Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Water Purification by Green Synthesized Nanomaterials

Author(s): Anindita De, N.B. Singh*, Mridula Guin and Sumit Barthwal

Volume 24, Issue 1, 2023

Published on: 06 May, 2022

Page: [101 - 117] Pages: 17

DOI: 10.2174/1389201023666220507030548

Price: $65

Abstract

Background: Water pollution is one of the important causes of human fatality in the world, particularly in underdeveloped or developing countries. Moreover, with rapid industrialization and urbanization, the problem of water pollution is posing a severe threat to health and livelihood. The pollutants found in water are of varied nature and depend on the source of the water. Several techniques have so far been adopted to purify contaminated water. All the techniques have one or the other disadvantages, limiting their applications on large scale, sustainability, and long-term usage. The advances in the field of nanoscience and technology have opened a new horizon for replacement/improvement of conventional ways with more efficient methods. Presently, green synthesized nanomaterials are being used for water purification.

Methods: Plant extracts and microbes are being used to synthesize nanomaterials, which are used as catalysts, adsorbents and membranes for water purification.

Results: Nanomaterial-based techniques could create problems for the environment due to various chemicals used in their production step, thus defeating the ultimate purpose. In this regard, green nanomaterials can prove to be extremely useful both in terms of sustainability and efficiency.

Conclusion: This review illustrates various ways of how green nanomaterials can be utilized for water remediation and summarizes the recent work done in this emerging research area.

Keywords: Water, pollution, nanomaterial, adsorption, nanocomposite, polymer, membrane.

Graphical Abstract
[1]
Basheer, A.A. New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq., 2020, 261, 583-593.
[http://dx.doi.org/10.1016/j.molliq.2018.04.021]
[2]
Ali, I.; Basheer, A.A.; Mbianda, X.Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V. Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int., 2019, 127, 160-180.
[http://dx.doi.org/10.1016/j.envint.2019.03.029] [PMID: 30921668]
[3]
Ali, I. New generation adsorbents for water treatment. Chem. Rev., 2012, 112, 5073.
[4]
El-Sayed, M.E.A. Nanoadsorbents for water and wastewater remediation. Sci. Total Environ., 2020, 739, 139903.
[http://dx.doi.org/10.1016/j.scitotenv.2020.139903] [PMID: 32544683]
[5]
Singh, N.B.; Nagpal, G.; Agrawal, S. Water purification by using adsorbents: a review. Environ. Technol. Innov., 2018, 11, 187-240.
[6]
Sadegh, H.; Ali, G.A.; Gupta, V.K.; Makhlouf, A.S.H.; Shahryari-Ghoshekandi, R.; Nadagouda, M.N.; Sillanpää, M.; Megiel, E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostructure Chem., 2017, 7(1), 1-14.
[http://dx.doi.org/10.1007/s40097-017-0219-4]
[7]
Wadhawan, S.; Jain, A.; Nayyar, J.; Mehta, S.K. Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. J. Water Process Eng., 2020, 33, 101038.
[http://dx.doi.org/10.1016/j.jwpe.2019.101038]
[8]
Teow, Y.; Mohammad, A.W. Haan; Mohammad, A.W. New generation nanomaterials for water desalination: A review. Desalination, 2019, 451, 2-17.
[http://dx.doi.org/10.1016/j.desal.2017.11.041]
[9]
Singh, N.B.; Jain, P.; De, A.; Tomar, R. Green synthesis and applications of nanomaterials. Curr. Pharm. Biotechnol., 2021, 22(13), 1705-1747.
[http://dx.doi.org/10.2174/1389201022666210412142734] [PMID: 33845733]
[10]
De, A.; Kalita, D. Bio-fabricated gold and silver nanoparticle based plasmonic sensors for detection of environmental pollutants: An over-view. Crit. Rev. Anal. Chem., 2021, 1-17.
[PMID: 34477454]
[11]
Singh, N.B.; Susan, A.B.H.; Guin, M. Applications of green synthesized nanoparticles in water remediation. Curr. Pharm. Biotechnol., 2021, 22, 723-751.
[12]
Sajid, M.; Płotka-Wasylka, J. Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchem. J., 2020, 154, 104623.
[http://dx.doi.org/10.1016/j.microc.2020.104623]
[13]
Siddique, H.M.A.; Kiani, A.K. Industrial pollution and human health: Evidence from middle-income countries. Environ. Sci. Pollut. Res. Int., 2020, 27(11), 12439-12448.
[http://dx.doi.org/10.1007/s11356-020-07657-z] [PMID: 31997247]
[14]
Ghasemzadeh, G.; Momenpour, M.; Omidi, F.; Hosseini, M.R.; Ahani, M.; Barzegari, A. Applications of nanomaterials in water treatment and environmental remediation. Front. Environ. Sci. Eng., 2014, 8(4), 471-482.
[http://dx.doi.org/10.1007/s11783-014-0654-0]
[15]
Ghadimi, M.; Zangenehtabar, S.; Homaeigohar, S. An overview of the water remediation potential of nanomaterials and their ecotoxicolog-ical impacts. Water, 2020, 12(4), 1150.
[http://dx.doi.org/10.3390/w12041150]
[16]
Lingamdinne, L.P.; Koduru, J.R.; Choi, Y.L.; Chang, Y.Y.; Yang, J.K. Studies on removal of Pb (II) and Cr (III) using graphene oxide based inverse spinel nickel ferrite nano-composite as sorbent. Hydrometallurgy, 2016, 165, 64-72.
[http://dx.doi.org/10.1016/j.hydromet.2015.11.005]
[17]
Shirsath, D.S.; Shirivastava, V.S. Adsorptive removal of heavy metals by magnetic nanoadsorbent: An equilibrium and thermodynamic study. Appl. Nanosci., 2015, 5(8), 927-935.
[http://dx.doi.org/10.1007/s13204-014-0390-6]
[18]
Darwish, M.; Mohammadi, A. Functionalized nanomaterial for environmental techniques.In: Nanotechnology in Environmental Science; Wiley, 2018, pp. 315-349.
[19]
Baby, R.; Saifullah, B.; Hussein, M.Z. Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental re-mediation. Nanoscale Res. Lett., 2019, 14(1), 341.
[http://dx.doi.org/10.1186/s11671-019-3167-8] [PMID: 31712991]
[20]
Anjum, H.; Johari, K.; Gnanasundaram, N.; Ganesapillai, M.; Arunagiri, A.; Regupathi, I.; Thanabalan, M. A review on adsorptive removal of oil pollutants (BTEX) from wastewater using carbon nanotubes. J. Mol. Liq., 2019, 277, 1005-1025.
[http://dx.doi.org/10.1016/j.molliq.2018.10.105]
[21]
Khan, F.S.A.; Mubarak, N.M.; Tan, Y.H.; Khalid, M.; Karri, R.R.; Walvekar, R.; Abdullah, E.C.; Izamuddin, S.N.; Mazari, S. Ali. J. Hazard. Mater., 2021, 413, 125375.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125375] [PMID: 33930951]
[22]
Dehghani, M.H.; Yetilmezsoy, K.; Salari, M.; Heidarinejad, Z.; Yousefi, M.S.M.; Sillanpää, M. Adsorptive removal of cobalt(II) from aqueous solutions using multi-walled carbon nanotubes and γ- alumina as novel adsorbents: Modelling and optimization based on re-sponse surface methodology and artificial neural network. J. Mol. Liq., 2020, 299, 112-154.
[http://dx.doi.org/10.1016/j.molliq.2019.112154]
[23]
Jawed, A.; Saxena, V.; Pandey, L.M. Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review. J. Water Process Eng., 2020, 33, 101009.
[http://dx.doi.org/10.1016/j.jwpe.2019.101009]
[24]
Huang, Z.N.; Wang, X.L.; Yang, D.S. Adsorption of Cr (VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Sci. Eng., 2015, 8(3), 226-232.
[http://dx.doi.org/10.1016/j.wse.2015.01.009]
[25]
Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy metal removal from aqueous solu-tion by advanced carbon nanotubes: Critical review of adsorption applications. Separ. Purif. Tech., 2016, 157, 141-161.
[http://dx.doi.org/10.1016/j.seppur.2015.11.039]
[26]
Gehrke, I.; Geiser, A.; Somborn-Schulz, A. Innovations in nanotechnology for water treatment. Nanotechnol. Sci. Appl., 2015, 8, 1-17.
[http://dx.doi.org/10.2147/NSA.S43773] [PMID: 25609931]
[27]
Ihsanullah, Ihsanullah Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Separ. Purif. Tech., 2019, 209, 307-337.
[http://dx.doi.org/10.1016/j.seppur.2018.07.043]
[28]
Liang, J.; Liu, J.; Yuan, X.; Dong, H.; Zeng, G.; Wu, H.; Wang, H.; Liu, J.; Hua, S.; Zhang, S.; Yu, Z.; He, X.; He, Y. Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem. Eng. J., 2015, 273, 101-110.
[http://dx.doi.org/10.1016/j.cej.2015.03.069]
[29]
Zhang, C.; Sui, J.; Li, J.; Tang, Y.; Cai, W. Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nano-tubes. Chem. Eng. J., 2012, 210, 45-52.
[http://dx.doi.org/10.1016/j.cej.2012.08.062]
[30]
Liu, X.; Wang, M.; Zhang, S.; Pan, B. Application potential of carbon nanotubes in water treatment: A review. J. Environ. Sci. (China), 2013, 25(7), 1263-1280.
[http://dx.doi.org/10.1016/S1001-0742(12)60161-2] [PMID: 24218837]
[31]
Gupta, K.; Khatri, O.P. Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: Plausible adsorption path-ways. J. Colloid Interface Sci., 2017, 501, 11-21.
[http://dx.doi.org/10.1016/j.jcis.2017.04.035] [PMID: 28431217]
[32]
Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces, 2014, 6(20), 17426-17436.
[http://dx.doi.org/10.1021/am504826q] [PMID: 25222124]
[33]
Varma, S.; Sarode, D.; Wakale, S.; Bhanvase, B.A.; Deosarkar, M.P. Removal of nickel from waste water using graphene nanocomposite. Int. J. Chem. Phys. Sci., 2013, 2, 132-139.
[34]
Vu, H.C.; Dwivedi, A.D.; Le, T.T.; Seo, S.H.; Kim, E.J.; Chang, Y.S. Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr (VI) and As (V) from aqueous solutions: Role of crosslinking metal cations in pH control. Chem. Eng. J., 2017, 307, 220-229.
[http://dx.doi.org/10.1016/j.cej.2016.08.058]
[35]
Zare-Dorabei, R.; Ferdowsi, S.M.; Barzin, A.; Tadjarodi, A. Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,2′-dipyridylamine: Central composite design optimiza-tion. Ultrason. Sonochem., 2016, 32, 265-276.
[http://dx.doi.org/10.1016/j.ultsonch.2016.03.020] [PMID: 27150770]
[36]
Vadahanambi, S.; Lee, S.H.; Kim, W.J.; Oh, I.K. Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ. Sci. Technol., 2013, 47(18), 10510-10517.
[http://dx.doi.org/10.1021/es401389g] [PMID: 23947834]
[37]
Cseri, L.; Baugh, J.; Alabi, A.; AlHajaj, A.; Zou, L.; Dryfe, R.A.; Budd, P.M.; Szekely, G.J. Graphene oxide–polybenzimidazolium nano-composite anion exchange membranes for electrodialysis. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(48), 24728-24739.
[http://dx.doi.org/10.1039/C8TA09160A]
[38]
Li, X.; Zhao, C.; Yang, M.; Yang, B.; Hou, D.; Wang, T. Reduced graphene oxide-NH2 modified low pressure nanofiltration composite hollow fiber membranes with improved water flux and antifouling capabilities. Appl. Surf. Sci., 2017, 419, 418-428.
[http://dx.doi.org/10.1016/j.apsusc.2017.04.080]
[39]
Ray, P.Z.; Shipley, H.J. Inorganic nanoadsorbents for the removal of heavy metals and arsenic: A review. RSC Advances, 2015, 5(38), 29885-29907.
[http://dx.doi.org/10.1039/C5RA02714D]
[40]
Gupta, V.K.; Tyagi, I.; Sadegh, H.; Shahryari-Ghoshekand, R.; Makhlouf, A.S.H.; Maazinejad, B. Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: A review. Sci. Technol. Dev., 2015, 34(3), 195-214.
[http://dx.doi.org/10.3923/std.2015.195.214]
[41]
Namdeo, M. Magnetite nanoparticles as effective adsorbent for water purification - a review. Adv. Recycling Waste Manag., 2017, 2(3), 1000135-1000148.
[42]
Azadi, F.; Karimi-Jashni, A.; Zerafat, M.M. Green synthesis and optimization of nano-magnetite using Persicaria bistorta root extract and its application for rosewater distillation wastewater treatment. Ecotoxicol. Environ. Saf., 2018, 165, 467-475.
[http://dx.doi.org/10.1016/j.ecoenv.2018.09.032] [PMID: 30218970]
[43]
Singh, S.; Barick, K.C.; Bahadur, D. Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(10), 3325-3333.
[http://dx.doi.org/10.1039/c2ta01045c]
[44]
Waghmode, M.S.; Gunjal, A.B.; Mulla, J.A.; Patil, N.N.; Nawani, N.N. Studies on the titanium dioxide nanoparticles: Biosynthesis, applica-tions and remediation. SN Appl. Sci., 2019, 1(4), 1-9.
[http://dx.doi.org/10.1007/s42452-019-0337-3]
[45]
Bokare, V.; Jung, J.L.; Chang, Y.Y.; Chang, Y.S. Reductive dechlorination of octachlorodibenzo-p-dioxin by nanosized zero-valent zinc: Modeling of rate kinetics and congener profile. J. Hazard. Mater., 2013, 250-251, 397-402.
[http://dx.doi.org/10.1016/j.jhazmat.2013.02.020] [PMID: 23500419]
[46]
Attia, S.T.M.; Hu, X.L.; Yin, D.Q. Synthesised magnetic nanoparticles coated zeolite (MNCZ) for the removal of arsenic (As) from aque-ous solution. J. Exp. Nanosci., 2014, 9(6), 551-560.
[http://dx.doi.org/10.1080/17458080.2012.677549]
[47]
Neyaz, N.; Siddiqui, W.A. Removal of Cu (II) by modified magnetite nanocomposite as a nanosorbent. Int. J. Sci. Res., 2015, 4, 1868-1873.
[48]
Khani, R.; Sobhani, S.; Beyki, M.H. Highly selective and efficient removal of lead with magnetic nano-adsorbent: Multivariate optimiza-tion, isotherm and thermodynamic studies. J. Colloid Interface Sci., 2016, 466, 198-205.
[http://dx.doi.org/10.1016/j.jcis.2015.12.027] [PMID: 26724702]
[49]
Mthombeni, N.H.; Mbakop, S.; Onyango, M.S. Magnetic zeolite-polymer composite as an adsorbent for the remediation of wastewaters containing vanadium. Int. J. Environ. Sci. Dev., 2015, 6(8), 602-605.
[http://dx.doi.org/10.7763/IJESD.2015.V6.665]
[50]
Zare, E.N.; Motahari, A.; Sillanpää, M. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environ. Res., 2018, 162, 173-195.
[http://dx.doi.org/10.1016/j.envres.2017.12.025] [PMID: 29329014]
[51]
Bushra, R. Nanoadsorbents-based polymer nanocomposite for environmental remediation.New Polymer Nanocomposites for Environmen-tal Remediation; Elsevier, 2018, pp. 243-260.
[52]
Ge, F.; Li, M.M.; Ye, H.; Zhao, B.X. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J. Hazard. Mater., 2012, 211-212, 366-372.
[http://dx.doi.org/10.1016/j.jhazmat.2011.12.013] [PMID: 22209322]
[53]
Kumar, V.; Talreja, N.; Deva, D.; Sankararamakrishnan, N.; Sharma, A.; Verma, N. Development of bi-metal doped micro- and nano mul-ti-functional polymeric adsorbents for the removal of fluoride and arsenic(V) from wastewater. Desalination, 2011, 282, 27-38.
[http://dx.doi.org/10.1016/j.desal.2011.05.013]
[54]
Sadeghi-Kiakhani, M.; Mokhtar, A.M.; Gharanjig, K. Dye removal from coloredtextile wastewater using chitosan-PPI dendrimer hybrid as a biopolymer: Optimization, kinetic, and isotherm studies. J. Appl. Polym. Sci., 2013, 127(4), 2607-2619.
[http://dx.doi.org/10.1002/app.37615]
[55]
Petrik, L.; Missengue, R.; Fatoba, O.; Tuffin, M.; Sachs, J. Silver/ zeolite nano composite-based clay filters for water disinfection. Water Research Commission, WRC report (KV 297/12), 2012.
[56]
Nagy, A.; Harrison, A.; Sabbani, S.; Munson, R.S., Jr; Dutta, P.K.; Waldman, W.J. Silver nanoparticles embedded in zeolite membranes: Release of silver ions andmechanism of antibacterial action. Int. J. Nanomedicine, 2011, 6, 1833-1852.
[PMID: 21931480]
[57]
Azizi-Lalabadi, M.; Ehsani, A.; Divband, B.; Alizadeh-Sani, M. Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci. Rep., 2019, 9(1), 17439.
[http://dx.doi.org/10.1038/s41598-019-54025-0] [PMID: 31767932]
[58]
Vataour, V.; Madaeni, S.S.; Khataee, A.R.; Salehi, E.; Zinadini, S.; Monfared, H.A. TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination, 2012, 292, 19-29.
[http://dx.doi.org/10.1016/j.desal.2012.02.006]
[59]
Zahid, M.; Rashid, A.; Akram, S.; Rehan, Z.A.; Razzaq, W. A comprehensive review on polymeric nano-composite membranes for water treatment. J. Membr. Sci. Technol., 2018, 8(1), 1-20.
[http://dx.doi.org/10.4172/2155-9589.1000179]
[60]
Duan, W.; Chen, G.; Chen, C.; Sanghvi, R.; Iddya, A.; Walker, S.; Liu, H.; Ronen, A.; Jassby, D. Electrochemical removal of hexavalent chromium using electrically conducting carbon nanotube/polymer composite ultrafiltration membranes. J. Membr. Sci., 2017, 531, 160-171.
[http://dx.doi.org/10.1016/j.memsci.2017.02.050]
[61]
Chan, W.F.; Marand, E.; Martin, S.M. Novel zwitterion functionalized carbon nanotube nanocomposite membranes for improved RO per-formance and surface anti-biofouling resistance. J. Membr. Sci., 2016, 509, 125-137.
[http://dx.doi.org/10.1016/j.memsci.2016.02.014]
[62]
Fan, Y.; Quan, X.; Zhao, H.; Chen, S.; Yu, H.; Zhang, Y.; Zhang, Q. Poly (vinylidene fluoride) hollow‐fiber membranes containing sil-ver/graphene oxide dope with excellent filtration performance. J. Appl. Polym. Sci., 2017, 134(15), 44713.
[http://dx.doi.org/10.1002/app.44713]
[63]
Nagajyothi, P.C.; Prabhakar Vattikuti, S.V.; Devarayapalli, K.C.; Yoo, K.; Shim, J.; Sreekanth, T.V.M. Green synthesis: Photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Crit. Rev. Environ. Sci. Technol., 2020, 50(24), 2617-2723.
[http://dx.doi.org/10.1080/10643389.2019.1705103]
[64]
De, A.; Kalita, D.; Jain, P. Biofabricated silver nanoparticles and nanocomposites as green catalyst to mitigate dye pollution in water‐a review. ChemistrySelect, 2021, 6(40), 10776-10787.
[http://dx.doi.org/10.1002/slct.202101987]
[65]
Ahmed, T.; Noman, M.; Shahid, M.; Niazi, M.B.K.; Hussain, S.; Manzoor, N.; Wang, X.; Li, B. Green synthesis of silver nanoparticles transformed synthetic textile dye into less toxic intermediate molecules through LC-MS analysis and treated the actual wastewater. Environ. Res., 2020, 191, 110142.
[http://dx.doi.org/10.1016/j.envres.2020.110142] [PMID: 32898565]
[66]
Ealia, S.A.M.; Saravanakumar, M.P. November. A review on the classification, characterisation, synthesis of nanoparticles and their appli-cation. IOP Conf. Series Mater. Sci. Eng., 2017, 263(3), 032019.
[http://dx.doi.org/10.1088/1757-899X/263/3/032019]
[67]
Adil, S.F.; Assal, M.E.; Khan, M.; Al-Warthan, A.; Siddiqui, M.R.H.; Liz-Marzán, L.M. Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry. Dalton Trans., 2015, 44(21), 9709-9717.
[http://dx.doi.org/10.1039/C4DT03222E] [PMID: 25633046]
[68]
Njagi, E.C.; Huang, H.; Stafford, L.; Genuino, H.; Galindo, H.M.; Collins, J.B.; Hoag, G.E.; Suib, S.L. Biosynthesis of iron and silver na-noparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 2011, 27(1), 264-271.
[http://dx.doi.org/10.1021/la103190n] [PMID: 21133391]
[69]
De, A.; Kumari, A.; Jain, P.; Manna, A.K.; Bhattacharjee, G. Plasmonic sensing of Hg (II), Cr (III), and Pb (II) ions from aqueous solution by biogenic silver and gold nanoparticles. Inorg. Nano-Met. Chem, 2020, 1-12.
[70]
Coccia, F.; Tonucci, L.; Bosco, D.; Bressan, M.; d’Alessandro, N. One pot synthesis of lignin-stabilized platinum and palladium nanopar-ticles and their catalytic behaviours in oxidation and reduction reactions. Green Chem., 2012, 14(4), 1073-1078.
[http://dx.doi.org/10.1039/c2gc16524d]
[71]
Bankar, A.; Joshi, B.; Kumar, A.R.; Zinjarde, S. Banana peeled xtract mediated noval route for the synthesis of palladium nanoparticles. Mater. Lett., 2010, 64(18), 1951-1953.
[http://dx.doi.org/10.1016/j.matlet.2010.06.021]
[72]
Lee, H.J.; Song, J.Y.; Kim, B.S. Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activ-ity. J. Chem. Technol. Biotechnol., 2013, 88(11), 1971-1977.
[73]
Ahmed, K.; Tariq, I.; Siddiqui, S.U.; Mudassir, M. Green synthesis of cobalt nanoparticles by using methanol extract of plant leaf as re-ducing agent. Pure Appl. Biol., 2016, 5(3), 453.
[http://dx.doi.org/10.19045/bspab.2016.50058]
[74]
Anu, K.; Singaravelu, G.; Murugan, K.; Benelli, G. Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): Bio-physical characterization and cytotoxicity on vero cells. J. Cluster Sci., 2017, 28(1), 551-563.
[http://dx.doi.org/10.1007/s10876-016-1123-7]
[75]
Hemmati, S.; Mehrazin, L.; Hekmati, M.; Izadi, M.; Veisi, H. Biosynthesis of CuO nanoparticles using Rosa canina fruit extract as a recy-clable and heterogeneous nanocatalyst for CN Ullmann coupling reactions. Mater. Chem. Phys., 2018, 214, 527-532.
[http://dx.doi.org/10.1016/j.matchemphys.2018.04.114]
[76]
Gnanasangeetha, D.; Saralathambavani, D. Biogenic production of zinc oxide nanoparticles using Acalypha indica. J. Chem. Biol. Phys. Sci., 2014, 4, 238-246.
[77]
Mukherjee, D.; Ghosh, S.; Majumdar, S.; Annapurna, K. Green synthesis of α-Fe2O3 nanoparticles for arsenic (V) remediation with a novel aspect for sludge management. J. Environ. Chem. Eng., 2016, 4(1), 639-650.
[http://dx.doi.org/10.1016/j.jece.2015.12.010]
[78]
Prasad, K.S.; Patra, A. Green synthesis of MnO2 nanorods using Phyllanthus amarus plant extract and their fluorescence studies. Green Process. Synth., 2017, 6(6), 549-554.
[79]
Goutam, S.P.; Saxena, G.; Singh, V.; Yadav, A.K.; Bharagava, R.N.; Thapa, K.B. Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem. Eng. J., 2018, 336, 386-396.
[http://dx.doi.org/10.1016/j.cej.2017.12.029]
[80]
Kannan, S.K.; Sundrarajan, M. A green approach for the synthesis of a cerium oxide nanoparticle: Characterization and antibacterial activi-ty. Int. J. Nanosci., 2014, 13(03), 1450018.
[http://dx.doi.org/10.1142/S0219581X14500185]
[81]
Purbia, R.; Paria, S. A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosens. Bioelectron., 2016, 79, 467-475.
[http://dx.doi.org/10.1016/j.bios.2015.12.087] [PMID: 26745793]
[82]
Yang, X.; Zhuo, Y.; Zhu, S.; Luo, Y.; Feng, Y.; Dou, Y. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens. Bioelectron., 2014, 60, 292-298.
[http://dx.doi.org/10.1016/j.bios.2014.04.046] [PMID: 24832204]
[83]
Thambiraj, S.; Shankaran, R. Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Appl. Surf. Sci., 2016, 390, 435-443.
[http://dx.doi.org/10.1016/j.apsusc.2016.08.106]
[84]
Chen, Y.; Wu, Y.; Weng, B.; Wang, B.; Li, C. Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe (III) ions detection and cell imaging. Sens. Actuators B Chem., 2016, 223, 689-696.
[http://dx.doi.org/10.1016/j.snb.2015.09.081]
[85]
Venkataraman, D.; Kalimuthu, K.; Sureshbabu, R.K.P.; Sangiliyandi, G. Metal nanoparticles in Microbiology Rai M, Duran N, Vol.-XI; Springer, 2011, pp. 17-35.
[86]
Punjabi, K.; Choudhary, P.; Samant, L.; Mukherjee, S.; Vaidya, S.; Chowdhary, A. Biosynthesis of nanoparticles: A review. Int. J. Pharm. Sci. Rev. Res., 2015, 30(1), 219-226.
[87]
Vaseghi, Z.; Nematollahzadeh, A.; Tavakoli, O. Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: A review. Rev. Chem. Eng., 2018, 34(4), 529-559.
[http://dx.doi.org/10.1515/revce-2017-0005]
[88]
Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem., 2019, 12(8), 3576-3600.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.002]
[89]
Duan, H.; Wang, D.; Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev., 2015, 44(16), 5778-5792.
[http://dx.doi.org/10.1039/C4CS00363B] [PMID: 25615873]
[90]
Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A.A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem. Eng. J. (Loughborough, Engl.), 2016, 286(), 640-662.
[91]
W. H. Organization, guidelines for drinking-water quality, world health organization 2004. Available from: www.who.int
[92]
Tan, K.A.; Morad, N.; Ooi, J.Q. Phytoremediation of methylene blue and methyl orange using Eichhornia crassipes. Int. J. Environ. Sci. Dev., 2016, 7(10), 724-728.
[http://dx.doi.org/10.18178/ijesd.2016.7.10.869]
[93]
Qu, X.; Brame, J.; Li, Q.; Alvarez, P.J. Nanotechnology for a safe and sustainable water supply: Enabling integrated water treatment and reuse. Acc. Chem. Res., 2013, 46(3), 834-843.
[http://dx.doi.org/10.1021/ar300029v] [PMID: 22738389]
[94]
Gupta, V.K.; Moradi, O.; Tyagi, I.; Agarwal, S.; Sadegh, H.; Shahryari-Ghoshekandi, R.; Makhlouf, A.S.H.; Goodarzi, M.; Garshasbi, A. Study on the removal of heavy metal ions from industry waste by carbon nanotubes: Effect of the surface modification: A review. Crit. Rev. Environ. Sci. Technol., 2016, 46(2), 93-118.
[http://dx.doi.org/10.1080/10643389.2015.1061874]
[95]
Rao, M.M.; Ramesh, A.; Rao, G.P.C.; Seshaiah, K. Removal of copper and cadmium from the aqueous solutions by activated carbon de-rived from Ceiba pentandra hulls. J. Hazard. Mater., 2006, 129(1-3), 123-129.
[http://dx.doi.org/10.1016/j.jhazmat.2005.08.018] [PMID: 16191464]
[96]
Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S.K.; Grace, A.N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J., 2016, 306, 1116-1137.
[http://dx.doi.org/10.1016/j.cej.2016.08.053]
[97]
Wei, Y.; Fang, Z.; Zheng, L.; Tsang, E.P. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal. Appl. Surf. Sci., 2017, 399, 322-329.
[http://dx.doi.org/10.1016/j.apsusc.2016.12.090]
[98]
Lunge, S.; Singh, S.; Sinha, A. Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J. Magn. Magn. Mater., 2014, 356, 21-31.
[http://dx.doi.org/10.1016/j.jmmm.2013.12.008]
[99]
Zhang, D.; Niu, H.; Zhang, X.; Meng, Z.; Cai, Y. Strong adsorption of chlorotetracycline on magnetite nanoparticles. J. Hazard. Mater., 2011, 192(3), 1088-1093.
[http://dx.doi.org/10.1016/j.jhazmat.2011.06.015] [PMID: 21724321]
[100]
Stan, M.; Lung, I.; Soran, M.L.; Leostean, C.; Popa, A.; Stefan, M.; Lazar, M.D.; Opris, O.; Silipas, T.D.; Porav, A.S. Removal of antibiot-ics from aqueous solutions by green synthesized magnetite nanoparticles with selected agro-waste extracts. Process Saf. Environ. Prot., 2017, 107, 357-372.
[http://dx.doi.org/10.1016/j.psep.2017.03.003]
[101]
Yoo, D.K.; Bhadra, B.N.; Jhung, S.H. Adsorptive removal of hazardous organics from water and fuel with functionalized metal-organic frameworks: Contribution of functional groups. J. Hazard. Mater., 2021, 403, 123655.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123655] [PMID: 33264864]
[102]
Lei, J.; Qian, R.; Ling, P.; Cui, L.; Ju, H. Design and sensing applications of metal– organic framework composites. TrAC. Trends Analyt. Chem., 2014, 58, 71-78.
[http://dx.doi.org/10.1016/j.trac.2014.02.012]
[103]
Morris, R.E.; Wheatley, P.S. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. Engl., 2008, 47(27), 4966-4981.
[http://dx.doi.org/10.1002/anie.200703934] [PMID: 18459091]
[104]
McKinlay, A.C.; Xiao, B.; Wragg, D.S.; Wheatley, P.S.; Megson, I.L.; Morris, R.E. Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks. J. Am. Chem. Soc., 2008, 130(31), 10440-10444.
[http://dx.doi.org/10.1021/ja801997r] [PMID: 18627150]
[105]
Wang, H.; Zhu, Q.L.; Zou, R.; Xu, Q. Metal-organic frameworks for energy applications. Chem, 2017, 2(1), 52-80.
[http://dx.doi.org/10.1016/j.chempr.2016.12.002]
[106]
Haque, E.; Lee, J.E.; Jang, I.T.; Hwang, Y.K.; Chang, J.S.; Jegal, J.; Jhung, S.H. Adsorptive removal of methyl orange from aqueous solu-tion with metal-organic frameworks, porous chromium-benzenedicarboxylates. J. Hazard. Mater., 2010, 181(1-3), 535-542.
[http://dx.doi.org/10.1016/j.jhazmat.2010.05.047] [PMID: 20627406]
[107]
Jhung, S.H.; Lee, J.H.; Yoon, J.W.; Serre, C.; Férey, G.; Chang, J.S. Microwave synthesis of chromium terephthalate MIL‐101 and its benzene sorption ability. Adv. Mater., 2007, 19(1), 121-124.
[http://dx.doi.org/10.1002/adma.200601604]
[108]
Kim, J.; Kim, S.N.; Jang, H.G.; Seo, G.; Ahn, W.S. CO2 cycloaddition of styrene oxide over MOF catalysts. Appl. Catal. A., 2013, 453, 175-180.
[109]
Shieh, F.K.; Wang, S.C.; Yen, C.I.; Wu, C.C.; Dutta, S.; Chou, L.Y.; Morabito, J.V.; Hu, P.; Hsu, M.H.; Wu, K.C.W.; Tsung, C.K. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: Size-selective sheltering of cata-lase in metal-organic framework microcrystals. J. Am. Chem. Soc., 2015, 137(13), 4276-4279.
[http://dx.doi.org/10.1021/ja513058h] [PMID: 25781479]
[110]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268.
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[111]
Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal-organic framework materials as chemical sensors. Chem. Rev., 2012, 112(2), 1105-1125.
[http://dx.doi.org/10.1021/cr200324t] [PMID: 22070233]
[112]
Hou, S.; Wu, Y.N.; Feng, L.; Chen, W.; Wang, Y.; Morlay, C.; Li, F. Green synthesis and evaluation of an iron-based metal-organic framework MIL-88B for efficient decontamination of arsenate from water. Dalton Trans., 2018, 47(7), 2222-2231.
[http://dx.doi.org/10.1039/C7DT03775A] [PMID: 29363689]
[113]
Zhu, B.J.; Yu, X.Y.; Jia, Y.; Peng, F.M.; Sun, B.; Zhang, M.Y.; Luo, T.; Liu, J.H.; Huang, X.J. Iron and 1, 3, 5-benzenetricar-boxylic met-al–organic coordination polymers prepared by solvothermal method and their application in efficient As (V) removal from aqueous solu-tions. J. Phys. Chem. C, 2012, 116(15), 8601-8607.
[http://dx.doi.org/10.1021/jp212514a]
[114]
Vu, T.A.; Le, G.H.; Dao, C.D.; Dang, L.Q.; Nguyen, K.T.; Nguyen, Q.K.; Dang, P.T.; Tran, H.T.; Duong, Q.T.; Nguyen, T.V.; Lee, G.D. Arsenic removal from aqueous solutions by adsorption using novel MIL-53 (Fe) as a highly efficient adsorbent. RSC Advances, 2015, 5(7), 5261-5268.
[http://dx.doi.org/10.1039/C4RA12326C]
[115]
Karthiga Devi, G.; Senthil Kumar, P.; Sathish Kumar, K. Green synthesis of novel silver nanocomposite hydrogel based on sodium algi-nate as an efficient biosorbent for the dye wastewater treatment: Prediction of isotherm and kinetic parameters. Desalination Water Treat., 2016, 57(57), 27686-27699.
[http://dx.doi.org/10.1080/19443994.2016.1178178]
[116]
Banerjee, P.; Sau, S.; Das, P.; Mukhopadhyay, A. Green synthesis of silver- nanocomposite for treatment of textile dye. Nanosci. Technol., 2014, 1(2), 1-6.
[117]
Ravikumar, K.V.G.; Kubendiran, H.; Ramesh, K.; Rani, S.; Mandal, T.K.; Pulimi, M.; Natarajan, C.; Mukherjee, A. Batch and column study on tetracycline removal using green synthesized NiFe nanoparticles immobilized alginate beads. Environ. Technol. Innovation, 2020, 17, 100520.
[http://dx.doi.org/10.1016/j.eti.2019.100520]
[118]
Pillai, P.; Dharaskar, S.; Shah, M.; Sultania, R. Determination of fluoride removal using silica nano adsorbent modified by rice husk from water. Groundw. Sustain. Dev., 2020, 11, 100423.
[http://dx.doi.org/10.1016/j.gsd.2020.100423]
[119]
Smuleac, V.; Varma, R.; Sikdar, S.; Bhattacharyya, D. Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reduc-tive degradation of chlorinated organics. J. Membr. Sci., 2011, 379(1-2), 131-137.
[http://dx.doi.org/10.1016/j.memsci.2011.05.054] [PMID: 22228920]
[120]
San Keskin, N.O.; Celebioglu, A.; Uyar, T.; Tekinay, T. Microalgae immobilized by nanofibrous web for removal of reactive dyes from wastewater. Ind. Eng. Chem. Res., 2015, 54(21), 5802-5809.
[http://dx.doi.org/10.1021/acs.iecr.5b01033]
[121]
Eroglu, E.; Agarwal, V.; Bradshaw, M.; Chen, X.; Smith, S.M.; Raston, C.L.; Iyer, K.S. Nitrate removal from liquid effluents using micro-algae immobilized on chitosan nanofiber mats. Green Chem., 2012, 14(10), 2682-2685.
[http://dx.doi.org/10.1039/c2gc35970g]
[122]
Ling, S.; Jin, K.; Kaplan, D.L.; Buehler, M.J. Ultrathin free-standing Bombyx mori silk nanofibril membranes. Nano Lett., 2016, 16(6), 3795-3800.
[http://dx.doi.org/10.1021/acs.nanolett.6b01195] [PMID: 27076389]
[123]
Reshmi, C.R.; Sundaran, S.P.; Juraij, A.; Athiyanathil, S. Fabrication of superhydrophobic polycaprolactone/beeswax electrospun mem-branes for high-efficiency oil/water separation. RSC Advances, 2017, 7(4), 2092-2102.
[http://dx.doi.org/10.1039/C6RA26123J]
[124]
Xuemei, Z.; Feng, F.; Xiaoming, G.; Xiufang, H.; Fengxing, N. Facile fabrication of superhydrophobic fly ash-coated mesh for oilwater separation. J. Dispersion Sci. Technol., 2020, 1-6.
[125]
Padhi, B.S. Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. Int. J. Environ. Sci., 2012, 3(3), 940.
[126]
Lü, X.F.; Ma, H.R.; Zhang, Q.; Du, K. Degradation of methyl orange by UV, O 3 and UV/O 3 systems: Analysis of the degradation effects and mineralization mechanism. Res. Chem. Intermed., 2013, 39(9), 4189-4203.
[http://dx.doi.org/10.1007/s11164-012-0935-9]
[127]
Pirillo, S.; Einschlag, F.S.G.; Ferreira, M.L.; Rueda, E.H. Eriochrome Blue Black R and Fluorescein degradation by hydrogen peroxide oxidation with horseradish peroxidase and hematin as biocatalysts. J. Mol. Catal., B Enzym., 2010, 66(1-2), 63-71.
[http://dx.doi.org/10.1016/j.molcatb.2010.03.003]
[128]
Sharma, D.; Sabela, M.I.; Kanchi, S.; Mdluli, P.S.; Singh, G.; Stenström, T.A.; Bisetty, K. Biosynthesis of ZnO nanoparticles using Jaca-randa mimosifolia flowers extract: Synergistic antibacterial activity and molecular simulated facet specific adsorption studies. J. Photochem. Photobiol. B, 2016, 162, 199-207.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.043] [PMID: 27380295]
[129]
Luque, P.A.; Chinchillas-Chinchillas, M.J.; Nava, O.; Lugo-Medina, E.; Martínez-Rosas, M.E.; Carrillo-Castillo, A.; Vilchis-Nestor, A.R.; Madrigal-Muñoz, L.E.; Garrafa-Gálvez, H.E. Green synthesis of tin dioxide nanoparticles using Camellia sinensis and its application in photocatalytic degradation of textile dyes. Optik (Stuttg.), 2021, 229, 66259.
[http://dx.doi.org/10.1016/j.ijleo.2021.166259]
[130]
Ismail, M.; Khan, M.I.; Khan, S.B.; Khan, M.A.; Akhtar, K.; Asiri, A.M. Green synthesis of plant supported CuAg and CuNi bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. J. Mol. Liq., 2018, 260, 78-91.
[http://dx.doi.org/10.1016/j.molliq.2018.03.058]
[131]
Das, P.; Ghosh, S.; Ghosh, R.; Dam, S.; Baskey, M. Madhuca longifolia plant mediated green synthesis of cupric oxide nanoparticles: A promising environmentally sustainable material for waste water treatment and efficient antibacterial agent. J. Photochem. Photobiol. B, 2018, 189, 66-73.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.09.023] [PMID: 30312922]
[132]
Sreeju, N.; Rufus, A.; Philip, D. Studies on catalytic degradation of organic pollutants and anti-bacterial property using biosynthesized CuO nanostructures. J. Mol. Liq., 2017, 242, 690-700.
[http://dx.doi.org/10.1016/j.molliq.2017.07.077]
[133]
Siripireddy, B.; Mandal, B.K. Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and anti-oxidant activity. Adv. Powder Technol., 2017, 28(3), 785-797.
[http://dx.doi.org/10.1016/j.apt.2016.11.026]
[134]
Parandhaman, T.; Pentela, N.; Ramalingam, B.; Samanta, D.; Das, S.K. Metal nanoparticle loaded magnetic-chitosan microsphere: Water dispersible and easily separable hybrid metal nano-biomaterial for catalytic applications. ACS Sustain. Chem.& Eng., 2017, 5(1), 489-501.
[http://dx.doi.org/10.1021/acssuschemeng.6b01862]
[135]
Das, M.C.; Xu, H.; Wang, Z.; Srinivas, G.; Zhou, W.; Yue, Y.F.; Nesterov, V.N.; Qian, G.; Chen, B.A. Zn4O-containing doubly interpene-trated porous metal-organic framework for photocatalytic decomposition of methyl orange. Chem. Commun. (Camb.), 2011, 47(42), 11715-11717.
[http://dx.doi.org/10.1039/c1cc12802g] [PMID: 21952516]
[136]
Saratale, R.G.; Saratale, G.D.; Shin, H.S.; Jacob, J.M.; Pugazhendhi, A.; Bhaisare, M.; Kumar, G. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: Current knowledge, their agricultural and environmental applications. Environ. Sci. Pollut. Res. Int., 2018, 25(11), 10164-10183.
[http://dx.doi.org/10.1007/s11356-017-9912-6] [PMID: 28815433]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy