Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Antibacterial Potential of a Novel Peptide from the Consensus Sequence of Dermaseptin Related Peptides Secreted by Agalychnis annae

Author(s): Ya’u Sabo Ajingi, Auwal Muhammad, Pongsak Khunrae, Triwit Rattanarojpong, Kovit Pattanapanyasat, Thana Sutthibutpong and Nujarin Jongruja*

Volume 22, Issue 9, 2021

Published on: 20 October, 2020

Page: [1216 - 1227] Pages: 12

DOI: 10.2174/1389201021666201020161428

Price: $65

Abstract

Background: The consistently increasing reports of bacterial resistance and the reemergence of bacterial epidemics have inspired the health and scientific community to discover new molecules with antibacterial potential continuously. Frog-skin secretions constitute bioactive compounds essential for finding new biopharmaceuticals. The exact antibacterial characterization of dermaseptin related peptides derived from Agalychnis annae, is limited. The resemblance in their conserved and functionally linked genomes indicates an unprecedented opportunity to obtain novel bioactive compounds.

Objective: In this study, we derived a novel peptide sequence and determined its antibacterial potentials.

Methods: Consensus sequence strategy was used to design the novel and active antibacterial peptide named 'AGAAN' from skin secretions of Agalychnis annae. The in-vitro activities of the novel peptide against some bacterial strains were investigated. Time kill studies, DNA retardation, cytotoxicity, betagalactosidase, and molecular computational studies were conducted.

Results: AGAAN inhibited P. aeruginosa, E. faecalis, and S. typhimurium at 20 μM concentration. E. coli and S. aureus were inhibited at 25 μM, and lastly, B. subtilis at 50 μM. Kinetics of inactivation against exponential and stationary growing bacteria was found to be rapid within 1-5 hours of peptide exposure, depending on time and concentration. The peptide displayed weak hemolytic activity between 0.01%-7.31% at the antibacterial concentrations. AGAAN efficiently induced bacterial membrane damage with subsequent cell lysis. The peptide's DNA binding shows that it also targets intracellular DNA by retarding its movement. Our in-silico molecular docking analysis displayed a strong affinity to the bacterial cytoplasmic membrane.

Conclusion: AGAAN exhibits potential antibacterial properties that could be used to combat bacterial resistance.

Keywords: Antibacterial peptide, bacterial resistance, Frogskin secretions, Agalychnis annae, consensus sequence, dermaseptin related peptides.

Graphical Abstract
[1]
Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heuer, O.E.; Kahlmeter, G.; Kruse, H.; Laxminarayan, R.; Liébana, E.; López-Cerero, L.; MacGowan, A.; Martins, M.; Rodríguez-Baño, J.; Rolain, J.M.; Segovia, C.; Sigauque, B.; Tacconelli, E.; Wellington, E.; Vila, J. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect., 2015, 6, 22-29.
[http://dx.doi.org/10.1016/j.nmni.2015.02.007] [PMID: 26029375]
[2]
Center for Disease Control. Antibiotic resistance threats in the United States. Antibiotic/Antimicrobial Resistance., Available from: https://www.cdc.gov/drugresistance/about.html
[3]
Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med., 2006, 119(6)(Suppl. 1), S3-S10.
[http://dx.doi.org/10.1016/j.amjmed.2006.03.011] [PMID: 16735149]
[4]
Chen, L.; Todd, R.; Kiehlbauch, J.; Walters, M.; Kallen, A. Notes from the Field: Pan-Resistant New Delhi metallo-beta-lactamase-producing Klebsiella pneumoniae - Washoe County, Nevada, 2016. MMWR Morb. Mortal. Wkly. Rep., 2017, 66(1), 33.
[http://dx.doi.org/10.15585/mmwr.mm6601a7] [PMID: 28081065]
[5]
World Bank Group. Drug resistant infections: A threat to our economic future., Available from: http://documents.worldbank.org/curated/en/323311493396993758/pdf/114679-REVISED-v2-Drug-Resistant-Infections
[6]
Shankar, P.R.; Balasubramanium, R. Antimicrobial resistance: Global report on surveillance 2014. Australas. Med. J., 2014, 7(5), 237.
[7]
Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the infectious diseases society of America. Clin. Infect. Dis., 2009, 48(1), 1-12.
[http://dx.doi.org/10.1086/595011] [PMID: 19035777]
[8]
Ho, J.; Tambyah, P.A.; Paterson, D.L. Multiresistant Gram-negative infections: A global perspective. Curr. Opin. Infect. Dis., 2010, 23(6), 546-553.
[http://dx.doi.org/10.1097/QCO.0b013e32833f0d3e] [PMID: 20802331]
[9]
Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther., 2015, 40(4), 277-283.
[PMID: 25859123]
[10]
He, L.; Zou, L.; Yang, Q.; Xia, J.; Zhou, K.; Zhu, Y.; Han, X.; Pu, B.; Hu, B.; Deng, W.; Liu, S. Antimicrobial activities of nisin, tea polyphenols, and chitosan and their combinations in chilled mutton. J. Food Sci., 2016, 81(6), M1466-M1471.
[http://dx.doi.org/10.1111/1750-3841.13312] [PMID: 27096939]
[11]
Luepke, K.H.; Mohr, J.F., III The antibiotic pipeline: Reviving research and development and speeding drugs to market. Expert Rev. Anti Infect. Ther., 2017, 15(5), 425-433.
[http://dx.doi.org/10.1080/14787210.2017.1308251] [PMID: 28306360]
[12]
Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[13]
Fischbach, M.A.; Walsh, C.T. Antibiotics for emerging pathogens. Science, 2009, 325(5944), 1089-1093.
[http://dx.doi.org/10.1126/science.1176667] [PMID: 19713519]
[14]
Hein-Kristensen, L.; Franzyk, H.; Holch, A.; Gram, L. Adaptive evolution of Escherichia coli to an α-peptide/β-peptoid peptidomimetic induces stable resistance. PLoS One, 2013, 8(9), e73620.
[http://dx.doi.org/10.1371/journal.pone.0073620] [PMID: 24040003]
[15]
Heulot, M.; Jacquier, N.; Aeby, S.; Le Roy, D.; Roger, T.; Trofimenko, E.; Barras, D.; Greub, G.; Widmann, C. The anticancer peptide TAT-RasGAP317-326 exerts broad antimicrobial activity. Front. Microbiol., 2017, 8, 994.
[http://dx.doi.org/10.3389/fmicb.2017.00994] [PMID: 28638371]
[16]
Spohn, R.; Daruka, L.; Lázár, V.; Martins, A.; Vidovics, F.; Grézal, G.; Méhi, O.; Kintses, B.; Számel, M.; Jangir, P.K.; Csörgő, B.; Györkei, Á.; Bódi, Z.; Faragó, A.; Bodai, L.; Földesi, I.; Kata, D.; Maróti, G.; Pap, B.; Wirth, R.; Papp, B.; Pál, C. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat. Commun., 2019, 10(1), 4538.
[http://dx.doi.org/10.1038/s41467-019-12364-6] [PMID: 31586049]
[17]
Gordon, Y.J.; Romanowski, E.G.; McDermott, A.M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res., 2005, 30(7), 505-515.
[http://dx.doi.org/10.1080/02713680590968637] [PMID: 16020284]
[18]
Guaní-Guerra, E.; Santos-Mendoza, T.; Lugo-Reyes, S.O.; Terán, L.M. Antimicrobial peptides: General overview and clinical implications in human health and disease. Clin. Immunol., 2010, 135(1), 1-11.
[http://dx.doi.org/10.1016/j.clim.2009.12.004] [PMID: 20116332]
[19]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[20]
Guilhelmelli, F.; Vilela, N.; Albuquerque, P. Derengowski, Lda.S.; Silva-Pereira, I.; Kyaw, C.M. Antibiotic development challenges: The various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front. Microbiol., 2013, 4, 353.
[http://dx.doi.org/10.3389/fmicb.2013.00353] [PMID: 24367355]
[21]
Shai, Y. Mode of action of membrane active antimicrobial peptides. Biopolymers, 2002, 66(4), 236-248.
[http://dx.doi.org/10.1002/bip.10260] [PMID: 12491537]
[22]
Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[23]
Phoenix, D.A.; Dennison, S.R.; Harris, F. Antimicrobial Peptides; John Wiley & Sons, 2012.
[24]
Haney, E.F.; Mansour, S.C.; Hancock, R.E.W. Antimicrobial peptides: An introduction. Antimicrobial Peptides; Hansen, P.R., Ed.; Springer, 2017, pp. 3-22.
[http://dx.doi.org/10.1007/978-1-4939-6737-7_1]
[25]
Scott, M.G.; Hancock, R.E.W. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol., 2000, 20(5), 407-431.
[PMID: 11145218]
[26]
Scocchi, M.; Mardirossian, M.; Runti, G.; Benincasa, M. Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria. Curr. Top. Med. Chem., 2016, 16(1), 76-88.
[http://dx.doi.org/10.2174/1568026615666150703121009] [PMID: 26139115]
[27]
Gennaro, R.; Zanetti, M.; Benincasa, M.; Podda, E.; Miani, M. Pro-rich antimicrobial peptides from animals: Structure, biological functions and mechanism of action. Curr. Pharm. Des., 2002, 8(9), 763-778.
[http://dx.doi.org/10.2174/1381612023395394] [PMID: 11945170]
[28]
Cudic, M.; Otvos, L., Jr Intracellular targets of antibacterial peptides. Curr. Drug Targets, 2002, 3(2), 101-106.
[http://dx.doi.org/10.2174/1389450024605445] [PMID: 11958294]
[29]
Le, C-F.; Fang, C-M.; Sekaran, S.D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother., 2017, 61(4), e02340-e16.
[http://dx.doi.org/10.1128/AAC.02340-16] [PMID: 28167546]
[30]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[31]
Ravensdale, J.; Wong, Z.; O’Brien, F.; Gregg, K. Efficacy of antibacterial peptides against peptide-resistant MRSA is restored by permeabilization of bacteria membranes. Front. Microbiol., 2016, 7, 1745.
[http://dx.doi.org/10.3389/fmicb.2016.01745] [PMID: 27877159]
[32]
Sit, C.S.; Vederas, J.C. Approaches to the discovery of new antibacterial agents based on bacteriocins. Biochem. Cell Biol., 2008, 86(2), 116-123.
[http://dx.doi.org/10.1139/O07-153] [PMID: 18443625]
[33]
Yin, L.M.; Edwards, M.A.; Li, J.; Yip, C.M.; Deber, C.M. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J. Biol. Chem., 2012, 287(10), 7738-7745.
[http://dx.doi.org/10.1074/jbc.M111.303602] [PMID: 22253439]
[34]
Wimley, W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol., 2010, 5(10), 905-917.
[http://dx.doi.org/10.1021/cb1001558] [PMID: 20698568]
[35]
Muhammad, T.; Gunasekera, S.; Strömstedt, A.A.; Göransson, U. Engineering of KR-12: A minimalized domain derived from human host defense peptide LL-37 into a potent antimicrobial drug lead. Planta Med., 2016, 82(S 01), S1-S381.
[http://dx.doi.org/10.1055/s-0036-1596780]
[36]
Bowdish, D.M.E.; Davidson, D.J.; Hancock, R.E.W. Immunomodulatory properties of defensins and cathelicidins. Curr. Top. Microbiol. Immunol., 2006, 306, 27-66.
[http://dx.doi.org/10.1007/3-540-29916-5_2] [PMID: 16909917]
[37]
Hancock, R.E.W. Cationic peptides: Effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis., 2001, 1(3), 156-164.
[http://dx.doi.org/10.1016/S1473-3099(01)00092-5] [PMID: 11871492]
[38]
Nicolas, P. AMICHE, M. The dermaseptins. Handbook of biologically active peptides; Kastin, A.J., Ed.; Elsevier, 2006, pp. 295-304.
[http://dx.doi.org/10.1016/B978-012369442-3/50048-9]
[39]
Nicolas, P.; El Amri, C. The dermaseptin superfamily: A gene-based combinatorial library of antimicrobial peptides. Biochim. Biophys. Acta, 2009, 1788(8), 1537-1550.
[http://dx.doi.org/10.1016/j.bbamem.2008.09.006] [PMID: 18929530]
[40]
Lequin, O.; Bruston, F.; Convert, O.; Chassaing, G.; Nicolas, P. Helical structure of dermaseptin B2 in a membrane-mimetic environment. Biochemistry, 2003, 42(34), 10311-10323.
[http://dx.doi.org/10.1021/bi034401d] [PMID: 12939161]
[41]
Mor, A.; Hani, K.; Nicolas, P. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J. Biol. Chem., 1994, 269(50), 31635-31641.
[PMID: 7989335]
[42]
Nicolas, P.; Ladram, A.D. Dermaseptins. Handbook of Biologically Active Peptides; Kastin, A.J., Ed.; Academic Press: Boston, MA, USA, 2013, pp. 350-363.
[http://dx.doi.org/10.1016/B978-0-12-385095-9.00050-6]
[43]
Patel, J.B. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute, 2017.
[44]
Liu, Y.; Knapp, K.M.; Yang, L.; Molin, S.; Franzyk, H.; Folkesson, A. High in vitro antimicrobial activity of β-peptoid-peptide hybrid oligomers against planktonic and biofilm cultures of Staphylococcus epidermidis. Int. J. Antimicrob. Agents, 2013, 41(1), 20-27.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.09.014] [PMID: 23153961]
[45]
Memariani, H.; Shahbazzadeh, D.; Ranjbar, R.; Behdani, M.; Memariani, M.; Pooshang Bagheri, K. Design and characterization of short hybrid antimicrobial peptides from pEM-2, mastoparan-VT1, and mastoparan-B. Chem. Biol. Drug Des., 2017, 89(3), 327-338.
[http://dx.doi.org/10.1111/cbdd.12864] [PMID: 27591703]
[46]
Luca, V.; Stringaro, A.; Colone, M.; Pini, A.; Mangoni, M.L. Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cell. Mol. Life Sci., 2013, 70(15), 2773-2786.
[http://dx.doi.org/10.1007/s00018-013-1291-7] [PMID: 23503622]
[47]
Imura, Y.; Nishida, M.; Ogawa, Y.; Takakura, Y.; Matsuzaki, K. Action mechanism of tachyplesin I and effects of PEGylation. Biochim. Biophys. Acta, 2007, 1768(5), 1160-1169.
[http://dx.doi.org/10.1016/j.bbamem.2007.01.005] [PMID: 17320042]
[48]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[49]
Jo, S.; Kim, T.; Iyer, V.G. Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem., 2008, 29(11), 1859-1865.
[http://dx.doi.org/10.1002/jcc.20945] [PMID: 18351591]
[50]
Lohner, K.; Sevcsik, E.; Pabst, G. Liposome-based biomembrane mimetic systems: Implications for lipid--peptide interactions. Advances in Planar Lipid Bilayers and Liposomes, Leitmannova Liu, A., Ed.; Elsevier Inc. 2008, 6, 103-137.
[http://dx.doi.org/10.1016/S1554-4516(07)06005-X]
[51]
Lohner, K. New strategies for novel antibiotics: Peptides targeting bacterial cell membranes. Gen. Physiol. Biophys., 2009, 28(2), 105-116.
[http://dx.doi.org/10.4149/gpb_2009_02_105] [PMID: 19592707]
[52]
Lugtenberg, E.J.J.; Peters, R. Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12. Biochim. Biophys. Acta, 1976, 441(1), 38-47.
[http://dx.doi.org/10.1016/0005-2760(76)90279-4] [PMID: 782533]
[53]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[54]
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9(1), 40.
[http://dx.doi.org/10.1186/1471-2105-9-40] [PMID: 18215316]
[55]
Almaaytah, A.; Ajingi, Y.; Abualhaijaa, A.; Tarazi, S.; Alshar’i, N.; Al-Balas, Q. Peptide consensus sequence determination for the enhancement of the antimicrobial activity and selectivity of antimicrobial peptides. Infect. Drug Resist., 2016, 10, 1-17.
[http://dx.doi.org/10.2147/IDR.S118877] [PMID: 28096686]
[56]
Bowie, J.H.; Separovic, F.; Tyler, M.J. Host-defense peptides of Australian anurans. Part 2. Structure, activity, mechanism of action, and evolutionary significance. Peptides, 2012, 37(1), 174-188.
[http://dx.doi.org/10.1016/j.peptides.2012.06.017] [PMID: 22771617]
[57]
Conlon, J.M.; Kolodziejek, J.; Nowotny, N. Antimicrobial peptides from the skins of North American frogs. Biochim. Biophys. Acta, 2009, 1788(8), 1556-1563.
[http://dx.doi.org/10.1016/j.bbamem.2008.09.018] [PMID: 18983817]
[58]
Mangoni, M.L. Temporins, anti-infective peptides with expanding properties. Cell. Mol. Life Sci., 2006, 63(9), 1060-1069.
[http://dx.doi.org/10.1007/s00018-005-5536-y] [PMID: 16572270]
[59]
Vanhoye, D.; Bruston, F.; Nicolas, P.; Amiche, M. Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. Eur. J. Biochem., 2003, 270(9), 2068-2081.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03584.x] [PMID: 12709067]
[60]
Nicolas, P.; Vanhoye, D.; Amiche, M. Molecular strategies in biological evolution of antimicrobial peptides. Peptides, 2003, 24(11), 1669-1680.
[http://dx.doi.org/10.1016/j.peptides.2003.08.017] [PMID: 15019198]
[62]
Balhara, V.; Schmidt, R.; Gorr, S-U.; Dewolf, C. Membrane selectivity and biophysical studies of the antimicrobial peptide GL13K. Biochim. Biophys. Acta, 2013, 1828(9), 2193-2203.
[http://dx.doi.org/10.1016/j.bbamem.2013.05.027] [PMID: 23747365]
[63]
Lee, T-H.; Hall, K.N.; Aguilar, M.I. antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr. Top. Med. Chem., 2016, 16(1), 25-39.
[http://dx.doi.org/10.2174/1568026615666150703121700] [PMID: 26139112]
[64]
Gunn, J.S.; Ryan, S.S.; Van Velkinburgh, J.C.; Ernst, R.K.; Miller, S.I. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica, Serovar typhimurium. Infect. Immun., 2000, 68(11), 6139-6146.
[http://dx.doi.org/10.1128/IAI.68.11.6139-6146.2000] [PMID: 11035717]
[65]
Stumpe, S.; Schmid, R.; Stephens, D.L.; Georgiou, G.; Bakker, E.P. Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J. Bacteriol., 1998, 180(15), 4002-4006.
[http://dx.doi.org/10.1128/JB.180.15.4002-4006.1998] [PMID: 9683502]
[66]
Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat., 2016, 26, 43-57.
[http://dx.doi.org/10.1016/j.drup.2016.04.002] [PMID: 27180309]
[67]
Nizet, V. Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr. Issues Mol. Biol., 2006, 8(1), 11-26.
[PMID: 16450883]
[68]
Kupferwasser, L.I.; Skurray, R.A.; Brown, M.H.; Firth, N.; Yeaman, M.R.; Bayer, A.S. Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: Role of the qacA locus. Antimicrob. Agents Chemother., 1999, 43(10), 2395-2399.
[http://dx.doi.org/10.1128/AAC.43.10.2395] [PMID: 10508013]
[69]
Davis, K.M.; Weiser, J.N. Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect. Immun., 2011, 79(2), 562-570.
[http://dx.doi.org/10.1128/IAI.00651-10] [PMID: 21041496]
[70]
Memariani, H.; Shahbazzadeh, D.; Sabatier, J-M.; Pooshang Bagheri, K. Membrane-active peptide PV3 efficiently eradicates multidrug-resistant Pseudomonas aeruginosa in a mouse model of burn infection. APMIS, 2018, 126(2), 114-122.
[http://dx.doi.org/10.1111/apm.12791] [PMID: 29327480]
[71]
Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S. In silico approach for predicting toxicity of peptides and proteins. PLoS One, 2013, 8(9), e73957.
[http://dx.doi.org/10.1371/journal.pone.0073957] [PMID: 24058508]
[72]
Takahashi, D.; Shukla, S.K.; Prakash, O.; Zhang, G. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie, 2010, 92(9), 1236-1241.
[http://dx.doi.org/10.1016/j.biochi.2010.02.023] [PMID: 20188791]
[73]
Crusca, E., Jr; Rezende, A.A.; Marchetto, R.; Mendes-Giannini, M.J.S.; Fontes, W.; Castro, M.S.; Cilli, E.M. Influence of N-terminus modifications on the biological activity, membrane interaction, and secondary structure of the antimicrobial peptide hylin-a1. Biopolymers, 2011, 96(1), 41-48.
[http://dx.doi.org/10.1002/bip.21454] [PMID: 20560142]
[74]
Aghazadeh, H.; Memariani, H.; Ranjbar, R.; Pooshang Bagheri, K. The activity and action mechanism of novel short selective LL-37-derived anticancer peptides against clinical isolates of Escherichia coli. Chem. Biol. Drug Des., 2019, 93(1), 75-83.
[http://dx.doi.org/10.1111/cbdd.13381] [PMID: 30120878]
[75]
Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov., 2011, 11(1), 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[76]
Hao, G.; Shi, Y-H.; Tang, Y-L.; Le, G-W. The membrane action mechanism of analogs of the antimicrobial peptide Buforin 2. Peptides, 2009, 30(8), 1421-1427.
[http://dx.doi.org/10.1016/j.peptides.2009.05.016] [PMID: 19467281]
[77]
Bhunia, A.; Bhattacharjya, S. Mapping residue-specific contacts of polymyxin B with lipopolysaccharide by saturation transfer difference NMR: Insights into outer-membrane disruption and endotoxin neutralization. Biopolymers, 2011, 96(3), 273-287.
[http://dx.doi.org/10.1002/bip.21530] [PMID: 20683937]
[78]
Almaaytah, A.; Albalas, Q.; Alzoubi, K.H. In vivo antimicrobial activity of the hybrid peptide H4: A follow-up study. Infect. Drug Resist., 2018, 11, 1383-1386.
[http://dx.doi.org/10.2147/IDR.S175594] [PMID: 30214259]
[79]
Khandelia, H.; Kaznessis, Y.N. Cation-π interactions stabilize the structure of the antimicrobial peptide indolicidin near membranes: Molecular dynamics simulations. J. Phys. Chem. B, 2007, 111(1), 242-250.
[http://dx.doi.org/10.1021/jp064776j] [PMID: 17201448]
[80]
Valley, C.C.; Cembran, A.; Perlmutter, J.D.; Lewis, A.K.; Labello, N.P.; Gao, J.; Sachs, J.N. The methionine-aromatic motif plays a unique role in stabilizing protein structure. J. Biol. Chem., 2012, 287(42), 34979-34991.
[http://dx.doi.org/10.1074/jbc.M112.374504] [PMID: 22859300]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy