Skip to main content

Advertisement

Log in

Osteoporosis in Children and Adolescents

Etiology and Management

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Bone mass increases progressively during childhood, but mainly during adolescence when approximately 40% of total bone mass is accumulated. Peak bone mass is reached in late adolescence, and is a well recognised risk factor for osteoporosis later in life. Thus, increasing peak bone mass can prevent osteoporosis.

The critical interpretation of bone mass measurements is a crucial factor for the diagnosis of osteopenia/osteoporosis in children and adolescents. To date, there are insufficient data to formally define osteopenia/osteoporosis in this patient group, and the guidelines used for adult patients are not applicable. In males and females aged <20 years the terminology ‘low bone density for chronologic age’ may be used if the Z-score is less than −2. For children and adolescents, this terminology is more appropriate than osteopenia/osteoporosis. Moreover, the T-score should not be used in children and adolescents.

Many disorders, by various mechanisms, may affect the acquisition of bone mass during childhood and adolescence. Indeed, the number of disorders that have been identified as affecting bone mass in this age group is increasing as a consequence of the wide use of bone mass measurements. The increased survival of children and adolescents with chronic diseases or malignancies, as well as the use of some treatment regimens has resulted in an increase in the incidence of reduced bone mass in this age group.

Experience in treating the various disorders associated with osteoporosis in childhood is limited at present. The first approach to osteoporosis management in children and adolescents should be aimed at treating the underlying disease. The use of bisphosphonates in children and adolescents with osteoporosis is increasing and their positive effect in improving bone mineral density is encouraging. Osteoporosis prevention is a key factor and it should begin in childhood. Pediatricians should have a fundamental role in the prevention of osteoporosis, suggesting strategies to achieve an optimal peak bone mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Leonard MB, Zemel BS. Current concepts in pediatric bone disease. Pediatr Clin North Am 2002; 49: 143–73

    Article  PubMed  Google Scholar 

  2. Heaney RP, Abrams S, Dawson-Hughes B, et al. Peak bone mass. Osteoporos Int 2000; 11: 985–1009

    Article  PubMed  CAS  Google Scholar 

  3. Lindsay R, Meunier PJ. Osteoporosis: review of the evidence for prevention, diagnosis and treatment and cost-effectiveness analysis. Osteoporos Int 1998; 8Suppl. 4: S1–88

    Google Scholar 

  4. Dent CE. Problems in metabolic bone disease. In: Frame B, Parfitt MA, Duncan H, editors. Clinical aspects of metabolic bone disease. Amsterdam: Exerpta Medica, 1973: 1–7

    Google Scholar 

  5. Brown JP, Josse RG, on behalf of Scientific Advisory Council of the Osteoporosis Society of Canada. 2002 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada. CMAJ 2002; 167Suppl. 10: S1–34

    PubMed  Google Scholar 

  6. Consensus development conference: diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 1993; 94: 646–50

    Google Scholar 

  7. NIH Consensus Development Program. Osteoporosis prevention, diagnosis, and therapy: NIH consensus development conference statement 2000 [online]. Available from URL: http://www.consensus.nih.gov/cons/111/111_intro.htm [Accessed 2005 Oct 3]

  8. Frost HM, Schonau E. The ‘muscle-bone unit’ in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab 2000; 13: 571–90

    Article  PubMed  CAS  Google Scholar 

  9. Faulkner KG. The tale of the T-score: review and perspective. Osteoporosis Int 2005; 16: 347–52

    Article  Google Scholar 

  10. Cassidy JT. Osteopenia and osteoporosis in children. Clin Exp Rheumatol 1999; 17: 245–50

    PubMed  CAS  Google Scholar 

  11. Chan YY, Bishop NJ. Clinical management of childhood osteoporosis. Int J Clin Pract 2002; 56: 280–6

    PubMed  CAS  Google Scholar 

  12. Dumas R. Bases physiologiques: regulation du remodellage osseux. Arch Pédiatr 2002; 9Suppl. 2: 95–6

    Article  Google Scholar 

  13. Saggese G, Baroncelli GI, Bertelloni S. Osteoporosis in children and adolescents: diagnosis, risk factors, and prevention. J Pediatr Endocrinol Metab 2001; 12: 833–59

    Google Scholar 

  14. Apkon SD. Osteoporosis in children who have disabilities. Phys Med Rehabil Clin N Am 2002; 13: 839–55

    Article  PubMed  Google Scholar 

  15. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet 2002; 359: 1929–36

    Article  PubMed  Google Scholar 

  16. Goulding A, Jones IE, Taylor RW, et al. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res 2000; 15: 2011–8

    Article  PubMed  CAS  Google Scholar 

  17. Ma D, Jones G. The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case-control study. J Clin Endocrinol Metab 2003; 88: 1486–91

    Article  PubMed  CAS  Google Scholar 

  18. Gafni RI, McCarthy EF, Hatcher T, et al. Recovery from osteoporosis through skeletal growth: early bone mass acquisition has little effect on adult bone density. FASEB J 2002; 16: 736–8

    PubMed  CAS  Google Scholar 

  19. Lewiecki EM, Watts NB, McClung MR, et al. Official positions of the International Society for Clinical Densitometry. J Clin Endocrinol Metab 2004; 89: 3651–5

    Article  PubMed  CAS  Google Scholar 

  20. The Writing Group for the ISCD Position Development Conference. Diagnosis of osteoporosis in men, premenopausal women, and children. J Clin Densitom 2004; 7: 17–26

    Article  Google Scholar 

  21. Lewiecki EM, Kendler DL, Kiebzak GM, et al. Special report on the official positions of the International Society for Clinical Densitometry. Osteoporos Int 2004; 15: 779–84

    Article  PubMed  CAS  Google Scholar 

  22. Fewtrell MS, British Paediatric and Adolescent Bone Group. Bone densitometry in children assessed by dual x-ray absorptiometry: uses and pitfalls. Arch Dis Child 2003; 88: 795–8

    Article  PubMed  CAS  Google Scholar 

  23. Gafni RI, Baron J. Overdiagnosis of osteoporosis in children due to misinterpretation of dual-energy x-ray absorptiometry (DEXA). J Pediatr 2004; 144: 253–7

    Article  PubMed  Google Scholar 

  24. Schonau E. Problems of bone analysis in childhood and adolescence. Pediatr Nephrol 1998; 12: 420–9

    Article  PubMed  CAS  Google Scholar 

  25. Njeh FC, Fuerst T, Hans D, et al. Radiation exposure in bone mineral density assessment. Appl Radiat Isot 1999; 50: 215–36

    Article  PubMed  CAS  Google Scholar 

  26. Wang J, Thornton JC, Horlick M, et al. Dual x-ray absorptiometry in pediatric studies: changing scan modes alters bone and body composition measurements. J Clin Densitom 1999; 2: 135–41

    Article  PubMed  CAS  Google Scholar 

  27. Seeman E. Pathogenesis of bone fragility in women and men. Lancet 2002; 359: 1841–50

    Article  PubMed  Google Scholar 

  28. Baroncelli GI, Saggese G. Critical ages and stages of puberty in the accumulation of spinal and femoral bone mass: the validity of bone mass measurements. Horm Res 2000; 51Suppl. 1: 2–8

    Google Scholar 

  29. Soyka LA, Fairfield WP, Klibanski A. Hormonal determinants and disorders of peak bone mass in children. J Clin Endocrinol Metab 2000; 85: 3951–63

    Article  PubMed  CAS  Google Scholar 

  30. Katzman DK, Bachrach LK, Carter DR, et al. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 1991; 73: 1332–9

    Article  PubMed  CAS  Google Scholar 

  31. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res 1992; 7: 137–45

    Article  PubMed  CAS  Google Scholar 

  32. Kroger H, Kotaniemi A, Kroger L, et al. Development of bone mass and bone density of the spine and femoral neck: a prospective study of 65 children and adolescents. Bone Miner 1993; 23: 171–82

    Article  PubMed  CAS  Google Scholar 

  33. Lu PW, Cowell CT, Lloyd-Jones SA, et al. Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab 1996; 81: 1586–90

    Article  PubMed  CAS  Google Scholar 

  34. Baroncelli GI, Bertelloni S, Ceccarelli C, et al. Measurement of volumetric bone mineral density accurately determines degree of lumbar undermineralization in children with growth hormone deficiency. J Clin Endocrinol Metab 1998; 83: 3150–4

    Article  PubMed  CAS  Google Scholar 

  35. Peel NFA, Eastell R. Diagnostic value of estimated volumetric bone mineral density of the lumbar spine in osteoporosis. J Bone Miner Res 1994; 9: 317–20

    Article  PubMed  CAS  Google Scholar 

  36. Kroger H, Vainio P, Nieminen J, et al. Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology. Bone 1995; 17: 157–9

    Article  PubMed  CAS  Google Scholar 

  37. Van der Sluis IM, de Muinck Keizer-Schrama SMPF. Osteoporosis in childhood: bone density of children in health and disease. J Pediatr Endocrinol Metab 2001; 12: 817–32

    Google Scholar 

  38. Del Rio L, Carrascosa A, Pons F, et al. Bone mineral density of the lumbar spine in white Mediterranean Spanish children and adolescents: changes related to age, sex, and puberty. Pediatr Res 1994; 35: 362–6

    Article  PubMed  Google Scholar 

  39. Van der Sluis IM, de Ridder MAJ, Boot AM, et al. Reference data for bone density and body composition measured with dual energy x-ray absorptiometry in white children and young adults. Arch Dis Child 2002; 87: 341–7

    Article  PubMed  Google Scholar 

  40. Southard RN, Morris JD, Mahan JD, et al. Bone mass in healthy children: measurement with quantitative DXA. Radiology 1991; 179: 735–8

    PubMed  CAS  Google Scholar 

  41. Bonjour J, Theintz G, Buchs B, et al. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 1991; 73: 555–63

    Article  PubMed  CAS  Google Scholar 

  42. Henderson RC, Madsen CD. Bone density in children and adolescents with cystic fibrosis. J Pediatr 1996; 128: 28–34

    Article  PubMed  CAS  Google Scholar 

  43. Faulkner RA, Bailey DA, Drinkwater DT, et al. Bone densitometry in Canadian children 8–17 years of age. Calcif Tissue Int 1996; 59: 344–51

    Article  PubMed  CAS  Google Scholar 

  44. Fournier PE, Rizzoli R, Slosman DO, et al. Asynchrony between the rates of standing height gain and bone mass accumulation during puberty. Osteoporos Int 1997; 7: 525–32

    Article  PubMed  CAS  Google Scholar 

  45. Zanchetta JR, Plotkin H, Alvarez Filgueira ML. Bone mass in children: normative values for the 2–20 year-old population. Bone 1995; 16Suppl. 4: 393S–9S

    PubMed  CAS  Google Scholar 

  46. Schonau E, Neu CM, Rauch F, et al. The development of bone strength at the proximal radius during childhood and adolescence. J Clin Endocrinol Metab 2001; 86: 613–8

    Article  Google Scholar 

  47. Neu CM, Rauch F, Manz F, et al. Modeling of cross-sectional bone size, mass and geometry at the proximal radius: a study of normal bone development using peripheral quantitative computed tomography. Osteoporos Int 2001; 12: 538–47

    Article  PubMed  CAS  Google Scholar 

  48. Neu CM, Manz F, Rauch F, et al. Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone 2001; 28: 227–32

    Article  PubMed  CAS  Google Scholar 

  49. Njeh CF, Boivin CM, Langton CM. The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int 1997; 7: 7–22

    Article  PubMed  CAS  Google Scholar 

  50. Gonnelli S, Cepollaro C. The use of ultrasound in the assessment of bone status. J Endocrinol Invest 2002; 25: 389–97

    PubMed  CAS  Google Scholar 

  51. Schonau E, Radermacher A, Wentzlik U, et al. The determination of ultrasound velocity in the os calcis, thumb and patella during childhood. Eur J Pediatr 1994; 153: 252–6

    Article  PubMed  CAS  Google Scholar 

  52. Van den Berg JPW, Noordam C, Ozyilmaz A, et al. Calcaneal ultrasound imaging in healthy children and adolescents: relation of the ultrasound parameters BUA and SOS to age, body weight, height, foot dimensions and pubertal stage. Osteoporos Int 2000; 11: 967–76

    Article  Google Scholar 

  53. van den Bergh JP, Noordam C, Thijssen JM, et al. Measuring skeletal changes with calcaneal ultrasound imaging in healthy children and adults: the influence of size and location of the region of interest. Osteoporos Int 2001; 12: 970–9

    Article  PubMed  Google Scholar 

  54. Baroncelli GI, Federico G, Bertelloni S, et al. Bone quality assessment by quantitative ultrasound of proximal phalanxes of the hand in healthy subjects aged 3–21 years. Pediatr Res 2001; 49: 713–8

    Article  PubMed  CAS  Google Scholar 

  55. Barkmann R, Rohrschneider W, Vierling M, et al. German pediatric reference data for quantitative transverse transmission ultrasound of finger phalanges. Osteo-poros Int 2002; 13: 55–61

    Article  CAS  Google Scholar 

  56. Vignolo M, Brignone A, Mascagni A, et al. Influence of age, sex, and growth variables on phalangeal quantitative ultrasound measures: a study in healthy children and adolescents. Calcif Tissue Int 2003; 72: 681–8

    Article  PubMed  CAS  Google Scholar 

  57. Lequin MH, van Rijn RR, Robben SGF, et al. Normal values for tibial quantitative ultrasonometry in Caucasian children and adolescents (aged 6 to 19 years). Calcif Tissue Int 2000; 67: 101–5

    Article  PubMed  CAS  Google Scholar 

  58. Jaworski M, Lebiedowski M, Lorenc RS, et al. Ultrasound bone measurement in pediatric subjects. Calcif Tissue Int 1995; 56: 368–71

    Article  PubMed  CAS  Google Scholar 

  59. Baroncelli GI, Federico G, Bertelloni S, et al. Assessment of bone quality by quantitative ultrasound of proximal phalanges of the hand and fracture rate in children and adolescents with bone and mineral disorders. Pediatr Res 2003; 54: 125–36

    Article  PubMed  Google Scholar 

  60. Leonard MB, Propert KJ, Zemel BS, et al. Discrepancies in pediatric bone mineral density reference data: potential for misdiagnosis of osteopenia. J Pediatr 1999; 135: 182–8

    Article  PubMed  CAS  Google Scholar 

  61. Khan AA, Brown JP, Kendler DL, et al. The 2002 Canadian bone densitometry recommendations: take-home messages. CMAJ 2002; 167: 1141–5

    PubMed  Google Scholar 

  62. Taback SP. Osteoporosis in children: 2002 guidelines do not apply. CMAJ 2003; 168: 675–6

    PubMed  Google Scholar 

  63. de Ridder CM, Delemarre-van de Waal HA. Clinical utility of markers of bone turnover in children and adolescents. Curr Opin Pediatr 1998; 10: 441–8

    Article  PubMed  Google Scholar 

  64. Saggese G, Baroncelli GI, Bertelloni S, et al. Twenty-four-hour osteocalcin, carboxyterminal propeptide of type I procollagen, and aminoterminal propeptide of type III procollagen rhythms in normal and growth-retarded children. Pediatr Res 1994; 35: 409–15

    Article  PubMed  CAS  Google Scholar 

  65. Szulc P, Seeman E, Delmas PD. Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int 2000; 11: 281–94

    Article  PubMed  CAS  Google Scholar 

  66. Weaver CM, Peacock M, Martin BR, et al. Quantification of biochemical markers of bone turnover by kinetic measures of bone formation and resorption in young healthy females. J Bone Miner Res 1997; 12: 1714–20

    Article  PubMed  CAS  Google Scholar 

  67. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 1979; 16: 101–16

    Article  PubMed  CAS  Google Scholar 

  68. Roughley PJ, Rauch F, Glorieux FH. Osteogenesis imperfecta: clinical and molecular diversity. Eur Cell Mater 2003; 5: 41–7

    PubMed  CAS  Google Scholar 

  69. Antoniazzi F, Mottes M, Fraschini P, et al. Osteogenesis imperfecta: practical treatment guidelines. Paediatr Drugs 2000; 2: 465–88

    Article  PubMed  CAS  Google Scholar 

  70. Rauch F, Travers R, Parfitt AM, et al. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone 2000; 26: 581–9

    Article  PubMed  CAS  Google Scholar 

  71. Glorieux FH, Rauch F, Plotkin H, et al. Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res 2000; 15: 1650–8

    Article  PubMed  CAS  Google Scholar 

  72. Glorieux FH, Ward LM, Rauch F, et al. Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res 2002; 17: 30–8

    Article  PubMed  Google Scholar 

  73. Ward LM, Rauch F, Travers R, et al. Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease. Bone 2002; 31(1): 12–8

    Article  PubMed  CAS  Google Scholar 

  74. Labuda M, Morissette J, Ward LM, et al. Osteogenesis imperfecta type VII maps to the short arm of chromosome 3. Bone 2002; 31: 19–25

    Article  PubMed  CAS  Google Scholar 

  75. Orwoll ES, Klein RF. Osteoporosis in men. Endocr Rev 1995; 16: 87–116

    PubMed  CAS  Google Scholar 

  76. Saggese G, Bertelloni S, Baroncelli GI. Sex steroids and the acquisition of bone mass. Horm Res 1997; 48Suppl. 5: 65–71

    Article  PubMed  CAS  Google Scholar 

  77. Orlic ZC, Raisz LG. Causes of secondary osteoporosis. J Clin Densitom 1998; 2: 79–92

    Article  Google Scholar 

  78. Ross JL, Long LM, Feuillan P, et al. Normal bone density of the wrist and spine and increased wrist fractures in girls with Turner’s syndrome. J Clin Endocrinol Metab 1991; 73: 355–9

    Article  PubMed  CAS  Google Scholar 

  79. Davies MC, Gulekli B, Jacobs HS. Osteoporosis in Turner’s syndrome and other forms of primary amenorrhoea. Clin Endocrinol (Oxf) 1995; 43: 741–6

    Article  CAS  Google Scholar 

  80. Gravholt CH, Juul S, Naeraa RW, et al. Morbidity in Turner syndrome. J Clin Epidemiol 1998; 51: 147–58

    Article  PubMed  CAS  Google Scholar 

  81. Landin-Wilhelmsen K, Bryman I, Windh M, et al. Osteoporosis and fractures in Turner syndrome: importance of growth promoting and oestrogen therapy. Clin Endocrinol (Oxf) 1999; 51: 497–502

    Article  CAS  Google Scholar 

  82. Bakalov VK, Chen ML, Baron J, et al. Bone mineral density and fractures in Turner syndrome. Am J Med 2003; 115: 259–64

    Article  PubMed  Google Scholar 

  83. Bechtold S, Rauch F, Noelle V, et al. Musculoskeletal analyses of the forearm in young women with Turner syndrome: a study using peripheral quantitative computed tomography. J Clin Endocrinol Metab 2001; 86: 5819–23

    Article  PubMed  CAS  Google Scholar 

  84. Gravholt CH, Lauridsen AL, Brixen K, et al. Marked disproportionality in bone size and mineral, and distinct abnormalities in bone markers and calcitropic hormones in adult Turner syndrome: a cross-sectional study. J Clin Endocrinol Metab 2002; 87: 2798–808

    Article  PubMed  CAS  Google Scholar 

  85. Breuil V, Euller-Ziegler L. Gonadal dysgenesis and bone metabolism. J Bone Spine 2001; 68: 26–33

    Article  CAS  Google Scholar 

  86. Luisetto G, Mastrogiacomo I, Bonanni G, et al. Bone mass and mineral metabolism in Klinefelter’s syndrome. Osteoporos Int 1995; 5: 455–61

    Article  PubMed  CAS  Google Scholar 

  87. Wong FHW, Pun KK, Wang C. Loss of bone mass in patients with Klinefelter’s syndrome despite sufficient testosterone replacement. Osteoporos Int 1993; 3: 3–7

    Article  PubMed  CAS  Google Scholar 

  88. Baptista F, Varela A, Sardinha LB. Bone mineral mass in males and females with and without Down syndrome. Osteoporos Int 2005; 16: 380–8

    Article  PubMed  Google Scholar 

  89. Lee PA, Witchel SF. The influence of estrogen on growth. Curr Opin Pediatr 1997; 9: 431–6

    Article  PubMed  CAS  Google Scholar 

  90. Marcus R. New perspectives on the skeletal role of estrogen. J Clin Endocrinol Metab 1998; 83: 2236–8

    Article  PubMed  CAS  Google Scholar 

  91. Riggs BL, Khosla S, Melton LJ. Sex steroids and the construction and conservation of adult skeleton. Endocr Rev 2002; 23: 279–302

    Article  PubMed  CAS  Google Scholar 

  92. Marcus R, Leary D, Schneider DL, et al. The contribution of testosterone to skeletal development and maintenance: lessons from the androgen insensitivity syndrome. J Clin Endocrinol Metab 2000; 85: 1032–7

    Article  PubMed  CAS  Google Scholar 

  93. Khosla S, Melton LJ, Riggs BL. Estrogen and the male skeleton. J Clin Endocrinol Metab 2002; 87: 1443–50

    Article  PubMed  CAS  Google Scholar 

  94. Cowell CT, Woodhead H, Brody J. Bone markers and bone mineral density during growth hormone treatment in children with growth hormone deficiency. Horm Res 2000; 54Suppl. 1: 44–51

    PubMed  CAS  Google Scholar 

  95. Baroncelli GI, Bertelloni S, Ceccarelli C, et al. Dynamics of bone turnover in children with GH deficiency treated with GH until final height. Eur J Endocrinol 2000; 142: 549–56

    Article  PubMed  CAS  Google Scholar 

  96. Baroncelli GI, Bertelloni S, Sodini F, et al. Acquisition of bone mass in normal subjects and in patients with growth hormone deficiency. J Pediatr Endocrinol Metab 2003; 16: 327–35

