skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulations of longitudinal beam dynamics of space-charge dominated beams for heavy ion fusion

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/188944· OSTI ID:188944
 [1]
  1. Univ. of California, Davis, CA (United States)

The longitudinal instability has potentially disastrous effects on the ion beams used for heavy ion driven inertial confinement fusion. This instability is a "resistive wall" instability with the impedance coining from the induction modules in the accelerator used as a driver. This instability can greatly amplify perturbations launched from the beam head and can prevent focusing of the beam onto the small spot necessary for fusion. This instability has been studied using the WARPrz particle-in-cell code. WARPrz is a 2 1/2 dimensional electrostatic axisymmetric code. This code includes a model for the impedance of the induction modules. Simulations with resistances similar to that expected in a driver show moderate amounts of growth from the instability as a perturbation travels from beam head to tail as predicted by cold beam fluid theory. The perturbation reflects off the beam tail and decays as it travels toward the beam head. Nonlinear effects cause the perturbation to steepen during reflection. Including the capacitive component of the, module impedance. has a partially stabilizing effect on the longitudinal instability. This reduction in the growth rate is seen in both cold beam fluid theory and in simulations with WARPrz. Instability growth rates for warm beams measured from WARPrz are lower than cold beam fluid theory predicts. Longitudinal thermal spread cannot account for this decrease in the growth rate. A mechanism for coupling the transverse thermal spread to decay of the longitudinal waves is presented. The longitudinal instability is no longer a threat to the heavy ion fusion program. The simulations in this thesis have shown that the growth rate for this instability will not be as large as earlier calculations predicted.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
188944
Report Number(s):
UCRL-LR-119364; ON: DE96004945; TRN: 96:006401
Resource Relation:
Other Information: TH: Thesis (Ph.D); PBD: Dec 1994
Country of Publication:
United States
Language:
English