Candussio L, Decorti G, Passamonti S. Oxidative stress-based cytotoxicity of delphinidin and cyanidin in colon cancer cells. Arch Biochem Biophys 2010; 501(1): 151-7.
[http://dx.doi.org/10.1016/j.abb.2010.05.019] [PMID: 20494645]
[52]
Sorrenti V, Vanella L, Acquaviva R, Cardile V, Giofrè S, Di Giacomo C. Cyanidin induces apoptosis and differentiation in prostate cancer cells. Int J Oncol 2015; 47(4): 1303-10.
[http://dx.doi.org/10.3892/ijo.2015.3130] [PMID: 26315029]
[53]
Lee DY, Yun SM, Song MY, Jung K, Kim EH. Cyanidin chloride induces apoptosis by inhibiting NF-κB signaling through activation of Nrf2 in colorectal cancer cells. Antioxidants 2020; 9(4): 285.
[http://dx.doi.org/10.3390/antiox9040285] [PMID: 32230772]
[54]
Baba AB, Nivetha R, Chattopadhyay I, Nagini S. Blueberry and malvidin inhibit cell cycle progression and induce mitochondrial-mediated apoptosis by abrogating the JAK/STAT-3 signalling pathway. Food Chem Toxicol 2017; 109(Pt 1): 534-43.
[http://dx.doi.org/10.1016/j.fct.2017.09.054] [PMID: 28974439]
[55]
Vaiyapuri M, Thimmarayan S, Dhupal M, et al. Pelargonidin, a dietary anthocyanidin in the prevention of colorectal cancer and its chemoprotective mechanisms. In: Plant-derived Bioactives: Chemistry and Mode of Action. Singapore: Springer 2020; pp. 119-35.
[http://dx.doi.org/10.1007/978-981-15-2361-8_6]
[56]
Mir IA, Tiku AB. Chemopreventive and therapeutic potential of “naringenin,” a flavanone present in citrus fruits. Nutr Cancer 2015; 67(1): 27-42.
[http://dx.doi.org/10.1080/01635581.2015.976320] [PMID: 25514618]
[57]
Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci 2015; 124: 64-74.
[http://dx.doi.org/10.1016/j.lfs.2014.12.030] [PMID: 25625242]
[58]
Wang R, Zhu X, Wang Q, et al. The anti-tumor effect of taxifolin on lung cancer via suppressing stemness and epithelial-mesenchymal transition in vitro and oncogenesis in nude mice. Ann Transl Med 2020; 8(9): 590.
[http://dx.doi.org/10.21037/atm-20-3329] [PMID: 32566617]
[59]
Zhang Y, Zhang R, Ni H. Eriodictyol exerts potent anticancer activity against A549 human lung cancer cell line by inducing mitochondrial-mediated apoptosis, G2/M cell cycle arrest and inhibition of m-TOR/PI3K/Akt signalling pathway. Arch Med Sci 2020; 16(2): 446-52.
[http://dx.doi.org/10.5114/aoms.2019.85152] [PMID: 32190156]
[60]
Nozhat Z, Heydarzadeh S, Memariani Z, Ahmadi A. Chemoprotective and chemosensitizing effects of apigenin on cancer therapy. Cancer Cell Int 2021; 21(1): 574.
[http://dx.doi.org/10.1186/s12935-021-02282-3] [PMID: 34715860]
[61]
Tuorkey MJ. Molecular targets of luteolin in cancer. Eur J Cancer Prev 2016; 25(1): 65-76.
[http://dx.doi.org/10.1097/CEJ.0000000000000128] [PMID: 25714651]
[62]
Kasala ER, Bodduluru LN, Madana RM. v AK, Gogoi R, Barua CC. Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives. Toxicol Lett 2015; 233(2): 214-25.
[http://dx.doi.org/10.1016/j.toxlet.2015.01.008] [PMID: 25596314]
[63]
Kim HR, Park CG, Jung JY. Acacetin (5,7-dihydroxy-4′-methoxyflavone) exhibits in vitro and in vivo anticancer activity through the suppression of NF-κB/Akt signaling in prostate cancer cells. Int J Mol Med 2014; 33(2): 317-24.