    PubMed  Google Scholar 

  97. Van der Sluis IM, Boot AM, Hop WC, et al. Long-term effects of growth hormone therapy on bone mineral density, body composition, and serum lipid levels in growth hormone deficient children: a 6-year follow-up study. Horm Res 2002; 58: 207–14

    Article  PubMed  Google Scholar 

  98. Kandemir N, Gonc EN, Yordam N. Responses of bone turnover markers and bone mineral density to growth hormone therapy in children with isolated growth hormone deficiency and multiple pituitary hormone deficiencies. J Pediatr Endocrinol Metab 2002; 15(6): 809–16

    Article  PubMed  CAS  Google Scholar 

  99. Baroncelli GI, Bertelloni S, Sodini F, et al. Lumbar bone mineral density at final height and prevalence of fractures in treated children with growth hormone deficiency. J Clin Endocrinol Metab 2002; 87: 3624–31

    Article  PubMed  CAS  Google Scholar 

  100. Faber J, Galloe AM. Changes in bone mass during prolonged subclinical hyperthy-roidism due to L-thyroxine treatment: a meta-analysis. Eur J Endocrinol 1994; 130: 350–6

    Article  PubMed  CAS  Google Scholar 

  101. Fitzpatrick LA. Secondary causes of osteoporosis. Mayo Clin Proc 2002; 77: 453–68

    PubMed  Google Scholar 

  102. Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women: study of Osteoporotic Fractures Research Group. N Engl J Med 1995; 332: 767–73

    Article  PubMed  CAS  Google Scholar 

  103. Saggese G, Bertelloni S, Baroncelli GI. Bone mineralization and calciotropic hormones in children with hyperthyroidism: effects of methimazole therapy. J Endocrinol Invest 1990; 13: 587–92

    PubMed  CAS  Google Scholar 

  104. Mora S, Weber G, Marenzi K, et al. Longitudinal changes of bone density and bone resorption in hyperthyroid girls during treatment. J Bone Miner Res 1999; 14: 1971–7

    Article  PubMed  CAS  Google Scholar 

  105. Lucidarme N, Ruiz JC, Czernichow P, et al. Reduced bone mineral density at diagnosis and bone mineral recovery during treatment in children with Graves’ disease. J Pediatr 2000; 137: 56–62

    Article  PubMed  CAS  Google Scholar 

  106. Khosla S, Melton III LJ, Wermers RA, et al. Primary hyperparathyroidism and the risk of fracture: a population-based study. J Bone Miner Res 1999; 14: 1700–7

    Article  PubMed  CAS  Google Scholar 

  107. Damiani D, Aguiar CH, Crivellaro CE, et al. Pituitary macroadenoma and Cushing’s disease in pediatric patients: patient report and review of the literature. J Pediatr Endocrinol Metab 1998; 11: 665–9

    PubMed  CAS  Google Scholar 

  108. Di Somma C, Pivonello R, Loche S, et al. Severe impairment of bone mass and turnover in Cushing’s disease: comparison between childhood-onset and adulthood-onset disease. Clin Endocrinol (Oxf) 2002; 56: 153–8

    Article  Google Scholar 

  109. Duntas LH. Prolactinomas in children and adolescents: consequences in adult life. J Pediatr Endocrinol Metab 2001; 14Suppl. 5: 1227–32

    PubMed  Google Scholar 

  110. Stiegler C, Leb G, Kleinert R, et al. Plasma levels of parathyroid hormone-related peptide are elevated in hyperprolactinemia and correlated to bone density status. J Bone Miner Res 1995; 10: 751–9

    Article  PubMed  CAS  Google Scholar 

  111. Pivonello R, Colao A, Di Somma C, et al. Impairment of bone status in patients with central diabetes insipidus. J Clin Endocrinol Metab 1998; 83: 2275–80

    Article  PubMed  CAS  Google Scholar 

  112. Pivonello R, Faggiano A, Di Somma C, et al. Effect of a short-term treatment with alendronate on bone density and bone markers in patients with central diabetes insipidus. J Clin Endocrinol Metab 1999; 84: 2349–52

    Article  PubMed  CAS  Google Scholar 

  113. Lala R, Matarazzo P, Bertelloni S, et al. Pamidronate treatment of bone fibrous dysplasia in nine children with McCune-Albright syndrome. Acta Paediatr 2000; 89: 188–93

    Article  PubMed  CAS  Google Scholar 

  114. Schonau E, Rauch F. Fibrous dysplasia. Horm Res 2002; 57Suppl. 2: 79–82

    Article  Google Scholar 

  115. Chapurlat RD, Meunier PJ. Fibrous dysplasia of bone. Baillieres Best Pract Res Clin Rheumatol 2000; 14: 385–98

    Article  PubMed  CAS  Google Scholar 

  116. Fraser WD, Walsh CA, Birch MA, et al. Parathyroid hormone-related protein in the aetiology of fibrous dysplasia of bone in the McCune Albright syndrome. Clin Endocrinol (Oxf) 2000; 53: 621–8

    Article  CAS  Google Scholar 

  117. Corsi A, Collins MT, Riminucci M, et al. Osteomalacic and hyperparathyroid changes in fibrous dysplasia of bone: core biopsy studies and clinical correlations. J Bone Miner Res 2003; 18: 1235–46

    Article  PubMed  Google Scholar 

  118. Terpstra L, Rauch F, Plotkin H, et al. Bone mineralization in polyostotic fibrous dysplasia: histomorphometric analysis. J Bone Miner Res 2002; 17: 1949–53

    Article  PubMed  Google Scholar 

  119. Hannon TS, Noonan K, Steinmetz R, et al. Is McCune-Albright syndrome overlooked in subjects with fibrous dysplasia of bone? J Pediatr 2003; 142: 532–8

    Article  PubMed  Google Scholar 

  120. Valerio G, del Puente A, Esposito-del Puente A, et al. The lumbar bone mineral density is affected by long-term poor metabolic control in adolescents with type 1 diabetes mellitus. Horm Res 2002; 58: 266–72

    Article  PubMed  CAS  Google Scholar 

  121. Heap J, Murray MA, Miller SC, et al. Alterations in bone characteristics associated with glycemic control in adolescents with type 1 diabetes mellitus. J Pediatr 2004; 144: 56–62

    Article  PubMed  CAS  Google Scholar 

  122. De Schepper J, Smitz J, Rosseneu S, et al. Lumbar spine bone mineral density in diabetic children with recent onset. Horm Res 1998; 50: 193–6

    Article  PubMed  Google Scholar 

  123. Pascual J, Argente J, Lopez MB, et al. Bone mineral density in children and adolescents with diabetes mellitus type 1 of recent onset. Calcif Tissue Int 1998; 62: 31–5

    Article  PubMed  CAS  Google Scholar 

  124. Mushtaq T, Ahmed SF. The impact of corticosteroids on growth and bone health. Arch Dis Child 2002; 87: 93–6

    Article  PubMed  CAS  Google Scholar 

  125. Ledford D, Apter A, Brenner AM, et al. Osteoporosis in the corticosteroid-treated patients with asthma. J Allergy Clin Immunol 1998; 102: 353–62

    Article  PubMed  CAS  Google Scholar 

  126. Van Staa TP, Leufkens HGM, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int 2002; 13: 777–87

    Article  PubMed  Google Scholar 

  127. Canalis E, Pereira RC, Delany AM. Effects of glucocorticoids on the skeleton. J Pediatr Endocrinol Metab 2002; 15: 1341–5

    PubMed  CAS  Google Scholar 

  128. Canalis E, Bilezikian JP, Angeli A, et al. Perspectives on glucocorticoid-induced osteoporosis. Bone 2004; 34: 593–8

    Article  PubMed  CAS  Google Scholar 

  129. van Staa TP, Bishop N, Leufkens HG, et al. Are inhaled corticosteroids associated with an increased risk of fracture in children? Osteoporos Int 2004; 15: 785–91

    Article  PubMed  CAS  Google Scholar 

  130. Kruse K. On the pathogenesis of anticonvulsant-drug-induced alterations of calcium metabolism. Eur J Pediatr 1982; 138: 202–5

    Article  PubMed  CAS  Google Scholar 

  131. Sheth RD, Wesolowski CA, Jacob JC, et al. Effect of carbamazepine and valproate on bone mineral density. J Pediatr 1995; 127: 256–62

    Article  PubMed  CAS  Google Scholar 

  132. Guo C-Y, Ronen GM, Atkinson SA. Long-term valproate and lamotrigine treatment may be a marker for reduced growth and bone mass in children with epilepsy. Epilepsia 2001; 42: 1141–7

    Article  PubMed  CAS  Google Scholar 

  133. Tsukahara H, Kimura K, Todoroki Y, et al. Bone mineral status in ambulatory pediatric patients on long-term anti-epileptic drug therapy. Pediatr Int 2002; 44: 247–53

    Article  PubMed  CAS  Google Scholar 

  134. Sheth RD. Bone health in pediatric epilepsy. Epilepsy Behav 2004; 5Suppl. 2: S30–5

    Article  PubMed  Google Scholar 

  135. Oner N, Kaya M, Karasalihoglu S, et al. Bone mineral metabolism changes in epileptic children receiving valproic acid. J Paediatr Child Health 2004; 40: 470–3

    Article  PubMed  CAS  Google Scholar 

  136. Ecevit C, Aydogan A, Kavakli T, et al. Effect of carbamazepine and valproate on bone mineral density. Pediatr Neurol 2004; 31: 279–82

    Article  PubMed  Google Scholar 

  137. Nishiyama S, Kuwahara T, Matsuda I. Decreased bone density in severely handicapped children and adults, with reference to the influence of limited mobility and anticonvulsant medication. Eur J Pediatr 1986; 144: 457–63

    Article  PubMed  CAS  Google Scholar 

  138. Van der Sluis IM, van den Heuvel-Eibrink MM, Hahlen K, et al. Altered bone mineral density and body composition, and increased fracture risk in childhood acute lymphoblastic leukemia. J Pediatr 2002; 141: 204–10

    Article  PubMed  Google Scholar 

  139. Arikoski P, Voutilainen R, Kroger H, et al. Bone mineral density in long-term survivors of childhood cancer. J Pediatr Endocrinol Metab 2003; 16: 343–53

    PubMed  Google Scholar 

  140. Azcona C, Burghard E, Ruza E, et al. Reduced bone mineralization in adolescent survivors of malignant bone tumors: comparison of quantitative ultrasound and dual-energy x-ray absorptiometry. J Pediatr Hematol Oncol 2003; 25: 297–302

    Article  PubMed  Google Scholar 

  141. Ross DS. Monitoring L-thyroxine therapy: lessons from the effects of L-thyroxine on bone density. Am J Med 1991; 91: 1–4

    Article  PubMed  CAS  Google Scholar 

  142. Radetti G, Castellan C, Tato L, et al. Bone mineral density in children and adolescent females treated with high doses of L-thyroxine. Horm Res 1993; 39: 127–31

    Article  PubMed  CAS  Google Scholar 

  143. Kooh SW, Brnjac L, Ehrlich RM, et al. Bone mass in children with congenital hypothyroidism treated with thyroxine since birth. J Pediatr Endocrinol Metab 1996; 9: 59–62

    Article  PubMed  CAS  Google Scholar 

  144. Leger J, Ruiz JC, Guibourdenche J, et al. Bone mineral density and metabolism in children with congenital hypothyroidism after prolonged L-thyroxine therapy. Acta Paediatr 1997; 86: 704–10

    Article  PubMed  CAS  Google Scholar 

  145. Pitukcheewanont P, Safani D, Gilsanz V, et al. Quantitative computed tomography measurements of bone mineral density in prepubertal children with congenital hypothyroidism treated with L-thyroxine. J Pediatr Endocrinol Metab 2004; 17: 889–93

    Article  PubMed  CAS  Google Scholar 

  146. Tumer L, Hasanoglu A, Cinaz P, et al. Bone mineral density and metabolism in children treated with L-thyroxine. J Pediatr Endocrinol Metab 1999; 12: 519–23

    Article  PubMed  CAS  Google Scholar 

  147. Saggese G, Bertelloni S, Baroncelli GI, et al. Bone mineral density in adolescent females treated with L-thyroxine: a longitudinal study. Eur J Pediatr 1996; 155: 452–7

    Article  PubMed  CAS  Google Scholar 

  148. Verrotti A, Chiarelli F, Montanaro AF, et al. Bone mineral content in girls with precocious puberty treated with gonadotropin-releasing hormone analog. Gynecol Endocrinol 1995; 9: 277–81

    Article  PubMed  CAS  Google Scholar 

  149. Yanovski JA, Rose SR, Municchi G, et al. Treatment with a luteinizing hormone-releasing hormone agonist in adolescents with short stature. N Engl J Med 2003; 348: 908–17

    Article  PubMed  CAS  Google Scholar 

  150. Unal O, Berberoglu M, Evliyaoglu O, et al. Effects on bone mineral density of gonadotropin releasing hormone analogs used in the treatment of central precocious puberty. J Pediatr Endocrinol Metab 2003; 16: 407–11

    Article  PubMed  CAS  Google Scholar 

  151. Bertelloni S, Baroncelli GI, Sorrentino MC, et al. Effect of central precocious puberty and gonadotropin-releasing hormone analogue treatment on peak bone mass and final height in females. Eur J Pediatr 1998; 157: 363–7

    Article  PubMed  CAS  Google Scholar 

  152. Bertelloni S, Baroncelli GI, Ferdeghini M, et al. Final height, gonadal function and bone mineral density of adolescent males with central precocious puberty after therapy with gonadotropin-releasing hormone analogues. Eur J Pediatr 2000; 159: 369–74

    Article  PubMed  CAS  Google Scholar 

  153. Cromer B, Harel Z. Adolescents: at increased risk for osteoporosis? Clin Pediatr 2000; 39: 565–74

    Article  CAS  Google Scholar 

  154. Paton NIJ, Macallan DC, Griffin GE, et al. Bone mineral density in patients with human immunodeficiency virus infection. Calcif Tissue Int 1997; 61: 30–2

    Article  PubMed  CAS  Google Scholar 

  155. Tebas P, Powderly WG, Claxton S, et al. Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS 2000; 14: F63–7

    Article  PubMed  CAS  Google Scholar 

  156. Arpadi SM, Horlick M, Thornton J, et al. Bone mineral content is lower in prepubertal HIV-infected children. J Acquir Immune Defic Syndr 2002; 29: 450–4

    PubMed  Google Scholar 

  157. Arpadi S, Horlick M, Shane E. Metabolic bone disease in human immunodeficiency virus-infected children. J Clin Endocrinol Metab 2004; 89: 21–3

    Article  PubMed  CAS  Google Scholar 

  158. Mora S, Zamproni I, Beccio S, et al. Longitudinal changes of bone mineral density and metabolism in antiretroviral-treated human immunodeficiency virus-infected children. J Clin Endocrinol Metab 2004; 89: 24–8

    Article  PubMed  CAS  Google Scholar 

  159. Zamboni G, Antoniazzi F, Bertoldo F, et al. Altered bone metabolism in children infected with human immunodeficiency virus. Acta Paediatr 2003; 92: 12–6

    Article  PubMed  CAS  Google Scholar 

  160. Goodman WG, Leite Duarte ME. Aluminum: effects on bone and role in the pathogenesis of renal osteodystrophy. Miner Electrolyte Metab 1991; 17: 221–32

    PubMed  CAS  Google Scholar 

  161. Frame B, Jackson CE, Reynolds WA, et al. Hypercalcemia and skeletal effects in chronic hypervitaminosis A. Ann Intern Med 1974; 1: 44–8

    Google Scholar 

  162. Ruby LK, Mital MA. Skeletal deformities following chronic hypervitaminosis A. J Bone Joint Surg Am 1974; 56(6): 1283–7

    PubMed  CAS  Google Scholar 

  163. Cointin M, Sommelet-Olive D, Cuny JF, et al. Complications osseuses de l’intoxication chronique par l’étrétinate chez l’enfant [English abstract available]. Ann Pediatr 1990; 37: 458–60

    CAS  Google Scholar 

  164. Mascarenhas MR, Tershakovec AM, Stettler N. Nutrition interventions in childhood for the prevention of chronic diseases in adulthood. Curr Opin Pediatr 1999; 11: 598–604

    Article  PubMed  CAS  Google Scholar 

  165. Weaver CM, Peacock M, Johnston CC. Adolescent nutrition in the prevention of postmenopausal osteoporosis. J Clin Endocrinol Metab 1999; 84: 1839–43

    Article  PubMed  CAS  Google Scholar 

  166. Sarazin M, Alexandre C, Thomas T. Influence on bone metabolism of dietary trace elements, protein, fat, carbohydrates, and vitamins. Joint Bone Spine 2000; 67: 408–18

    PubMed  CAS  Google Scholar 

  167. Quint EH, Harel Z. Osteoporosis in teenagers. J Pediatr Adolesc Gynecol 2002; 15: 241–3

    Article  Google Scholar 

  168. Bonjour JP, Ammann P, Chevalley T, et al. Protein intake and bone growth. Can J Appl Physiol 2001; 26 Suppl.: S153–66

    Article  PubMed  CAS  Google Scholar 

  169. Bell NH. Bone loss and gastric bypass surgery for morbid obesity. J Clin Endocrinol Metab 2004; 89: 1059–60

    Article  PubMed  CAS  Google Scholar 

  170. Coates PS, Fernstrom JD, Fernstrom MH, et al. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab 2004; 89: 1061–5

    Article  PubMed  CAS  Google Scholar 

  171. Rude RK, Olerich M. Magnesium deficiency: possible role in osteoporosis associated gluten-sensitive enteropathy. Osteoporos Int 1996; 6: 453–61

    Article  PubMed  CAS  Google Scholar 

  172. Molteni N, Caraceni MP, Bardella MT, et al. Bone mineral density in adult celiac patients and the effect of gluten-free diet from childhood. Am J Gastroenterol 1990; 85: 51–3

    PubMed  CAS  Google Scholar 

  173. Walters JR, Banks LM, Butcher GP, et al. Detection of low bone mineral density by dual energy x-ray absorptiometry in unsuspected suboptimally treated coeliac disease. Gut 1995; 37: 220–4

    Article  PubMed  CAS  Google Scholar 

  174. Corazza GR, Di Sario A, Cecchetti L, et al. Influence of pattern of clinical presentation and of gluten-free diet on bone mass and metabolism in adult coeliac disease. Bone 1996; 18: 525–30

    Article  PubMed  CAS  Google Scholar 

  175. Stenson WF, Newberry R, Lorenz R, et al. Increased prevalence of celiac disease and need for routine screening among patients with osteoporosis. Arch Intern Med 2005; 165: 393–9

    Article  PubMed  Google Scholar 

  176. Mora S, Weber G, Barera G, et al. Effect of gluten-free diet on bone mineral content in growing patients with celiac disease. Am J Clin Nutr 1993; 57: 224–8

    PubMed  CAS  Google Scholar 

  177. Mora S, Barera G, Ricotti A, et al. Reversal of low bone density with a gluten-free diet in children and adolescents with celiac disease. Am J Clin Nutr 1998; 67: 477–81

    PubMed  CAS  Google Scholar 

  178. Kavak US, Yuce A, Kocak N, et al. Bone mineral density in children with untreated and treated celiac disease. J Pediatr Gastroenterol Nutr 2003; 37: 434–6

    Article  PubMed  CAS  Google Scholar 

  179. Hartman C, Hino B, Lerner A, et al. Bone quantitative ultrasound and bone mineral density in children with celiac disease. J Pediatr Gastroenterol Nutr 2004; 39: 504–10

    Article  PubMed  Google Scholar 

  180. Barera G, Beccio S, Proverbio MC, et al. Consumption of a gluten-free diet. Am J Clin Nutr 2004; 79: 148–54

    PubMed  CAS  Google Scholar 

  181. Cellier C, Flobert C, Cormier C, et al. Severe osteopenia in symptom-free adults with a childhood diagnosis of coeliac disease [letter]. Lancet 2000; 355: 806

    Article  PubMed  CAS  Google Scholar 

  182. Mora S, Barera G, Beccio S, et al. Bone density and bone metabolism are normal after long-term gluten-free diet in young celiac patients. Am J Gastroenterol 1999; 94: 398–403

    Article  PubMed  CAS  Google Scholar 

  183. Tucker KL. Does milk intake in childhood protect against later osteoporosis? Am J Clin Nutr 2003; 77: 10–1

    PubMed  CAS  Google Scholar 

  184. Sandler RB, Slemenda CW, LaPorte RE, et al. Postmenopausal bone density and milk consumption in childhood and adolescence. Am J Clin Nutr 1985; 42: 270–4

    PubMed  CAS  Google Scholar 

  185. Kalkwarf HJ, Khoury JC, Lanphear BP. Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am J Clin Nutr 2003; 77: 257–65

    PubMed  CAS  Google Scholar 

  186. Saggese G, Baroncelli GI. Nutritional aspects of calcium and vitamin D from infancy to adolescence. Ann Ist Super Sanità 1995; 31: 461–79

    PubMed  CAS  Google Scholar 

  187. Infante D, Tormo R. Risk of inadequate bone mineralization in diseases involving long-term suppression of dairy products. J Pediatr Gastroenterol Nutr 2000; 30: 310–3

    Article  PubMed  CAS  Google Scholar 

  188. Chan GM, Hess M, Hollis J, et al. Bone mineral status in childhood accidental fractures. Am J Dis Child 1984; 138: 569–70

    PubMed  CAS  Google Scholar 

  189. Goulding A, Cannan R, Williams SM, et al. Bone mineral density in girls with forearm fractures. J Bone Miner Res 1998; 13: 143–8

    Article  PubMed  CAS  Google Scholar 

  190. American Academy of Pediatrics, Committee on Nutrition. Calcium requirements of infants, children, and adolescents. Pediatrics 1999; 104: 1152–7

    Article  Google Scholar 

  191. Bonjour JP, Chevalley T, Ammann P, et al. Gain in bone mineral mass in prepubertal girls 3.5 years after discontinuation of calcium supplementation: a follow-up study. Lancet 2001; 358: 1208–12

    Article  PubMed  CAS  Google Scholar 

  192. Holick MF. Vitamin D: a millenium perspective. J Cell Biochem 2003; 88: 296–307

    Article  PubMed  CAS  Google Scholar 

  193. Baroncelli GI, Bertelloni S, Ceccarelli C, et al. Bone turnover in children with vitamin D deficiency rickets before and during treatment. Acta Paediatr 2000; 89: 513–8

    Article  PubMed  CAS  Google Scholar 

  194. Holick MF. Sunlight ‘D’ilemma: risk of cancer or bone disease and muscle weakness. Lancet 2001; 357: 4–5

    Article  PubMed  CAS  Google Scholar 

  195. Zamora SA, Rizzoli R, Belli DC, et al. Vitamin D supplementation during infancy is associated with higher bone mineral mass in prepubertal girls. J Clin Endocrinol Metab 1999; 84: 4541–4

    Article  PubMed  CAS  Google Scholar 

  196. Hochberg Z, Bereket A, Davenport M, et al. Consensus development for the supplementation of vitamin D in childhood and adolescence. Horm Res 2002; 58: 39–51

    Article  PubMed  CAS  Google Scholar 

  197. Saggese G, Bertelloni S, Baroncelli GI, et al. Mineral homeostasis in osteoporosis of anorexia nervosa. Minerva Pediatr 1989; 41: 61–5

    PubMed  CAS  Google Scholar 

  198. Bachrach LK, Katzman DK, Litt IF, et al. Recovery from osteopenia in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab 1991; 72: 602–6

    Article  PubMed  CAS  Google Scholar 

  199. Biller BM, Saxe V, Herzog DB, et al. Mechanisms of osteoporosis in adult and adolescent women with anorexia nervosa. J Clin Endocrinol Metab 1989; 68: 548–54

    Article  PubMed  CAS  Google Scholar 

  200. Soyka LA, Grinspoon S, Levitsky LL, et al. The effects of anorexia nervosa on bone metabolism in female adolescents. J Clin Endocrinol Metab 1999; 84: 4489–96

    Article  PubMed  CAS  Google Scholar 

  201. Misra M, Miller KK, Bjornson J, et al. Alterations in growth hormone secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J Clin Endocrinol Metab 2003; 88: 5615–23

    Article  PubMed  CAS  Google Scholar 

  202. Audi L, Vargas DM, Gussinyé M, et al. Clinical and biochemical determinants of bone metabolism and bone mass in adolescent female patients with anorexia nervosa. Pediatr Res 2002; 51: 497–504

    Article  PubMed  CAS  Google Scholar 

  203. Soyka LA, Misra M, Frenchman A, et al. Abnormal bone mineral accrual in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab 2002; 87: 4177–85

    Article  PubMed  CAS  Google Scholar 

  204. Seeman E, Karlsson MK, Duan Y. On exposure to anorexia nervosa, the temporal variation in axial and appendicular skeletal development predisposes to site-specific deficits in bone size and density: a cross-sectional study. J Bone Miner Res 2000; 15: 2259–65

    Article  PubMed  CAS  Google Scholar 

  205. Vermeer C, Gijsbers BL, Cracium AM, et al. Effects of vitamin K on bone mass and bone metabolism. J Nutr 1996; 126: 1187S

    PubMed  CAS  Google Scholar 

  206. Wyshak G, Frisch RE. Carbonated beverages, dietary calcium, the dietary calcium/phosphorus ratio, and bone fractures in girls and boys. J Adolesc Health 1994; 15: 210–5

    Article  PubMed  CAS  Google Scholar 

  207. Petridou E, Karpathios T, Dessypris N, et al. The role of dairy products and nonalcoholic beverages in bone fractures among schoolage children. Scand J Soc Med 1997; 25: 119–25

    PubMed  CAS  Google Scholar 

  208. Wyshak G. Teenaged girls, carbonated beverages consumption, and bone fractures. Arch Pediatr Adolesc Med 2000; 154: 610–3

    Article  PubMed  CAS  Google Scholar 

  209. Kinney MAO. Does consumption of cola beverages cause bone fractures in children? Mayo Clin Proc 2002; 77: 1005–6

    PubMed  Google Scholar 

  210. Whiting SJ, Healey A, Psiuk S, et al. Relationship between carbonated and other low nutrient dense beverages and bone mineral content of adolescence. Nutr Res 2001; 21: 1107–15

    Article  CAS  Google Scholar 

  211. McGartland C, Robson PJ, Murray L, et al. Carbonated soft drink consumption and bone mineral density in adolescence: the Northern Ireland Young Hearts Project. J Bone Miner Res 2003; 18: 1563–9

    Article  PubMed  CAS  Google Scholar 

  212. Mazariegos-Ramos E, Guerrero-Romero F, Rodriguez-Moran M, et al. Consumption of soft drinks with phosphoric acid as a risk factor for the development of hypocalcemia in children: a case-control study. J Pediatr 1995; 126: 940–2

    Article  PubMed  CAS  Google Scholar 

  213. Harnack L, Stang J, Story M. Soft drink consumption among US children and adolescents: nutritional consequences. J Am Diet Assoc 1999; 99: 436–41

    Article  PubMed  CAS  Google Scholar 

  214. Fitzpatrick L, Heaney RP. Got soda? J Bone Miner Res 2003; 18: 1570–2

    Article  PubMed  CAS  Google Scholar 

  215. Cavadini C, Siega-Riz AM, Popkin BM. US adolescent food intake trends from 1965 to 1996. Arch Dis Child 2000; 83: 18–24

    Article  PubMed  CAS  Google Scholar 

  216. American Academy of Pediatrics Committee on School Health. Soft drinks in schools. Pediatrics 2004; 113: 152–4

    Article  Google Scholar 

  217. Moukarzel A. Metabolic bone disease in total parenteral nutrition. In: Lifshitz F, editor. Pediatric endocrinology. 3rd ed. New York: Marcel Dekker, 1996: 535–45

    Google Scholar 

  218. Buchman AL, Moukarzel A. Metabolic bone disease associated with total parenteral nutrition. Clin Nutr 2000; 19: 217–31

    Article  PubMed  CAS  Google Scholar 

  219. Bishop NJ, Dahlenburg SL, Fewtrell MS, et al. Early diet of preterm infants and bone mineralization at age five years. Acta Paediatr 1996; 85: 230–6

    Article  PubMed  CAS  Google Scholar 

  220. Miller ME. The bone disease of preterm birth: a biomechanical perspective. Pediatr Res 2003; 52: 1–6

    Google Scholar 

  221. Fewtrell MS, Prentice A, Jones SC, et al. Bone mineralization and turnover in preterm infants at 8–12 years of age: the effect of early diet. J Bone Miner Res 1999; 14: 810–20

    Article  PubMed  CAS  Google Scholar 

  222. Cooper C, Javaid MK, Taylor P, et al. The fetal origins of osteoporotic fracture. Calcif Tissue Int 2002; 70: 391–4

    Article  PubMed  CAS  Google Scholar 

  223. Jones G, Dwyer T. Birth weight, birth length, and bone density in prepubertal children: evidence for an association that may be mediated by genetic factors. Calcif Tissue Int 2000; 67: 304–8

    Article  PubMed  CAS  Google Scholar 

  224. Zamora SA, Belli DC, Rizzoli R, et al. Lower femoral neck bone mineral density in prepubertal former preterm infants. Bone 2001; 29: 424–7

    Article  PubMed  CAS  Google Scholar 

  225. Daci E, van Cromphaut S, Bouillon R. Mechanisms influencing bone metabolism in chronic illness. Horm Res 2002; 58Suppl. 1: 44–51

    Article  PubMed  CAS  Google Scholar 

  226. McDonagh JE. Osteoporosis in juvenile idiopathic arthritis. Curr Opin Rheumatol 2001; 13: 399–404

    Article  PubMed  CAS  Google Scholar 

  227. Cimaz R. Osteoporosis in childhood rheumatic diseases: prevention and therapy. Best Pract Res Clin Rheumatol 2002; 16: 397–409

    PubMed  Google Scholar 

  228. Rabinovich CE. Bone metabolism in childhood rheumatic disease. Rheum Dis Clin N Am 2002; 28: 655–67

    Article  Google Scholar 

  229. Alsufyani KA, Ortiz-Alvarez O, Cabral DA, et al. Bone mineral density in children and adolescents with systemic lupus erythematosus, juvenile dermatomyositis, and systemic vasculitis: relationship to disease duration, cumulative corticosteroid dose, calcium intake, and exercise. J Rheumatol 2005; 32: 729–33

    PubMed  CAS  Google Scholar 

  230. Lien G, Selvaag AM, Flato B, et al. A two-year prospective controlled study of bone mass and bone turnover in children with early juvenile idiopathic arthritis. Arthritis Rheum 2005; 52: 833–40

    Article  PubMed  Google Scholar 

  231. Goodman WG, Coburn JW, Slatopolsky E, et al. Renal osteodystrophy in adults and children. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 4th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 1999: 347–63

    Google Scholar 

  232. Matteini M, Cotrozzi G. Bicarbonate renal diabetes (proximal or type II renal tubular acidosis) as a cause of marked hypercalciuria, nephrolithiasis, osteoporotic rickets and delayed somatogenital and skeletal development. Minerva Pediatr 1973; 25: 1215–8

    PubMed  CAS  Google Scholar 

  233. Freundlich M, Alonzo E, Bellorin-Font E, et al. Reduced bone mass in children with idiopathic hypercalciuria and in their asymptomatic mothers. Nephrol Dial Transplant 2002; 17: 1396–401

    Article  PubMed  Google Scholar 

  234. Penido MG, Lima EM, Marino VS, et al. Bone alterations in children with idiopathic hypercalciuria at the time of diagnosis. Pediatr Nephrol 2003; 18: 133–9

    PubMed  Google Scholar 

  235. Polito C, Iolascon G, Nappi B, et al. Growth and bone mineral density in long-lasting idiopathic hypercalciuria. Pediatr Neprhol 2003; 18: 545–7

    Google Scholar 

  236. Skalova S, Palicka V, Kutilek S. Bone mineral density and urinary N-acetyl-beta-D-glucosaminidase activity in paediatric patients with idiopathic hypercalciuria. Nephrology 2005; 10: 99–102

    Article  PubMed  CAS  Google Scholar 

  237. Issenman RM, Atkinson SA, Radoja C, et al. Longitudinal assessment of growth, mineral metabolism, and bone mass in pediatric Crohn’s disease. J Pediatr Gastroenterol Nutr 1993; 17: 401–6

    Article  PubMed  CAS  Google Scholar 

  238. Cowan FJ, Warner JT, Dunstan FD, et al. Inflammatory bowel disease and predisposition to osteopenia. Arch Dis Child 1997; 76: 325–9

    Article  PubMed  CAS  Google Scholar 

  239. Boot AM, Bouquet J, Krenning EP, et al. Bone mineral density and nutritional status in children with chronic inflammatory bowel disease. Gut 1998; 42: 188–94

    Article  PubMed  CAS  Google Scholar 

  240. Semeao EJ, Jawad AF, Stouffer NO, et al. Risk factors for low bone mineral density in children and young adults with Crohn’s disease. J Pediatr 1999; 135: 593–600

    Article  PubMed  CAS  Google Scholar 

  241. Gupta A, Paski S, Issenman R, et al. Lumbar spine bone mineral density at diagnosis and during follow-up in children with IBD. J Clin Densitom 2004; 7: 290–5

    Article  PubMed  Google Scholar 

  242. Burnham JM, Shults J, Semeao E, et al. Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition. J Bone Miner Res 2004; 19: 1961–8

    Article  PubMed  Google Scholar 

  243. Harpavat M, Greenspan SL, O’Brien C, et al. Altered bone mass in children at diagnosis of Crohn disease: a pilot study. J Pediatr Gastroenterol Nutr 2005; 40: 295–300

    Article  PubMed  Google Scholar 

  244. Mendeloff AI, Calkins BM. The epidemiology of idiopathic inflammatory bowel disease. In: Kirsner JB, Shorter RG, editors. Inflammatory bowel disease. Philadelphia (PA): Lea and Febiger, 1988: 3–34

    Google Scholar 

  245. Bernstein CN, Blanchard JF, Leslie W, et al. The incidence of fracture among patients with inflammatory bowel disease: a population-based cohort study. Ann Intern Med 2000; 133: 795–9

    PubMed  CAS  Google Scholar 

  246. Klaus J, Armbrecht G, Steinkamp M, et al. High prevalence of osteoporotic vertebral fractures in patients with Crohn’s disease. Gut 2002; 51: 654–8

    Article  PubMed  CAS  Google Scholar 

  247. Loftus EV, Crowson CS, Sandborn WJ, et al. Long-term fracture risk in patients with Crohn’s disease: a population-based study in Olmsted County, Minnesota. Gastroenterology 2002; 123: 468–75

    Article  PubMed  Google Scholar 

  248. Kobayashi A, Kawai S, Utsunomiya T, et al. Bone disease in infants and children with hepatobiliary disease. Arch Dis Child 1974; 49: 641–6

    Article  PubMed  CAS  Google Scholar 

  249. Heubi JE, Hollis BW, Specker B, et al. Bone disease in chronic childhood cholestasis: I. Vitamin D absorption and metabolism. Hepatology 1989; 9: 258–64

    Article  PubMed  CAS  Google Scholar 

  250. Tokita A, Nittono H, Mori T, et al. Vitamin D metabolism in pre-operative extrahepatic biliary atresia. Acta Paediatr Scand 1991; 80: 634–9

    Article  PubMed  CAS  Google Scholar 

  251. Argao EA, Specker BL, Heubi JE. Bone mineral content in infants and children with chronic cholestatic liver disease. Pediatrics 1993; 91: 1151–4

    PubMed  CAS  Google Scholar 

  252. Almdal T, Schaadt O, Vesterdad Jorgensen J, et al. Vitamin D, parathyroid hormone, and bone mineral content of lumbar spine and femur in primary biliary cirrhosis. J Intern Med 1989; 225: 207–13

    Article  PubMed  CAS  Google Scholar 

  253. Isaia G, Di Stefano M, Roggia C, et al. Bone disorders in cholestatic liver diseases. Forum 1998; 8: 28–38

    PubMed  CAS  Google Scholar 

  254. Floreani A, Fries W, Luisetto G, et al. Bone metabolism in orthotopic liver transplantation: a prospective study. Liver Transpl Surg 1998; 4: 311–9

    Article  PubMed  CAS  Google Scholar 

  255. Trautwein C, Possienke M, Schlitt HJ, et al. Bone density and metabolism in patients with viral hepatitis and cholestatic liver diseases before and after liver transplantation. Am J Gastroenterol 2000; 95: 2343–51

    Article  PubMed  CAS  Google Scholar 

  256. Newton J, Francis R, Prince M, et al. Osteoporosis in primary biliary cirrhosis revisited. Gut 2001; 49: 282–7

    Article  PubMed  CAS  Google Scholar 

  257. Chongsrisawat V, Ruttanamongkol P, Chaiwatanarat T, et al. Bone density and 25-hydroxyvitamin D level in extrahepatic biliary atresia. Pediatr Surg Int 2001; 17: 604–8

    Article  PubMed  CAS  Google Scholar 

  258. Argao EA, Heubi JE, Hollis BW, et al. D-Alpha-tocopheryl polyethylene glycol-1000 succinate enhances the absorption of vitamin D in chronic cholestatic liver disease of infancy and childhood. Pediatr Res 1992; 31: 146–50

    Article  PubMed  CAS  Google Scholar 

  259. Hodgson SF, Dickson ER, Wahner HW, et al. Bone loss and reduced osteoblast function in primary biliary cirrhosis. Ann Intern Med 1985; 103: 855–60

    PubMed  CAS  Google Scholar 

  260. Sylvester FA. Bone abnormalities in gastrointestinal and hepatic disease. Rev Endocr Metab Disord 2001; 2: 75–80

    Article  PubMed  CAS  Google Scholar 

  261. Heubi JE, Higgins JV, Argao EA, et al. The role of magnesium in the pathogenesis of bone disease in childhood cholestatic liver disease: a preliminary report. J Pediatr Gastroenterol Nutr 1997; 25: 301–6

    Article  PubMed  CAS  Google Scholar 

  262. Shane E, Mancini D, Aaronson K, et al. Bone mass, vitamin D deficiency, and hyperparathyroidism in congestive heart failure. Am J Med 1997; 103: 197–207

    Article  PubMed  CAS  Google Scholar 

  263. Rego C, Guerra A, Guardiano M, et al. Bony density in adolescents after surgical repair of tetralogy of Fallot: a comparative study with healthy adolescents. Cardiol Young 2002; 12: 531–6

    Article  PubMed  Google Scholar 

  264. De Sanctis V, Pinamonti A, Di Palma A, et al. Growth and development in thalassaemia major patients with severe bone lesions due to desferrioxamine. Eur J Paediatr 1996; 155: 368–72

    Article  Google Scholar 

  265. Benigno V, Bertelloni S, Baroncelli GI, et al. Effects of thalassemia major on bone mineral density in late adolescence. J Pediatr Endocrinol Metab 2003; 16Suppl. 2: 337–42

    PubMed  Google Scholar 

  266. Mahachoklertwattana P, Chuansumrit A, Sirisriro R, et al. Bone mineral density, biochemical and hormonal profiles in suboptimally treated children and adolescents with β-thalassemia disease. Clin Endocrinol (Oxf) 2003; 58: 273–9

    Article  CAS  Google Scholar 

  267. Domrongkitchaiporn S, Sirikulchayanonta V, Angchaisuksiri P, et al. Abnormalities in bone mineral density and bone histology in thalassemia. J Bone Miner Res 2003; 18: 1682–8

    Article  PubMed  CAS  Google Scholar 

  268. Hershkovitz I, Rothschild BM, Latimer B, et al. Recognition of sickle cell anemia in skeletal remains of children. Am J Phys Anthropol 1997; 104: 213–26

    Article  PubMed  CAS  Google Scholar 

  269. Gallacher SJ, Deighan C, Wallace AM, et al. Association of severe haemophilia A with osteoporosis: a densitometric and biochemical study. Q J Med 1994; 87: 181–6

    PubMed  CAS  Google Scholar 

  270. Barnes C, Wong P, Egan B, et al. Reduced bone density among children with severe hemophilia. Pediatrics 2004; 114: e177–81

    Article  PubMed  Google Scholar 

  271. Yakisan E, Schirg E, Zeidler C, et al. High incidence of significant bone loss in patients with severe congenital neutropenia (Kostmann’s syndrome). J Pediatr 1997; 131: 592–7

    Article  PubMed  CAS  Google Scholar 

  272. Zeidler C, Welte K. Kostmann syndrome and severe congenital neutropenia. Semin Hematol 2002; 39: 82–8

    Article  PubMed  CAS  Google Scholar 

  273. Elhasid R, Hofbauer LC, Ish-Shalom S, et al. Familial severe congenital neutropenia associated with infantile osteoporosis: a new entity. Am J Hematol 2003; 72: 34–7

    Article  PubMed  CAS  Google Scholar 

  274. Dale DC, Cottle TE, Fier CJ, et al. Severe chronic neutropenia: treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. Am J Hematol 2003; 72: 82–93

    Article  PubMed  Google Scholar 

  275. Leung DY, Geha RS. Clinical and immunologic aspects of the hyperimmunoglobulin E syndrome. Hematol Oncol Clin North Am 1988; 2: 81–100

    PubMed  CAS  Google Scholar 

  276. Kilic SS, Sanal O, Tezcan I, et al. Osteochondritis dissecans in a patient with hyperimmunoglobulin E syndrome. Turk J Pediatr 2002; 44: 357–9

    PubMed  Google Scholar 

  277. Chamlin SL, McCalmont TH, Cunningham BB, et al. Cutaneous manifestations of hyper-IgE syndrome in infants and children. J Pediatr 2002; 141: 572–5

    Article  PubMed  Google Scholar 

  278. Kaste SC, Chesney RW, Hudson MM, et al. Bone mineral status during and after therapy of childhood cancer: an increasing population with multiple risk factors for impaired bone health. J Bone Miner Res 1999; 14: 2010–4

    Article  PubMed  CAS  Google Scholar 

  279. Hesseling PB, Hough SF, Nel ED, et al. Bone mineral density in long-term survivors of childhood cancer. Int J Cancer 1998; 11 Suppl.: 44–7

    Article  CAS  Google Scholar 

  280. Vassilopoulou-Sellin R, Brosnan P, Delpassand A, et al. Osteopenia in young adult survivors of childhood cancer. Med Pediatr Oncol 1999; 32: 272–8

    Article  PubMed  CAS  Google Scholar 

  281. Zerwech JE, Ruml LA, Gottschalk F, et al. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res 1998; 13: 1594–601

    Article  Google Scholar 

  282. Donaldson CL, Hulley SB, Vogel JM, et al. Effect of prolonged bed rest on bone mineral. Metabolism 1970; 19: 1071–84

    Article  PubMed  CAS  Google Scholar 

  283. Holick MF. Perspective on the impact of weightlessness on calcium and bone metabolism. Bone 1998; 22 Suppl.: 105S–11S

    Article  PubMed  CAS  Google Scholar 

  284. Shaw NJ, White CP, Fraser WD, et al. Osteopenia in cerebral palsy. Arch Dis Child 1994; 71: 235–8

    Article  PubMed  CAS  Google Scholar 

  285. Wilmshurst S, Ward K, Adams JE, et al. Mobility status and bone density in cerebral palsy. Arch Dis Child 1996; 75: 164–5

    Article  PubMed  CAS  Google Scholar 

  286. Dauty M, Perrouin Verbe B, Maugars Y, et al. Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 2000; 27: 305–9

    Article  PubMed  CAS  Google Scholar 

  287. Henderson RC, Lark RK, Gurka MJ, et al. Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics 2002; 110: 1–10

    Article  Google Scholar 

  288. King W, Levin R, Schmidt R, et al. Prevalence of reduced bone mass in children and adults with spastic quadriplegia. Dev Med Child Neurol 2003; 45: 12–6

    Article  PubMed  Google Scholar 

  289. Quan A, Adams R, Ekmark E, et al. Bone mineral density in children with myelomeningocele: effect of hydrochlorothiazide. Pediatr Nephrol 2003; 18: 929–33

    Article  PubMed  Google Scholar 

  290. Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop 2000; 20: 71–4

    PubMed  CAS  Google Scholar 

  291. Aparicio LF, Jurkovic M, DeLullo J. Decreased bone density in ambulatory patients with Duchenne muscular dystrophy. J Pediatr Orthop 2002; 22: 179–81

    PubMed  Google Scholar 

  292. Bianchi ML, Mazzanti A, Galbiati E, et al. Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos Int 2003; 14: 761–7

    Article  PubMed  CAS  Google Scholar 

  293. Cizza G, Ravn P, Chrousos GP, et al. Depression: a major, unrecognized risk factor for osteoporosis? Trends Endocrinol Metab 2001; 12: 198–203

    Article  PubMed  CAS  Google Scholar 

  294. Vrkljan M, Thaller V, Lovricevic I, et al. Depressive disorder as possible risk factor of osteoporosis. Coll Anthropol 2001; 25: 485–92

    CAS  Google Scholar 

  295. Lyles KW. Osteoporosis and depression: shedding more light upon a complex relationship. J Am Geriatr Soc 2001; 49: 827–8

    Article  PubMed  CAS  Google Scholar 

  296. Irwin CE, Shafer M-A, Ryan SA. The adolescent patient. In: Rudoph AM, Hoffman JIE, Rudolph CD, editors. Rudolph’s Pediatrics. London: Prentice Hall Int., 1996: 42–3

    Google Scholar 

  297. Klein L, Herndon DN, Langman CB, et al. Long-term reduction in bone mass after severe burn injury in children. J Pediatr 1995; 126: 252–6

    Article  PubMed  CAS  Google Scholar 

  298. Berger MM, Rothen C, Cavadini C, et al. Exudative mineral losses after serious burns: a clue to the alterations of magnesium and phosphate metabolism. Am J Clin Nutr 1997; 65: 1473–81

    PubMed  CAS  Google Scholar 

  299. Klein L, Langman CB, Herndon DN. Vitamin D depletion following burn injury in children: a possible factor in post-burn osteopenia. J Trauma 2002; 52: 346–50

    Article  PubMed  CAS  Google Scholar 

  300. Klein GL, Chen TC, Holick MF, et al. Synthesis of vitamin D in skin after burns. Lancet 2004; 363: 291–2

    Article  PubMed  CAS  Google Scholar 

  301. Jergas MD, Genant HK. Radiology of osteoporosis. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 4th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 1999: 160–9

    Google Scholar 

  302. Herbold NH, Frates SE. Update of nutrition guidelines for the teen: trends and concerns. Curr Opin Pediatr 2000; 12: 303–9

    Article  PubMed  CAS  Google Scholar 

  303. Bachrach LK. Making an impact on pediatric bone health. J Pediatr 2000; 136: 137–9

    Article  PubMed  CAS  Google Scholar 

  304. American College of Sport Medicine. The female athlete triad. Med Sci Sports Exerc 1997; 229: 1–9

    Google Scholar 

  305. American Psychiatric Association. Practice guidelines for the treatment of patients with eating disorders. Am J Phychiatry 2000; 157Suppl. 1: 1–36

    Google Scholar 

  306. Rodino MA, Shane E. Osteoporosis after organ transplantation. Am J Med 1998; 104: 459–69

    Article  PubMed  CAS  Google Scholar 

  307. Cohen A, Shane E. Osteoporosis after solid organ and bone marrow transplantation. Osteoporos Int 2003; 14: 617–30

    Article  PubMed  Google Scholar 

  308. Daniels MW, Wilson DM, Paguntalan HG, et al. Bone mineral density in pediatric transplant recipients. Transplantation 2003; 76: 673–8

    Article  PubMed  Google Scholar 

  309. Acott PD, Crocker JF, Wong JA, et al. Decreased bone mineral density in the pediatric renal transplant population. Pediatr Transplant 2003; 7: 358–63

    Article  PubMed  CAS  Google Scholar 

  310. Schulte C, Beelen DW, Schaefer UW, et al. Bone loss in long-term survivors after transplantation of hematopoietic stem cells: a prospective study. Osteoporos Int 2000; 11: 344–53

    Article  PubMed  CAS  Google Scholar 

  311. Giannini S, Nobile M, Ciuffreda M, et al. Long-term persistence of low bone density in orthotopic liver transplantation. Osteoporos Int 2000; 11: 417–24

    Article  PubMed  CAS  Google Scholar 

  312. Segal E, Baruch Y, Kramsky R, et al. Predominant factors associated with bone loss in liver transplant patients after prolonged post-transplantation period. Clin Transplant 2003; 17: 13–9

    Article  PubMed  Google Scholar 

  313. Nysom K, Holm K, Michaelsen KF, et al. Bone mass after allogeneic BMT for childhood leukaemia or lymphoma. Bone Marrow Transplant 2000; 25: 191–6

    Article  PubMed  CAS  Google Scholar 

  314. Cook SD, Harding AF, Morgan EL, et al. Trabecular bone mineral density in idiopathic scoliosis. J Pediatr Orthop 1987; 7: 168–74

    Article  PubMed  CAS  Google Scholar 

  315. Thomas KA, Cook SD, Skalley TC, et al. Lumbar spine and femoral neck bone mineral density in idiopathic scoliosis: a follow-up study. J Pediatr Orthop 1992; 12: 235–40

    Article  PubMed  CAS  Google Scholar 

  316. Cheng JC, Qin L, Cheung CS, et al. Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res 2000; 15: 1587–95

    Article  PubMed  CAS  Google Scholar 

  317. Cheng JC, Tang SP, Guo X, et al. Osteopenia in adolescent idiopathic scoliosis: a histomorphometric study. Spine 2001; 26: E19–23

    Article  PubMed  CAS  Google Scholar 

  318. Castells S. Metabolic bone disease. In: Lifshitz F, editor. Pediatric endocrinology. 3rd ed. New York: Marcel Dekker, 1996: 521–34

    Google Scholar 

  319. Moen C. Orthopedic aspects of progeria. J Bone Joint Surg Am 1982; 64: 542–6

    PubMed  CAS  Google Scholar 

  320. De Paula Rodrigues GH, das Eiras Tamega I, Duque G, et al. Severe bone changes in a case of Hutchinson-Gilford syndrome. Ann Genet 2002; 45: 151–5

    Article  PubMed  Google Scholar 

  321. Uitto J. Searching for clues to premature aging. Trends Endocrinol Metab 2002; 13: 140–1

    Article  PubMed  CAS  Google Scholar 

  322. Maayan C, Bar-On E, Foldes AJ, et al. Bone mineral density and metabolism in familial dysautonomia. Osteoporos Int 2002; 13: 429–33

    Article  PubMed  CAS  Google Scholar 

  323. Haas RH, Dixon SD, Sartoris D, et al. Osteopenia in Rett syndrome. J Pediatr 1997; 13: 771–4

    Google Scholar 

  324. Leonard H, Thomson MR, Glasson EJ, et al. A population based approach to the investigation of osteopenia in Rett syndrome. J Dev Med Child Neurol 1999; 41: 323–8

    Article  CAS  Google Scholar 

  325. Cepollaro C, Gonnelli S, Bruni D, et al. Dual x-ray absorptiometry and bone ultrasonography in patients with Rett syndrome. Calcif Tissue Int 2001; 69: 259–62

    Article  PubMed  CAS  Google Scholar 

  326. Budden SS, Gunness ME. Bone histomorphometry in three females with Rett syndrome. Brain Dev 2001; 23: S133–57

    Article  PubMed  Google Scholar 

  327. Julu POO, Kerr AM, Hansen S, et al. Functional evidence of brain stem immaturity in Rett syndrome. Eur Child Adolesc Psychiatry 1997; 6Suppl. 1: 47–54

    PubMed  Google Scholar 

  328. Illes T, Halmai V, de Jonge T, et al. Decreased bone mineral density in neurofibro-matosis-1 patients with spinal deformities. Osteoporos Int 2001; 12: 823–7

    Article  PubMed  CAS  Google Scholar 

  329. Kuorilehto T, Poyhonen M, Bloigu R, et al. Decreased bone mineral density and content in neurofibromatosis type 1: lowest local values are located in the load-carrying parts of the body. Osteoporos Int. In press

  330. Abes M, Sarihan H, Madenci E. Evaluation of bone mineral density with dual x-ray absorptiometry for osteoporosis in children with bladder augmentation. J Pediatr Surg 2003; 38: 230–2

    Article  PubMed  Google Scholar 

  331. Mingin G, Maroni P, Gerharz EW, et al. Linear growth after enterocystoplasty in children and adolescents: a review. World J Urol 2004; 22: 196–9

    Article  PubMed  Google Scholar 

  332. Behr FD, Bangert JL, Hansen RC. Atypical pityriasis rubra pilaris associated with arthropathy and osteoporosis: a case report with 15-year follow-up. Pediatr Dermatol 2002; 19: 46–51

    Article  PubMed  Google Scholar 

  333. Dundaroz MR, Sarici SU, Turkbay T, et al. Evaluation of bone mineral density in chronic glue sniffers. Turk J Pediatr 2002; 44: 326–9

    PubMed  Google Scholar 

  334. Lakhanpal S, Ginsburg WW, Luthra HS, et al. Transient regional osteoporosis: a study of 56 cases and review of the literature. Ann Intern Med 1987; 106: 444–50

    PubMed  CAS  Google Scholar 

  335. Lorenc RS. Idiopathic juvenile osteoporosis. Calcif Tissue Int 2002; 70: 395–7

    Article  PubMed  CAS  Google Scholar 

  336. Saggese G, Bertelloni S, Baroncelli GI, et al. Mineral metabolism and calcitriol therapy in idiopathic juvenile osteoporosis. Am J Dis Child 1991; 145: 457–62

    PubMed  CAS  Google Scholar 

  337. Krassas GE. Idiopathic juvenile osteoporosis. Ann N Y Acad Sci 2000; 900: 409–12

    Article  PubMed  CAS  Google Scholar 

  338. Smith R. Idiopathic juvenile osteoporosis: experience of twenty-one patients. Br J Rheumatol 1995; 34: 68–77

    Article  PubMed  CAS  Google Scholar 

  339. Bertelloni S, Baroncelli GI, Di Nero G, et al. Idiopathic juvenile osteoporosis: evidence of normal osteoblast function by 1,25-dihydroxy vitamin D3 stimulation test. Calcif Tissue Int 1992; 51: 20–3

    Article  PubMed  CAS  Google Scholar 

  340. Rauch F, Travers R, Norman ME, et al. Deficient bone formation in idiopathic juvenile osteoporosis: a histomorphometric study of cancellous iliac bone. J Bone Miner Res 2000; 15: 957–63

    Article  PubMed  CAS  Google Scholar 

  341. Rauch F, Travers R, Norman ME, et al. The bone formation defect in idiopathic juvenile osteoporosis is surface-specific. Bone 2002; 31: 85–9

    Article  PubMed  CAS  Google Scholar 

  342. Norman ME. Juvenile osteoporosis. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 4th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 1999: 302–5

    Google Scholar 

  343. Loro ML, Sayre J, Roe TF, et al. Early identification of children predisposed to low peak bone mass and osteoporosis later in life. J Clin Endocrinol Metab 2000; 85: 3908–18

    Article  PubMed  CAS  Google Scholar 

  344. Brown JP. Osteoporosis in children: 2002 guidelines do not apply [letter]. CMAJ 2003; 168: 676

    Google Scholar 

  345. Batch JA, Couper JJ, Rodda C, et al. Use of bisphosphonate therapy for osteoporosis in childhood and adolescence. J Pediatr Child Health 2003; 39: 88–92

    Article  CAS  Google Scholar 

  346. Reed A, Haugen M, Pachman LM, et al. 25-hydroxyvitamin D therapy in children with active juvenile rheumatoid arthritis: short-term effects on serum osteocalcin levels and bone density. J Pediatr 1991; 119: 657–60

    Article  PubMed  CAS  Google Scholar 

  347. Warady B, Lindsley C, Robinson R, et al. Effects of nutritional supplementation on bone mineral status in children with rheumatic disease receiving corticosteroid therapy. J Rheumatol 1994; 21: 530–5

    PubMed  CAS  Google Scholar 

  348. Bianchi ML, Bardare M, Galbiati E, et al. Bone development in juvenile rheumatoid arthritis. In: Schonau E, Matkovic V, editors. Paediatric osteology: prevention of osteoporosis: a paediatric task? Singapore: Elsevier Science, 1998: 173–81

    Google Scholar 

  349. Eastell R, Reid DM, Compston J, et al. A UK consensus group on management of glucocorticoid-induced osteoporosis: an update. J Intern Med 1998; 244: 271–92

    Article  PubMed  CAS  Google Scholar 

  350. American College of Rheumatology Ad Hoc Committee on Glucocorticoid-In-duced Osteoporosis. Recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis: 2001 update. Arthritis Rheum 2001; 44: 1496–503

    Article  Google Scholar 

  351. Fischer MH, Adkins WN, Liebl BH, et al. Bone status in non-ambulant, epileptic, institutionalized youth. Clin Pediatr 1988; 27: 499–505

    Article  CAS  Google Scholar 

  352. Hunt PA, Wu-Chen ML, Handal NJ, et al. Bone disease induced by anticonvulsant therapy and treatment with calcitriol (1,25-dihydroxyvitamin D3). Am J Dis Child 1986; 140: 715–8

    PubMed  CAS  Google Scholar 

  353. Jekovec-Vrhovsek M, Kocijancic A, Prezelj J. Effect of vitamin D and calcium on bone mineral density in children with cerebral palsy and epilepsy in full-time care. Dev Med Child Neurol 2000; 42: 403–5

    Article  PubMed  CAS  Google Scholar 

  354. Bischoff HA, Stahelin HB, Dick W, et al. Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res 2003; 18: 343–51

    Article  PubMed  CAS  Google Scholar 

  355. Nishioka T, Kurayama H, Yasuda T, et al. Nasal administration of salmon calcitonin for prevention of glucocorticoid-induced osteoporosis in children with nephrosis. J Pediatr 1991; 118: 703–7

    Article  PubMed  CAS  Google Scholar 

  356. Rebelo I, da Silva LP, Blanco JC, et al. Effects of synthetic salmon calcitonin therapy in children with osteogenesis imperfecta. J Int Med Res 1989; 17: 401–5

    PubMed  CAS  Google Scholar 

  357. Nishi Y, Hamamoto K, Kajiyama M, et al. Effect of long-term calcitonin therapy by injection and nasal spray on the incidence of fractures in osteogenesis imperfecta. J Pediatr 1992; 121: 477–80

    Article  PubMed  CAS  Google Scholar 

  358. Tuysuz B, Mercimek S, Ungur S, et al. Calcitonin treatment in osteoectasia with hyperphosphatasia (juvenile Paget’s disease): radiographic changes after treatment. Pediatr Radiol 1999; 29: 838–41

    Article  PubMed  CAS  Google Scholar 

  359. Canatan D, Akar N, Arcasoy A. Effects of calcitonin therapy on osteoporosis in patients with thalassemia. Acta Haematol 1995; 93: 20–4

    Article  PubMed  CAS  Google Scholar 

  360. Vichinsky EP. The morbidity of bone disease in thalassemia. Ann N Y Acad Sci 1998; 850: 344–8

    Article  PubMed  CAS  Google Scholar 

  361. Jackson EC, Strife F, Tsang RC, et al. Effect of calcitonin replacement therapy in idiopathic juvenile osteoporosis. Am J Dis Child 1988; 142: 1237–9

    PubMed  CAS  Google Scholar 

  362. Russell RGG, Croucher PI, Rogers MJ. Bisphosphonates: pharmacology, mechanisms of action and clinical uses. Osteoporos Int 1999; 9Suppl. 1: S66–80

    Article  PubMed  Google Scholar 

  363. Allgrove J. Use of bisphosphonates in children and adolescents. J Pediatr Endocrinol Metab 2002; 15: 921–8

    PubMed  CAS  Google Scholar 

  364. Koné Paut I, Gennari JM, Retornaz K, et al. Les biphosphonates chez l’enfant: présent et avenir. Arch Pédiatr 2002; 8: 836–42

    Article  Google Scholar 

  365. Glorieux FH, Bishop NJ, Plotkin H, et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med 1998; 39: 947–52

    Article  Google Scholar 

  366. Astrom E, Soderhall S. Beneficial effect of long term intravenous bisphosphonate treatment of osteogenesis imperfecta. Arch Dis Child 2002; 86: 356–64

    Article  PubMed  CAS  Google Scholar 

  367. Devogelaer JP. New uses of bisphosphonates: osteogenesis imperfecta. Curr Opin Pharamcol 2002; 2: 748–53

    Article  CAS  Google Scholar 

  368. Giraud F, Meunier PJ. Effect of cyclical intravenous pamidronate therapy in children with osteogenesis imperfecta: open-label study in seven patients. Joint Bone Spine 2002; 69: 486–90

    Article  PubMed  Google Scholar 

  369. Zeitlin L, Rauch F, Plotkin H, et al. Height and weight development during fouryears of therapy with cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta types I, III, and IV. Pediatrics 2003; 111: 1030–6

    Article  PubMed  Google Scholar 

  370. Van Persijn van Meerten EL, Kroon HM, Papapoulos SE. Epi- and metaphyseal changes in children caused by administration of bisphosphonates. Radiology 1992; 184: 249–54

    PubMed  Google Scholar 

  371. Bianchi ML, Cimaz R, Bardare M, et al. Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue disease in children. Arthritis Rheum 2000; 43: 1960–6

    Article  PubMed  CAS  Google Scholar 

  372. Wright NM. Just taller or more bone? The impact of growth hormone on osteogen-esis imperfecta and idiopathic juvenile osteoporosis. J Pediatr Endocrinol Metab 2000; 13: 999–1002

    PubMed  Google Scholar 

  373. Antoniazzi F, Bertoldo F, Mottes M, et al. Growth hormone treatment in osteogen-esis imperfecta with quantitative defect of type I collagen synthesis. J Pediatr 1996; 129: 432–9

    Article  PubMed  CAS  Google Scholar 

  374. Marini JC, Hopkins E, Glorieux FH, et al. Positive linear growth and bone responses to growth hormone treatment in children with types III and IV osteogenesis imperfecta: high predictive value of the carboxylterminal propeptide of type I procollagen. J Bone Miner Res 2003; 18: 237–43

    Article  PubMed  CAS  Google Scholar 

  375. Rooney M, Davies UM, Reeve J, et al. Bone mineral content and bone mineral metabolism: changes after growth hormone treatment in juvenile chronic arthritis. J Rheumatol 2000; 27: 1073–81

    PubMed  CAS  Google Scholar 

  376. Touati G, Ruiz J-C, Porquet D, et al. Effects on bone metabolism of one year recombinant human growth hormone administration to children with juvenile chronic arthritis undergoing chronic steroid therapy. J Rheumatol 2000; 27: 1287–93

    PubMed  CAS  Google Scholar 

  377. Simon D, Lucidarme N, Prieur AM, et al. Effects on growth and body composition of growth hormone treatment in children with juvenile idiopathic arthritis requiring steroid therapy. J Rheumatol 2003; 30: 2492–9

    PubMed  CAS  Google Scholar 

  378. Bechtold S, Ripperger P, Bonfig W, et al. Bone mass development and bone metabolism in juvenile idiopathic arthritis: treatment with growth hormone for 4 years. J Rheumatol 2004; 31: 1407–12

    PubMed  Google Scholar 

  379. Bechtold S, Ripperger P, Bonfig W, et al. Growth hormone changes bone geometry and body composition in patients with juvenile idiopathic arthritis requiring glucocorticoid treatment: a controlled study using peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005; 90: 3168–73

    Article  PubMed  CAS  Google Scholar 

  380. Marcus R. Exercise: moving in the right direction. J Bone Miner Res 1998; 13: 1793–6

    Article  PubMed  CAS  Google Scholar 

  381. Janz KF, Burns TL, Torner JC, et al. Physical activity and bone measures in young children: the Iowa Bone Development Study. Pediatrics 2001; 107: 1387–93

    Article  PubMed  CAS  Google Scholar 

  382. Cassell C, Benedict M, Specker B. Bone mineral density in elite 7- to 9-yr-old female gymnasts and swimmers. Med Sci Sports Exerc 1996; 28: 1243–6

    Article  PubMed  CAS  Google Scholar 

  383. Courteix D, Lespessailles E, Loiseau Peres S, et al. Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int 1998; 8: 152–8

    Article  PubMed  CAS  Google Scholar 

  384. Bonner FJ, Sinaki M, Grabois M, et al. Health professional’s guide to rehabilitation of the patient with osteoporosis. Osteoporos Int 2003; 14Suppl. 2: S1–22

    Article  PubMed  Google Scholar 

  385. Fleming R, Patrick K. Osteoporosis prevention: pediatricians’ knowledge, attitudes, and counseling practices. Prev Med 2002; 34: 411–21

    Article  PubMed  Google Scholar 

  386. Boreham C, Riddoch C. The physical activity, fitness and health of children. J Sports Sci 2001; 19: 915–29

    Article  PubMed  CAS  Google Scholar 

  387. Metzl JD. Strength training and nutritional supplement use in adolescents. Curr Opin Pediatr 1999; 11: 292–6

    Article  PubMed  CAS  Google Scholar 

  388. Shaw NJ. Management of childhood osteoporosis [letter]. Arch Dis Child 2003; 88: 91

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors have no conflicts of interest that are directly relevant to the content of this study. The authors received the Research National Project no. 2003064547003, granted by the Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baroncelli, G.I., Bertelloni, S., Sodini, F. et al. Osteoporosis in Children and Adolescents. Pediatr-Drugs 7, 295–323 (2005). https://doi.org/10.2165/00148581-200507050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00148581-200507050-00003

Keywords