Skip to main content
Log in

Pharmacologic Considerations for Oseltamivir Disposition

Focus on the Neonate and Young Infant

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Across much of the world, pandemic H1N1 infection has produced a significant healthcare crisis, reflected in significant morbidity and mortality. Statistics reveal that infection-associated deaths among individuals without pre-existing conditions (e.g. immunosuppression) are clustered in pregnant women and young infants. In developing countries where the availability of influenzae vaccine is limited, the only currently available pharmacologic counter-measure for H1N1 disease is oseltamivir, a neuraminidase inhibitor with excellent in vitro activity against the virus. This drug is available in oral solid and liquid formulations, has excellent peroral bioavailability in adults, and generally has a very favorable safety profile.

Many observational studies indicate that oseltamivir treatment is associated with symptomatic improvement in pediatric patients with H1N1 infection and, therefore, is considered to represent a viable therapeutic option for use in children. However, the disposition of the ethyl ester prodrug and its active metabolite has not been well characterized in infants and children. Presently, data are available from only two published investigations and preliminary summary information from a recent presentation of an ongoing study. Given that recent in vitro data support the importance of a target exposure-response profile for the active metabolite of oseltamivir and that many processes known to modulate drug disposition have a developmental basis, understanding the potential impact of age on oseltamivir disposition becomes crucial in the development of age-appropriate dosing regimens for the drug.

In this review, the impact of ontogeny on processes that are important in regulating the absorption, distribution, metabolism, and excretion of oseltamivir and its active metabolite are considered. Data from both animal and human investigations are presented in the context of defining how development might influence the dose-exposure relationship and, most importantly, the significant variability associated with it. In addition, the available pediatric pharmacokinetic data for oseltamivir and its active metabolite are summarized and current ‘information gaps’ deserving of future study are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thompson WW, Shay DK, Weintraub E, et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 2003; 289: 179–86

    Article  PubMed  Google Scholar 

  2. Thompson WW, Shay DK, Weintraub E, et al. Influenza-associated hospitalizations in the United States. JAMA 2004; 292: 1333–40

    Article  PubMed  CAS  Google Scholar 

  3. Centers for Disease Control and Prevention (CDC). Updated CDC estimates of 2009 H1N1 influenza cases, hospitalizations and deaths in the United States, April 2009–April 10, 2010 [online]. Available from URL: http://www.cdc.gov/h1n1flu/estimates_2009_h1n1.htm [Accessed 2010 Oct 28]

  4. Centers for Disease Control and Prevention (CDC). Updated interim recommendations for the use of antiviral medication in the treatment and prevention of influenza for the 2009–2010 season. Atlanta (GA): US Department of Health and Human Services, CDC, 2009 [online]. Available from URL: http://www.cdc.gov/H1N1flu/recommendations.htm. [Accessed 2010 Feb 4]

    Google Scholar 

  5. Burch J, Paulden M, Conti S, et al. Antiviral drugs for the treatment of influenza: a systematic review and economic evaluation. Health Technol Assess 2009; 12: 1–265, iii–iv

    Google Scholar 

  6. Bright R, Shay D, Shu B, et al. Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States. JAMA 2006; 295: 891–4

    Article  PubMed  CAS  Google Scholar 

  7. Centers for Disease Control and Prevention (CDC). High levels of adamantane resistance among influenza A (H3N2) viruses and interim guidelines for use of antiviral agents — United States, 2005–06 influenza season. MMWR Morb Mortal Wkly Rep 2006; 55: 44–6

    Google Scholar 

  8. Hsieh YH, Chen KF, Gaydos CA, et al. Antiviral prescriptions to U.S. ambulatory care visits with a diagnosis of influenza before and after high level of adamantane resistance 2005–06 season. PLoS One 2010; 5: e8945

    Article  PubMed  Google Scholar 

  9. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009; 360: 2605–15

    Article  Google Scholar 

  10. Oo C, Barrett J, Hill G, et al. Pharmacokinetics and dosage recommendations for an oseltamivir oral suspension for the treatment of influenza in children. Paediatr Drugs 2001; 3: 229–36

    Article  PubMed  CAS  Google Scholar 

  11. Oo C, Hill G, Dorr A, et al. Pharmacokinetics of anti-influenza prodrug oseltamivir in children aged 1–5 years. Eur J Clin Pharmacol 2003; 59: 411–5

    Article  PubMed  CAS  Google Scholar 

  12. Kimberlin D, Acosta E, Sanchez P, et al. Oseltamivir (OST) and OST carboxylate (CBX) pharmacokinetics (PK) in infants: interim results from a multicenter trial. Presented at the 47th Infectious Diseases Society of America Meeting; 2009 Oct 29–Nov 1; Philadelphia (PA)

  13. Lindegardh N, Davies GR, Hien TT, et al. Importance of collection tube during clinical studies of oseltamivir. Antimicrob Agents Chemother 2007; 51: 1835–6

    Article  PubMed  CAS  Google Scholar 

  14. Lindegardh N, Davies GR, Tran TH, et al. Rapid degradation of oseltamivir phosphate in clinical samples by plasma esterases. Antimicrob Agents Chemother 2006; 50: 3197–9

    Article  PubMed  CAS  Google Scholar 

  15. Wiltshire H, Wiltshire B, Citron A, et al. Development of a high-performance liquid chromatographic-mass spectrometric assay for the specific and sensitive quantification of Ro 64-0802, an anti-influenza drug, and its pro-drug, oseltamivir, in human and animal plasma and urine. J Chromatogr B 2000; 745: 373–88

    Article  CAS  Google Scholar 

  16. Ogihara T, Kano T, Wagatsuma T, et al. Oseltamivir (Tamiflu) is a substrate of peptide transporter 1. Drug Metab Dispos 2009; 37: 1676–81

    Article  PubMed  CAS  Google Scholar 

  17. Daniel H, Kottra G. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Eur J Physiol 2004; 447: 610–8

    Article  CAS  Google Scholar 

  18. Dantzig AH. Oral absorption of beta-lactams by intestinal peptide transport proteins. Adv Drug Deliv Rev 1997; 23: 63–76

    Article  CAS  Google Scholar 

  19. Ganapathy ME, Brandsch M, Prasad PD, et al. Differential recognition of beta-lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J Biol Chem 1995; 270: 25672–7

    Article  PubMed  CAS  Google Scholar 

  20. Shu C, Shen H, Hopfer U, et al. Mechanism of intestinal absorption and renal reabsorption of an orally active ace inhibitor: uptake and transport of fosinopril in cell cultures. Drug Metab Dispos 2001; 29: 1307–15

    PubMed  CAS  Google Scholar 

  21. Zhu T, Chen XZ, Steel A, et al. Differential recognition of ACE inhibitors in Xenopus laevis oocytes expressing rat PEPT1 and PEPT2. Pharm Res 2000; 17: 526–32

    Article  PubMed  CAS  Google Scholar 

  22. Rubino A, Guandalini S. Dipeptide transport in the intestinal mucosa of developing rabbits. Ciba Found Symp 1977; 50: 61–77

    PubMed  CAS  Google Scholar 

  23. Himukai M, Konno T, Hoshi T. Age-dependent change in intestinal absorption of dipeptides and their constituent amino acids in the guinea pig. Pediatr Res 1980; 14: 1272–5

    Article  PubMed  CAS  Google Scholar 

  24. Shen H, Smith DE, Brosius III FC. Developmental expression of PEPT1 and PEPT2 in rat small intestine, colon, and kidney. Pediatr Res 2001; 49: 789–95

    Article  PubMed  CAS  Google Scholar 

  25. Wang W, Shi C, Zhang J, et al. Molecular cloning, distribution and ontogenetic expression of the oligopeptide transporter PepT1 mRNA in Tibetan suckling piglets. Amino Acids 2009; 37: 593–601

    Article  PubMed  CAS  Google Scholar 

  26. Dodds WJ. The pig model for biomedical research. Fed Proc 1982; 41: 247–56

    Google Scholar 

  27. Rome S, Barbot L, Windsor E, et al. The regionalization of PepT1, NBAT and EAAC1 transporters in the small intestine of rats are unchanged from birth to adulthood. J Nutr 2002; 132: 1009–11

    PubMed  CAS  Google Scholar 

  28. Qandeel HG, Duenes JA, Zheng Y, et al. Diurnal expression and function of peptide transporter 1 (PEPT1). J Surg Res 2009; 156: 123–8

    Article  PubMed  CAS  Google Scholar 

  29. Oo C, Snell P, Barrett J, et al. Pharmacokinetics and delivery of the anti-influenza prodrug oseltamivir to the small intestine and colon using site-specific delivery capsules. Int J Pharm 2003; 257: 297–9

    Article  PubMed  CAS  Google Scholar 

  30. He G, Massarella J, Ward P. Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64-0802. Clin Pharmacokinet 1999; 37: 471–84

    Article  PubMed  CAS  Google Scholar 

  31. Wattanagoon Y, Stepniewska K, Lindegardh N, et al. Pharmacokinetics of high-dose oseltamivir in healthy volunteers. Antimicrob Agents Chemother 2009; 53: 945–52

    Article  PubMed  CAS  Google Scholar 

  32. Lonnerdal B, Zetterstrom R. Protein content of infant formula: how much and from what age? Acta Paediatrica 1988; 77: 321–5

    Article  CAS  Google Scholar 

  33. Centers for Disease Control and Prevention (CDC). Infant feeding practices study II [online]. Available from URL: http://www.cdc.gov/ifps/index.htm [Accessed 2010 Oct 28]

  34. Shiraga T, Miyamoto K, Tanaka H, et al. Cellular and molecular mechanisms of dietary regulation on rat intestinal HC/peptide transporter PepT1. Gastroenterology 1999; 116: 354–62

    Article  PubMed  CAS  Google Scholar 

  35. Walker D, Thwaites DT, Simmons NL, et al. Substrate upregulation of the human small intestinal peptide transporter, hPepT1. J Physiol 1999; 15: 697–706

    Google Scholar 

  36. Thamotharan M, Bawani SZ, Zhou X, et al. Hormonal regulation of oligopeptide transporter Pept-1 in a human intestinal cell line. Am J Physiol Cell Physiol 1999; 276: C821–6

    CAS  Google Scholar 

  37. Ashida K, Katsura T, Motohashi H, et al. Thyroid hormone regulates the activity and expression of the peptide transporter PEPT1 in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 2002; 282: G617–23

    PubMed  CAS  Google Scholar 

  38. Avissar NE, Ziegler TR, Wang HT, et al. Growth factors regulation of rabbit sodium-dependent neutral amino acid transporter ATB0 and oligopeptide transporter 1 mRNAs expression after enteretomy. J Parenter Enteral Nutr 2001; 25: 65–72

    Article  CAS  Google Scholar 

  39. Pan X, Terada T, Irie M, et al. Diurnal rhythm of H+-peptide cotransporter in rat small intestine. Am J Physiol 2002; 283: G57–64

    CAS  Google Scholar 

  40. Merlin D, Si-Tahar M, Sitaraman SV, et al. Colonic epithelial hPepT1 expression occurs in inflammatory bowel disease: transport of bacterial peptides influences expression of MHC class 1 molecules. Gastroenterology 2001; 120: 1666–79

    Article  PubMed  CAS  Google Scholar 

  41. Ziegler TR, Fernandez-Estivariz C, Gu LH, et al. Distribution of the H+/peptide transporter PepT1 in human intestine: up-regulated expression in the colonic mucosa of patients with short-bowel syndrome. Am J Clin Nutr 2002; 75: 922–30

    PubMed  CAS  Google Scholar 

  42. Ihara T, Tsujikawa T, Fujiyama Y, et al. Regulation of PepT1 peptide transporter expression in the rat small intestine under malnourished conditions. Digestion 2000; 61: 59–67

    Article  PubMed  CAS  Google Scholar 

  43. Thamotharan M, Bawani SZ, Zhou X, et al. Functional and molecular expression of intestinal oligopeptide transporter (Pept-1) after a brief fast. Metabolism 1999; 48: 681–4

    Article  PubMed  CAS  Google Scholar 

  44. Barbot L, Windsor E, Rome S, et al. Intestinal peptide transporter PepT1 is over-expressed during acute cryptosporidiosis in suckling rats as a result of both malnutrition and experimental parasite infection. Parasitol Res 2003; 89: 364–70

    PubMed  CAS  Google Scholar 

  45. Shu HJ, Takeda H, Shinzawa H, et al. Effect of lipopolysaccharide on peptide transporter 1 expression in rat small intestine and its attenuation by dexa-methasone. Digestion 2002; 65: 21–9

    Article  PubMed  Google Scholar 

  46. Agunod M, Yamaguchi N, Lopez R, et al. Correlative study of hydrochloric acid, pepsin, and intrinsic factor secretion in newborns and infants. Am J Dig Dis 1969; 14: 400–14

    Article  PubMed  CAS  Google Scholar 

  47. Miller RA. Observations on the gastric acidity during the first month of life. Arch Dis Child 1941; 16: 22–30

    Article  PubMed  CAS  Google Scholar 

  48. Rodbro P, Kraslinikoff PA, Christiansen PM. Parietal cell secretory function in early childhood. Scand J Gastroenterol 1967; 2: 209–13

    Article  PubMed  CAS  Google Scholar 

  49. Snell P, Oo C, Dorr A, et al. Lack of pharmacokinetic interaction between the oral anti-influenza neuraminidase inhibitor prodrug oseltamivir and antacids. Br J Clin Pharmacol 2002; 54: 372–7

    Article  PubMed  CAS  Google Scholar 

  50. Hill G, Cihlar T, Oo C, et al. The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion: correlation of in vivo and in vitro studies. Drug Metab Dispos 2002; 30: 13–9

    Article  PubMed  CAS  Google Scholar 

  51. Morimoto K, Nakakariya M, Shirasaka Y, et al. Oseltamivir (Tamiflu) efflux transport at the blood-brain barrier via P-glycoprotein. Drug Metab Dispos 2008; 36: 6–9

    Article  PubMed  CAS  Google Scholar 

  52. Morrison D, Roy S, Rayner C, et al. A randomized, crossover study to evaluate the pharmacokinetics of amantadine and oseltamivir administered alone and in combination. PLoS ONE 2007; 12: e1305

    Article  Google Scholar 

  53. Kearns GL, Abdel-Rahman SM, Alander S, et al. Developmental pharmacology: the impact of ontogeny on drug disposition and action. N Engl J Med 2003; 349: 1157–67

    Article  PubMed  CAS  Google Scholar 

  54. Eisenberg EJ, Bidgood A, Cundy KC. Penetration of GS4071, a novel influenza neuraminidase inhibitor, into rat bronchoalveolar lining fluid following oral administration of the prodrug GS4104. Antimicrob Agents Chemother 1997; 41: 1949–52

    PubMed  CAS  Google Scholar 

  55. Taylor WRJ, Thinh BN, Anh GT, et al. Oseltamivir pharmacokinetics in Vietnamese patients with severe human and H5N1 avian influenza [abstract]. Presented at the XI International Symposium of Respiratory Viral Conditions; 2009 Feb 19–22; Bangkok

  56. Hoffmann G, Funk C, Fowler S, et al. Nonclinical pharmacokinetics of oseltamivir and oseltamivir carboxylate in the central nervous system. Antimicrob Agents Chemother 2009; 53: 4753–61

    Article  PubMed  CAS  Google Scholar 

  57. Ose A, Ito M, Kusuhara H, et al. Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab Dispos 2009; 37: 315–21

    Article  PubMed  CAS  Google Scholar 

  58. Ose A, Kusuhara H, Yamatsugu K, et al. P-glycoprotein restricts the penetration of oseltamivir across the blood-brain barrier. Drug Metab Dispos 2008; 36: 427–34

    Article  PubMed  CAS  Google Scholar 

  59. Alebouyeh M, Takeda M, Onozato ML, et al. Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites. J Pharmacol Sci 2003; 93: 430–6

    Article  PubMed  CAS  Google Scholar 

  60. Jhee SS, Yen M, Ereshefsky L, et al. Low penetration of oseltamivir and its carboxylate into cerebrospinal fluid in healthy Japanese and Caucasian volunteers. Antimicrob Agents Chemother 2008; 52: 3687–93

    Article  PubMed  CAS  Google Scholar 

  61. Straumanis JP, Tapia MD, King JC. Influenza B infection associated with encephalitis: treatment with oseltamivir. Pediatr Infect Dis J 2002; 21: 173–5

    Article  PubMed  Google Scholar 

  62. Fuke C, Ihama Y, Miyazaki T. Analysis of oseltamivir active metabolite, oseltamivir carboxylate, in biological materials by HPLC-UV in a case of death following ingestion of Tamiflu. Leg Med 2008; 10: 83–7

    Article  CAS  Google Scholar 

  63. Virgintino D, Errede M, Girolamo F, et al. Fetal blood-brain barrier P-glycoprotein contributes to brain protection during human development. J Neuropathol Exp Neurol 2008; 67: 50–61

    Article  PubMed  CAS  Google Scholar 

  64. van Kalken CK, Giaccone G, van der Valk P, et al. Multidrug resistance gene (P-glycoprotein) expression in the human fetus. Am JPathol 1992; 141: 1063–72

    Google Scholar 

  65. Schumacher U, Mollgard K. The multidrug-resistance P-glycoprotein (Pgp, MDR1) is an early marker of blood-brain barrier development in the microvessels of the developing human brain. Histochem Cell Biol 1997; 108: 179–82

    Article  PubMed  CAS  Google Scholar 

  66. Daood M, Tsai C, Ahdab-Barmada M, et al. ABC Transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics 2008; 39: 211–8

    Article  PubMed  CAS  Google Scholar 

  67. Ishikawa T, Onishi Y, Hirano H, et al. Pharmacogenomics of drug transporters: a new approach to functional analysis of the genetic polymorphisms of ABCB1 (P-glycoprotein/MDR1). Biol Pharm Bull 2004; 27: 939–48

    Article  PubMed  CAS  Google Scholar 

  68. Brunner M, Langer O, Sunder-Plassmann R, et al. Influence of functional haplotypes in the drug transporter gene ABCB1 on central nervous system drug distribution in humans. Clin Pharmacol Ther 2005; 78: 182–90

    Article  PubMed  CAS  Google Scholar 

  69. Takano A, Kusuhara H, Suhara T, et al. Evaluation of in vivo P-glycoprotein function at the blood-brain barrier among MDR1 gene polymorphisms by using 1 1C-verapamil. J Nucl Med 2006; 47: 1427–33

    PubMed  CAS  Google Scholar 

  70. Abla N, Chinn LW, Nakamura T, et al. The human multidrug resistance protein 4 (MRP4, ABCC4): functional analysis of a highly polymorphic gene. J Pharmacol Exp Ther 2008; 325: 859–68

    Article  PubMed  CAS  Google Scholar 

  71. Smith NF, Marsh S, Scott-Horton TJ, et al. Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin Pharmacol Ther 2007; 81: 76–82

    Article  PubMed  CAS  Google Scholar 

  72. Ogasawara K, Terada T, Motohashi H, et al. Analysis of regulatory polymorphisms in organic ion transporter genes (SLC22A) in the kidney. J Hum Genet 2008; 53: 607–14

    Article  PubMed  CAS  Google Scholar 

  73. Satoh T, Hosokawa M. The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol 1998; 38: 257–88

    Article  PubMed  CAS  Google Scholar 

  74. Hosokawa M. Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules 2008; 13: 412–31

    Article  PubMed  CAS  Google Scholar 

  75. Shi D, Yang J, Yang D, et al. Anti-influenza prodrug oseltamivir is activated by carboxylesterase human carboxylesterase 1, and the activation is inhibited by antiplatelet agent clopidogrel. J Pharmacol Exp Ther 2006; 319: 1477–84

    Article  PubMed  CAS  Google Scholar 

  76. Vistoli G, Pedretti A, Mazzolari A, et al. In silico prediction of human carboxylesterase-1 (hCES1) metabolism combining docking analyses and MD simulations. Bioorg Med Chem 2010; 18(1): 320–9

    Article  PubMed  CAS  Google Scholar 

  77. Hosokawa M, Furihata T, Yaginuma Y, et al. Genomic structure and transcriptional regulation of the rat, mouse, and human carboxylesterase genes. Drug Metab Rev 2007; 39: 1–15

    Article  PubMed  CAS  Google Scholar 

  78. Li W, Escarpe PA, Eisenberg EJ, et al. Identification of GS 4104 as an orally bioavailable prodrug of the influenza virus neuraminidase inhibitor GS 4071. Antimicrob Agents Chemother 1998; 42: 647–53

    Article  PubMed  CAS  Google Scholar 

  79. Pope CN, Karanth S, Liu J, et al. Comparative carboxylesterase activities in infant and adult liver and their in vitro sensitivity to chlorpyrifos oxon. Regul Toxicol Pharm 2005; 42: 64–9

    Article  CAS  Google Scholar 

  80. Yang D, Pearce RE, Wang X, et al. Human carboxylesterase HCE1 and HCE2: ontogenic expression, inter-individual variability and differential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin. Biochem Pharmacol 2009; 77: 238–47

    Article  PubMed  CAS  Google Scholar 

  81. Marsh S, Xiao M, Yu J, et al. Pharmacogenomic assessment of carboxylesterases 1 and 2. Genomics 2004; 84: 661–8

    Article  PubMed  CAS  Google Scholar 

  82. Yang J, Shi D, Yang D, et al. Interleukin-6 alters the cellular responsiveness to clopidogrel, irinotecan, and oseltamivir by suppressing the expression of carboxylesterases HCE1 and HCE2. Mol Pharmacol 2007; 72: 686–94

    Article  PubMed  CAS  Google Scholar 

  83. Van Reeth K. Cytokines in the pathogenesis of influenza. Vet Microbiol 2000; 74: 109–16

    Article  PubMed  Google Scholar 

  84. Cha SH, Sekine T, Fukushima JI, et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol 2001; 59: 1277–86

    PubMed  CAS  Google Scholar 

  85. Holodniy M, Penzak SR, Straight TM, et al. Pharmacokinetics and tolerability of oseltamivir combined with probenecid. Antimicrob Agents Chemother 2008; 52: 3013–21

    Article  PubMed  CAS  Google Scholar 

  86. Rayner CR, Chanu P, Gieschke R, et al. Population pharmacokinetics of oseltamivir when coadministered with probenecid. J Clin Pharmacol 2008; 48: 935–47

    Article  PubMed  CAS  Google Scholar 

  87. Cundy KC, Li ZH, Lee WA. Effect of probenecid on the distribution, me tabolism, and excretion of cidofovir in rabbits. Drug Metab Dispos 1996; 24: 315–21

    PubMed  CAS  Google Scholar 

  88. Ho ES, Lin DC, Mendel DB, et al. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol 2000; 11: 383–93

    PubMed  CAS  Google Scholar 

  89. Fujita T, Brown C, Carlson EJ, et al. Functional analysis of polymorphisms in the organic anion transporter, SLC22A6 (OAT1). Pharmacogenet Genomics 2005; 15: 201–9

    Article  PubMed  CAS  Google Scholar 

  90. Vormfelde SV, Schirmer M, Hagos Y, et al. Torsemide renal clearance and genetic variation in luminal and basolateral organic anion transporters. Br J Clin Pharmacol 2006; 62: 323–35

    Article  PubMed  CAS  Google Scholar 

  91. John TR, Moore WM, Jeffries JE, et al. Children are different: developmental physiology. 2nd ed. Columbus (OH): Ross Labs, 1978

    Google Scholar 

  92. Lopez-Nieto CE, You G, Bush KT, et al. Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J Biol Chem 1997; 272: 6471–8

    Article  PubMed  CAS  Google Scholar 

  93. Pavlova A, Sakurai H, Leclercq B, et al. Developmentally regulated expression of organic ion transporters NKT (OAT1), OCT1, NLT (OAT2), and Roct. Am J Physiol Renal Physiol 2000; 278: 635–43

    Google Scholar 

  94. Nakajima N, Sekine T, Cha SH, et al. Developmental changes in multispecific organic anion transporter 1 expression in the rat kidney. Kidney Int 2000; 57: 1608–16

    Article  PubMed  CAS  Google Scholar 

  95. Wood CE, Cousins R, Zhang D, et al. Ontogeny of expression of organic anion transporters 1 and 3 in ovine fetal and neonatal kidney. Exp Biol Med 2005; 230: 668–73

    CAS  Google Scholar 

  96. Snell P, Dave N, Wilson K, et al. Lack of effect of moderate hepatic impairment on the pharmacokinetics of oral oseltamivir and its metabolite oseltamivir carboxylate. Br J Clin Pharmacol 2005; 59: 598–601

    Article  PubMed  CAS  Google Scholar 

  97. Abe M, Smith J, Urae A, et al. Pharmacokinetics of oseltamivir in young and very elderly subjects. Ann Pharmacother 2006; 40: 1724–30

    Article  PubMed  CAS  Google Scholar 

  98. Massarella JW, He GZ, Dorr A, et al. The pharmacokinetics and tolerability of the oral neuraminidase inhibitor oseltamivir (Ro 64-0796/GS4104) in healthy adult and elderly volunteers. J Clin Pharmacol 2000; 40: 836–43

    Article  PubMed  CAS  Google Scholar 

  99. Schentag JJ, Hill G, Chu T, et al. Similarity in pharmacokinetics of oseltamivir and oseltamivir carboxylate in Japanese and Caucasian Subjects. J Clin Pharmacol 2007; 47: 689–96

    Article  PubMed  CAS  Google Scholar 

  100. Acosta EP, Jester P, Gal P, et al. Oseltamivir dosing for influenza infection in premature neonates. J Infect Dis 2010; 202(4): 563–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the thoughtful review provided by Suzanne R. Hill, MD, and Charles Penn, PhD. This research was supported in part by a grant from the WHO. The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors and should not be attributed in any manner whatsoever to the WHO. Gregory Kearns is a member of the Committee on Essential Medicines, WHO. Susan Abdel-Rahman and Jason Newland have no conflicts of interest to declare that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Abdel-Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Rahman, S.M., Newland, J.G. & Kearns, G.L. Pharmacologic Considerations for Oseltamivir Disposition. Pediatr-Drugs 13, 19–31 (2011). https://doi.org/10.2165/11536950-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11536950-000000000-00000

Keywords

Navigation