skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

Technical Report ·
DOI:https://doi.org/10.2172/1375633· OSTI ID:1375633
 [1];  [1];  [1];  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration produced indoor PM2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection whereas supply MERV16 filtration reduced PM2.55 by 97-98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filters in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM2.5. Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC02-05CH11231
OSTI ID:
1375633
Report Number(s):
LBNL-1006961; ir:1006961
Country of Publication:
United States
Language:
English