skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oak ridge national laboratory automated clean chemistry for bulk analysis of environmental swipe samples

Technical Report ·
DOI:https://doi.org/10.2172/1408043· OSTI ID:1408043

To shorten the lengthy and costly manual chemical purification procedures, sample preparation methods for mass spectrometry are being automated using commercial-off-the-shelf (COTS) equipment. This addresses a serious need in the nuclear safeguards community to debottleneck the separation of U and Pu in environmental samples—currently performed by overburdened chemists—with a method that allows unattended, overnight operation. In collaboration with Elemental Scientific Inc., the prepFAST-MC2 was designed based on current COTS equipment that was modified for U/Pu separations utilizing Eichrom™ TEVA and UTEVA resins. Initial verification of individual columns yielded small elution volumes with consistent elution profiles and good recovery. Combined column calibration demonstrated ample separation without crosscontamination of the eluent. Automated packing and unpacking of the built-in columns initially showed >15% deviation in resin loading by weight, which can lead to inconsistent separations. Optimization of the packing and unpacking methods led to a reduction in the variability of the packed resin to less than 5% daily. The reproducibility of the automated system was tested with samples containing 30 ng U and 15 pg Pu, which were separated in a series with alternating reagent blanks. These experiments showed very good washout of both the resin and the sample from the columns as evidenced by low blank values. Analysis of the major and minor isotope ratios for U and Pu provided values well within data quality limits for the International Atomic Energy Agency. Additionally, system process blanks spiked with 233U and 244Pu tracers were separated using the automated system after it was moved outside of a clean room and yielded levels equivalent to clean room blanks, confirming that the system can produce high quality results without the need for expensive clean room infrastructure. Comparison of the amount of personnel time necessary for successful manual vs. automated chemical separations showed a significant decrease in hands-on time from 9.8 hours to 35 minutes for seven samples, respectively. This documented time savings and reduced labor translates to a significant cost savings per sample. Overall, the system will enable faster sample reporting times at reduced costs by limiting personnel hours dedicated to the chemical separation.

Research Organization:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1408043
Report Number(s):
ORNL/TM-2016/662
Country of Publication:
United States
Language:
English