[http://dx.doi.org/10.3892/ijmm.2013.1571] [PMID: 24285354]
[64]
Singh S, Meena A, Luqman S, Meena A. Acacetin and pinostrobin as a promising inhibitor of cancer-associated protein kinases. Food Chem Toxicol 2021; 151: 112091.
[http://dx.doi.org/10.1016/j.fct.2021.112091] [PMID: 33647348]
[65]
Ullah H, Khan H. Epigenetic drug development for autoimmuneand inflammatory diseases.Castelo-Branco P, Jeronima C. Eds Histone modification. In: Amsterdam: Elsevier 2020; pp. 395-413. http://dx.doi.org/10.1016/B978-0-12-816422-8.00017-9
[66]
Alam M, Ahmed S, Elasbali AM, et al. et al. Therapeutic implications of caffeic acid in cancer and neurological diseases. Front Oncol 2022; 12: 860508.
[http://dx.doi.org/10.3389/fonc.2022.860508] [PMID: 35359383]
[67]
Rezaei-Seresht H, Cheshomi H, Falanji F, Movahedi-Motlagh F, Hashemian M, Mireskandari E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J Phytomed 2019; 9(6): 574-86.
[http://dx.doi.org/10.22038/AJP.2019.13475] [PMID: 31763216]
[68]
Min J, Shen H, Xi W, et al. Synergistic anticancer activity of combined use of caffeic acid with paclitaxel enhances apoptosis of non-small-cell lung cancer H1299 Cells in vivo and in vitro. Cell Physiol Biochem 2018; 48(4): 1433-42.
[http://dx.doi.org/10.1159/000492253] [PMID: 30064123]
[69]
Pelinson LP, Assmann CE, Palma TV, et al. Antiproliferative and apoptotic effects of caffeic acid on SK-Mel-28 human melanoma cancer cells. Mol Biol Rep 2019; 46(2): 2085-92.
[http://dx.doi.org/10.1007/s11033-019-04658-1] [PMID: 30719606]
[70]
Giordano A, Tommonaro G. Curcumin and cancer. Nutrients 2019; 11(10): 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[71]
Pricci M, Girardi B, Giorgio F, Losurdo G, Ierardi E, Di Leo A. Curcumin and colorectal cancer: from basic to clinical evidences. Int J Mol Sci 2020; 21(7): 2364.
[http://dx.doi.org/10.3390/ijms21072364] [PMID: 32235371]
[72]
Shanmugam M, Rane G, Kanchi M, et al. The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20(2): 2728-69.
[http://dx.doi.org/10.3390/molecules20022728] [PMID: 25665066]
[73]
Aborehab NM, Osama N. Effect of gallic acid in potentiating chemotherapeutic effect of paclitaxel in hela cervical cancer cells. Cancer Cell Int 2019; 19(1): 154.
[http://dx.doi.org/10.1186/s12935-019-0868-0] [PMID: 31171918]
[74]
Kaur J, Gulati M, Gowthamarajan K, et al. Combination therapy of vanillic acid and oxaliplatin co-loaded in polysaccharide based functionalized polymeric micelles could offer effective treatment for colon cancer: A hypothesis. Med Hypotheses 2021; 156: 110679.
[http://dx.doi.org/10.1016/j.mehy.2021.110679] [PMID: 34555619]
[75]
Gong J, Zhou S, Yang S. Vanillic acid suppresses HIF-1α Expression via inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK pathways in human colon cancer HCT116 cells. Int J Mol Sci 2019; 20(3): 465.
[http://dx.doi.org/10.3390/ijms20030465] [PMID: 30678221]
[76]
Salehi B, Fokou PVT, Yamthe LRT, et al. Phytochemicals in prostate cancer: from bioactive molecules to upcoming therapeutic agents. Nutrients 2019; 11(7): 1483.
[http://dx.doi.org/10.3390/nu11071483] [PMID: 31261861]
[77]
Mariadoss AVA, Saravanakumar K, Sathiyaseelan A, Karthikkumar V, Wang MH. Smart drug delivery of p-Coumaric acid loaded aptamer conjugated starch nanoparticles for effective triple-negative breast cancer therapy. Int J Biol Macromol 2022; 195: 22-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.170] [PMID: 34861273]
[78]
Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in pharmacological activities of terpenoids Nat Product Comm 2020; 15(3): 1934578X20903555.
[http://dx.doi.org/10.1177/1934578X20903555]
[79]
Gill BS, Kumar S. Triterpenes in cancer: significance and their influence. Mol Biol Rep 2016; 43(9): 881-96.
[http://dx.doi.org/10.1007/s11033-016-4032-9] [PMID: 27344437]
[80]
Perveen S. Introductory Chapter. Terpenen and Terpenoids. IntechOpen 2018; pp. 1-12.
[81]
Xiang Y, Zhang Q, Wei S, Huang C, Li Z, Gao Y. Paeoniflorin: a monoterpene glycoside from plants of Paeoniaceae family with diverse anticancer activities. J Pharm Pharmacol 2020; 72(4): 483-95.
[http://dx.doi.org/10.1111/jphp.13204] [PMID: 31858611]
[82]
Cardoso D, Szemerédi N, Spengler G, Mulhovo S, dos Santos D, Ferreira MJ. Exploring the monoterpene indole alkaloid scaffold for reversing p-glycoprotein-mediated multidrug resistance in cancer. Pharmaceuticals 2021; 14(9): 862.
[http://dx.doi.org/10.3390/ph14090862] [PMID: 34577562]
[83]
El Gaafary M, Hafner S, Lang SJ, et al. A novel polyhalogenated monoterpene induces cell cycle arrest and apoptosis in breast cancer cells. Mar Drugs 2019; 17(8): 437.
[http://dx.doi.org/10.3390/md17080437] [PMID: 31349625]
[84]
Wang S, Wang X, Wang Y, et al. The anti-oxidant monoterpene p -cymene reduced the occurrence of colorectal cancer in a hyperlipidemia rat model by reducing oxidative stress and expression of inflammatory cytokines. Anticancer Res 2021; 41(3): 1213-8.
[http://dx.doi.org/10.21873/anticanres.14878] [PMID: 33788712]
[85]
Jung Y, Hwang S, Sethi G, Fan L, Arfuso F, Ahn K. Potential anti-inflammatory and anti-cancer properties of farnesol. Molecules 2018; 23(11): 2827.
[http://dx.doi.org/10.3390/molecules23112827] [PMID: 30384444]
[86]
Lee JH, Chinnathambi A, Alharbi SA, Shair OHM, Sethi G, Ahn KS. Farnesol abrogates epithelial to mesenchymal transition process through regulating Akt/mTOR pathway. Pharmacol Res 2019; 150: 104504.
[http://dx.doi.org/10.1016/j.phrs.2019.104504] [PMID: 31678208]
[87]
Chen H, Tang X, Liu T, Jing L, Wu J. Zingiberene inhibits in vitro and in vivo human colon cancer cell growth via autophagy induction, suppression of PI3K/AKT/mTOR Pathway and caspase 2 deactivation. J BUON 2019; 24(4): 1470-5.
[PMID: 31646793]
[88]
Peng X, Luo R, Li J, et al. Zingiberene targets the miR-16/cyclin-B1 axis to regulate the growth, migration and invasion of human liver cancer cells. J BUON 2020; 25(4): 1904-10.
[PMID: 33099931]
[89]
Islam MT, Ali ES, Uddin SJ, et al. Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer. Cancer Lett 2018; 420: 129-45.
[http://dx.doi.org/10.1016/j.canlet.2018.01.074] [PMID: 29408515]
[90]
Vasaturo M, Cotugno R, Fiengo L, Vinegoni C, Dal Piaz F, De Tommasi N. The anti-tumor diterpene oridonin is a direct inhibitor of nucleolin in cancer cells. Sci Rep 2018; 8(1): 16735.
[http://dx.doi.org/10.1038/s41598-018-35088-x] [PMID: 30425290]
[91]
Alexandre J, Batteux F, Nicco C, et al. Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo. Int J Cancer 2006; 119(1): 41-8.
[http://dx.doi.org/10.1002/ijc.21685] [PMID: 16450384]
[92]
Aparajitha U. K P. Paclitaxel against cancer: a short review. Med Chem 2012; 2(7): 1000130.
[http://dx.doi.org/10.4172/2161-0444.1000130]
[93]
Hordyjewska A, Ostapiuk A, Horecka A, Kurzepa J. Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential. Phytochem Rev 2019; 18(3): 929-51.
[http://dx.doi.org/10.1007/s11101-019-09623-1]
[94]
Cai Y, Zheng Y, Gu J, et al. Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78. Cell Death Dis 2018; 9(6): 636.
[http://dx.doi.org/10.1038/s41419-018-0669-8] [PMID: 29802332]
[95]
Lee D, Lee SR, Kang KS, et al. Betulinic acid suppresses ovarian cancer cell proliferation through induction of apoptosis. Biomolecules 2019; 9(7): 257.
[http://dx.doi.org/10.3390/biom9070257] [PMID: 31277238]
[96]
Maurya SK, Shadab GGHA, Siddique HR. Chemosensitization of therapy resistant tumors: targeting multiple cell signaling pathways by lupeol, a pentacyclic triterpene. Curr Pharm Des 2020; 26(4): 455-65.
[http://dx.doi.org/10.2174/1381612826666200122122804] [PMID: 31969092]
[97]
Yin R, Li T, Tian JX, Xi P, Liu RH. Ursolic acid, a potential anticancer compound for breast cancer therapy. Crit Rev Food Sci Nutr 2018; 58(4): 568-74.
[http://dx.doi.org/10.1080/10408398.2016.1203755] [PMID: 27469428]
[98]
Khwaza V, Oyedeji OO, Aderibigbe BA. Ursolic acid-based derivatives as potential anti-cancer agents: an update. Int J Mol Sci 2020; 21(16): 5920.
[http://dx.doi.org/10.3390/ijms21165920] [PMID: 32824664]
[99]
Dryden GW. Study investigating the ability of plant exosomes to deliver curcumin to normal and colon cancer tissue ClinicalTrialsgov. 2021. Available from:https://clinicaltrials.gov/ct2/show/NCT01294072
[100]
Asher G. Effect of curcumin on dose limiting toxicity and pharmacokinetics of irinotecan in patients with solid tumors ClinicalTrialsgov. 2020. Available from:https://clinicaltrials.gov/ct2/show/NCT01859858
[101]
Tananyan A. “Curcumin” in combination with chemotherapy in advanced breast cancer ClinicalTrialsgov. 2019. Available from:https://clinicaltrials.gov/ct2/show/NCT03072992
[102]
Carreno JA. Curcumin in advanced cervical cancer Clinicaltrialsgov. 2021. Available from:https://clinicaltrials.gov/ct2/show/nct04294836
[103]
Subbiah V. Trial of curcumin in advanced pancreatic cancerClinicalTrialsgov. 2020. Available from:https://clinicaltrials. gov/ct2/show/NCT00094445
[104]
Razzaghdoust A. Nanocurcumin for prostate cancer patients undergoing radiotherapy (RT) Clinicaltrialsgov. 2017. Available from:https://clinicaltrials.gov/ct2/show/NCT02724618
[105]
Lotan Y. Adjuvant curcumin to assess recurrence free survival in patients who have had a radical prostatectomy ClinicalTrialsgov. 2022. Available from:https://clinicaltrials.gov/ct2/show/NCT02064673
[106]
Sun X. Oral green tea extract for small cell lung cancer ClinicalTrialgov. 2019. Available from:https://clinicaltrials.gov/ct2/show/NCT01317953
[107]
Patel S. chemopreventive effects of Epigallocatechin gallate (EGCG) in colorectal cancer (CRC) patients. ClinicalTrialsgov 2021. 2021. Available from:https://clinicaltrials.gov/ct2/show/NCT02891538
[108]
Xing L. Study of Epigallocatechin-3-gallate (EGCG) for esophagus protection in patients with lung cancer receiving radial radiotherapy ClinicalTrialsgov. 2020. Available from:https://clinicaltrials.gov/ct2/show/NCT02577393
[109]
Kurzer MS. Green tea and reduction of breast cancer risk ClinicalTrialsgov. 2016. Available from:https://clinicaltrials.gov/ct2/show/NCT00917735
[110]
Lee DH. Green tea extracts for the prevention of colorectal adenomas and colorectal cancer ClinicalTrialsgov. 2015. Available from:https://clinicaltrials.gov/ct2/show/NCT02321969
[111]
Kumar NB. To evaluate if green tea can be effective in reducing the progression of prostate cancer in men on close monitoring ClinicalTrialsgov. 2022. Available from:https://clinicaltrials.gov/ct2/show/NCT04597359
[112]
Kumar N. Study of Polyphenon E in men with high grade prostatic intraepithelial neoplasia ClinicalTrialsgov. 2019. Available from:https://clinicaltrials.gov/ct2/show/NCT00596011
[113]
Shannon J. Fish oil and green tea extract in preventing prostate cancer in patients ewho are at risk for developing prostate cancer ClinicalTrialsgov. 2017. Available from:https://clinicaltrials.gov/ct2/show/NCT00253643
[114]
Mehta PA. Quercetin chemoprevention for squamous cell carcinoma in patients with fanconi anemia ClinicalTrialsgov. 2022. Available from:https://clinicaltrials.gov/ct2/show/NCT03476330
[115]
Zwicker J. Cancer Associated Thrombosis and Isoquercetin (CATIQ) (CATIQ) ClinicalTrialsgov. 2021. Available from:https://clinicaltrials.gov/ct2/show/NCT02195232
[116]
MacDonald T. AflacST1901: Peds WP1066 ClicnicalTrialsgov. 2022. Available from:https://clinicaltrials.gov/ct2/show/NCT04334863
[117]
Gao S. The efficacy and safety of caffeic acid for esophageal cancer (CAEC) ClinicalTrialsgov. 2020. Available from:https://clinicaltrials.gov/ct2/show/NCT03070262
[118]
Wang D. Paclitaxel-binding albumin and cisplatin as neoadjuvant chemotherapy in patients with muscle-invasive bladder cancer ClinicalTrialsgov. 2019. Available from:https://clinicaltrials.gov/ct2/show/NCT04060459
[119]
Alistar AT. A study of CPI-615 with Gemcitabine and Nab-Paclitaxel for patients with advanced and metastatic pancreatic cancer ClinicalTrialsgov. 2018. Available from:https://clinicaltrials.gov/ct2/show/NCT03435289
[120]
Hospital General Universitario Gregorio Marañón. Neoadjuvanr treatment with Nab-Paclitaxel for patients with stage II and III luminal breast cancer. ClinicalTrialsgov 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT01565499
[121]
Bode AM, Dong Z. Toxic phytochemicals and their potential risks for human cancer. Cancer Prev Res 2015; 8(1): 1-8.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0160] [PMID: 25348854]
[122]
Siriwardena SU, Perera MLW, Senevirathne V, Stewart J, Bhagwat AS. A tumor-promoting phorbol ester causes a large increase in APOBEC3A expression and a moderate increase in APOBEC3B expression in a normal human keratinocyte cell line without increasing genomic uracils. Mol Cell Biol 2019; 39(1): e00238-18.
[http://dx.doi.org/10.1128/MCB.00238-18] [PMID: 30348839]
[123]
Bode AM, Dong Z. The two faces of capsaicin. Cancer Res 2011; 71(8): 2809-14.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3756] [PMID: 21487045]
[124]
Liu Z, Zhu P, Tao Y, et al. Cancer-promoting effect of capsaicin on DMBA/TPA-induced skin tumorigenesis by modulating inflammation, Erk and p38 in mice. Food Chem Toxicol 2015; 81: 1-8.
[http://dx.doi.org/10.1016/j.fct.2015.04.002] [PMID: 25846502]
[125]
Zhang S, Wang D, Huang J, Hu Y, Xu Y. Application of capsaicin as a potential new therapeutic drug in human cancers. J Clin Pharm Ther 2020; 45(1): 16-28.
[http://dx.doi.org/10.1111/jcpt.13039] [PMID: 31545523]
[126]
Efferth T, Oesch F. Repurposing of plant alkaloids for cancer therapy: Pharmacology and toxicology. Semin Cancer Biol 2021; 68: 143-63.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.010] [PMID: 31883912]
[127]
Cowan F. Phytochemical combinations that regulate pathological immunity. US20110305779A1, 2011.
[128]
David JF, Jennifer P, Arun R, Donald JP, Kevin WG. Jeffrey S, Stephen RM, Russell KR, Jennifer C, Yumei L, Valiantsina K. Antioxidant dietary supplement and related method. US10201583B2, 2019.
[129]
Lines TC. Method for treating cancer with a combination of quercetin and a chemotherapy agent. EP3157517A1, 2017.
[130]
Kiyono K, Onishi K, Naghama Y, Watanabe T. Pharmaceutical combination comprising metformin and dihydroquercetin and its use for the treatment of cancer. US9808440B2, 2014.
[131]
Yuying L, Liwei Z, Zhuanhua W. Application of 6-hydroxykaempferol-3-oxo-β-glucoside in the preparation of anticancer drugs. CN103919796B, 2016.
[132]
Shengxi C. Preparation method of curcumin-tea products and their application in anti-tumour. CN110859892A, 2020.
[133]
Wang X. Application of medicine containing catechin to preparation of medicines for prevention and/or treatment of cancers. CN105232527A, 2016.
[134]
Jia Ki. Formulation of a mixture of free-B-ring flavonoids and flavans as therapeutic agents. JP4723239B2, 2011.
[135]
Jia Ki. Formulation of cyclooxygenase (COX) and lipoxygenase (LOX) dual inhibitors for mammalian skin care. JP4769184B2, 2011.
[136]
Rodriguez-Lopez JN, Cabezas-Herrera J, Navarro-Peran EM, Del Campo LS. Epigallocatechin-3-gallate compositions for cancer therapy and chemoprotection. WO2008075201A2, 2009.
[137]
Jun S, Xuanjun W, Yanping H, et al. Epigallo-catechin gallate (EGCG) combines application of the tyrosine kinase inhibitor in preparation cancer treatment drugs. CN110038006A 2019.
[138]
Landis-Piwowar K, Chen D, Foldes R, Chan TH, Dou QP. Novel epigallocatechin gallate analogs as potential anticancer agents: a patent review (2009 - present). Expert Opin Ther Pat 2013; 23(2): 189-202.
[http://dx.doi.org/10.1517/13543776.2013.743993]
[139]
Jiang BH. Apigenin for chemoprevention, and chemotherapy combined with therapeutic reagents. US20060189680A1, 2013.
[140]
Yi G, Dong Y. Apigenin derivatives and preparation method and applications thereof. CN102161655A, 2011.
[141]
Cheng Y, Tao S. Applications of apigenin for preparation of medicines inhibiting liver cancer epithelial-mesenchymal transition. CN106377522A, 2017.
[142]
Lihua T. Apigenin is preparing the application in treating cancer drug. CN107865861A, 2018.
[143]
Espíndola KMM, Ferreira RG, Narvaez LEM, et al. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Front Oncol 2019; 9: 541.
[http://dx.doi.org/10.3389/fonc.2019.00541] [PMID: 31293975]
[144]
Enrique RAA, Ana MVS, Víctor HVV, et al. Analogue compounds of the caffeic acid phenethyl ester and the use thereof for preventing and treating cancer. WO2015151005A3, 2016.
[145]
Priebe W, Fokt I, Szymanski S, Madden T, Myers J, Conrad C. Orally bioavailable caffeic acid related anti-cancer drugs. United States patent US 8779151, 2014.
[146]
Desai UR, Henry BL, Liang A. et al. Cinnamic acid-based oligomers and uses thereof. US8993620B2, 2015.
[147]
Hailiang Z, Dongdong L, Xiaoliang W. et al. 4-aniline quinazoline compound substituting cinnamic acid, and preparation method and application thereof. CN103058938A, 2013.
[148]
Liang C, Tian L, Tang Y, et al. 13-hydroxysparteine cinnamic acid derivatives with anti-tumor activities and a method of preparing the same. US10233183B1, 2019.
[149]
Nesarwtnam K, Selvaduray KR. Synergistic effect of tocotrienols and curcumin. US8906960B2, 2014.
[150]
Helson L. Intravenous infusion of curcumin and a calcium channel blocker. US20140234402A1, 2014.
[151]
Chen QH. Therapeutic uses of curcumin analogs for treatment of prostate cancer. US9499529B2, 2016.
[152]
Ludwiczuk A, Skalicka-Wozniak K, Georgiev MI. Terpenoids. In: Pharmacognosy. Fundamentals, Applications and Strategies. Academic Press US 2017; pp. 233-66.
[http://dx.doi.org/10.1016/B978-0-12-802104-0.00011-1]
[153]
Rougereau-Person o, Rougereau A. Novel medicines based on sesquiterpene mixtures. WO2001080868A1, 2001.
[154]
Gibbs RA. Prenyl transferase inhibitors. US6586461B1, 2003.
[155]
Ishikawa H, Nishimuro S, Watanbe T, Hirota M. Use of ursolic acid for the manufacture of a medicament for suppressing metastasis. EP0774255B1, 2001.
[156]
Kaikai B, Yanghao G, Yunquan Z, Xianai S. Ursolic acid derivative chemically modified by polyethylene glycol and preparation method of ursolic acid derivative. CN102329362A, 2012.
[157]
Ramadoss S, Jaggi M, Siddiqui MJ. Use of betulinic acid and its derivatives for inhibiting cancer growth and a method of monitoring this. US6048847, 2000.
[158]
Pezzuto JM, Kosmeder JWL. Prodrugs of betulinic acid derivatives for the treatment of cancer. CA2418479C, 2007.
[159]
Ji Jianya. Anti-tumor betulinic acid derivative and preparation method thereof. CN113173965A, 2021.
[160]
Mukhtar H, Bhat MS. Lupeol antitumor agent and uses thereof. US20140073702A1, 2014.
[161]
Weiwen P, Weibo D, Xianjin H, Zhuqiang W, Chang C, Xiaoyan P. Application of ficus microcarpa petroleum ether part in preparation of medicine for preventing or treating liver cancer. CN113456695A, 2021.
[162]
Campagna J, Varghese J. Manufacturing of synthetic exosomes for CNS and non-CNS delivery of therapeutics. WO2021207273A1, 2021.
[163]
Yuxia Z, Wei Z. Quercetin drug delivery system based on copper sulfide-metal organic frameworks. CN108524935B,, 2020.
[164]
Xiaojuan Z, Lingyun H. A fluorescently labeled magnetic kaempferol microsphere system and its preparation method. CN105056252B, 2017.
[165]
Chen X, Shi Z, Jianlei Q. Load folate-targeted carrier of monosubstituted Epigallo-catechin gallate (EGCG) palmitate and its preparation method and application. CN108144068A, 2020.
[166]
Hewlings S, Kalman D. Curcumin: a review of its effects on human health. Foods 2017; 6(10): 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[167]
Kurzrock R, Li L, Mehta K, Aggarwal BB. Liposomal curcumin for treatment of cancer. US20190105287A1, 2019.
[168]
Hansel W, Aggarwal S, Hammer RP. Curcumin conjugates for treating and preventing cancers. US9221877B2, 2015.
[169]
Katti K, Khhobchandani M, Katti K, Khan A, Joshi C. Ayurvedic encapsulated gold nanoparticles, fabrication methods and cancer therapeutic methods. US20210008103A1, 2021.
[170]
Yoo BK, Baek JH, Kim HM, et al. et al. Curcumin-containing lipid nanoparticle complex comprising ginsenosides. WO2017095138A1, 2017.
[171]
Antony B. Composition to enhance the bioavailability of Curcumin. US8993013B2, 2018.
[172]
Bayraktar O. Development of curcumin and piperine loaded double-layered biopolymer based nano delivery systems by using electrospray/coating method. EP3142702A1, 2018.
[173]
Dong L, Yoo W, Young W, Mi EH. Hybrid anticancer prodrug for creating cinnamaldehyde or cinnamic acid, and method for preparing the same. KR102023808B1, 2019.
[174]
Singh S, Sharma B, Kanwar SS, Kumar A. Lead phytochemicals for anticancer drug development. Front Plant Sci 2016; 7: 1667.
[http://dx.doi.org/10.3389/fpls.2016.01667] [PMID: 27877185]
[175]
Priyanka K, Sahu PL, Singh S. Optimization of processing parameters for the development of Ficus religiosa L. extract loaded solid lipid nanoparticles using central composite design and evaluation of antidiabetic efficacy. J Drug Deliv Sci Technol 2018; 43: 94-102.
[http://dx.doi.org/10.1016/j.jddst.2017.08.006]
[176]
Petyave I. Carotenoid particles and uses thereof. JP6563447B2, 2011.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy