Skip to main content
Log in

Technologies for Individual Genotyping

Detection of Genetic Polymorphisms in Drug Targets and Disease Genes

  • Technology
  • Published:
American Journal of Pharmacogenomics

Abstract

Genetic variations have been associated with a predisposition to common diseases and individual variations in drug responses. Identification and genotyping a vast number of genetic polymorphisms in large populations are increasingly important for disease gene identification and pharmacogenetics. Commonly used gel electrophoresis-based genotyping methods for known polymorphisms include polymerase chain reaction (PCR) coupled with restriction fragment-length polymorphism analysis, allele-specific amplification, and oligonucleotide ligation assay. Fluorescent dye-based DNA fragmentation has been extensively used for high-throughput microsatellite or short tandem-repeat genotyping. TaqMan®1 and molecular beacon genotyping are commonly used homogeneous solution hybridization technologies. Because of the ease of experimental assay design, single nucleotide polymorphism (SNP) genotyping methods based on single-base extension are in rapid development, such as fluorescence homogenous assays, pyrosequencing and mass spectrometry. Non-PCR based genotyping assays such as Invader™ assays are promised to genotype directly from genomic DNA without the requirement of PCR amplification. The DNA microarray is a solid phase genotyping format that is rapidly developing for parallel genotyping of a large number of SNPs simultaneously.

Advanced technologies to identify genetic polymorphisms rapidly, accurately, and cost effectively will fundamentally change the practice of medicine by allowing physicians to prescribe medicine based on a patient’s genetic make-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000 Sep; 26(1): 76–80

    Article  PubMed  CAS  Google Scholar 

  2. Martin ER, Lai EH, Gilbert JR, et al. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am J Hum Genet 2000 Aug; 67(2): 383–94

    Article  PubMed  CAS  Google Scholar 

  3. Roses AD. Pharmacogenomics and the practice of medicine. Nature 2000; 405: 857–65

    Article  PubMed  CAS  Google Scholar 

  4. Kleyn PW, Vesell ES. Genetic variation as a guide to drug development. Science 1998; 281: 1820–1

    Article  PubMed  CAS  Google Scholar 

  5. Weber WW. Pharmacogenetics. New York: Oxford University Press, 1997

    Google Scholar 

  6. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487–91

    Article  PubMed  CAS  Google Scholar 

  7. Sachse C, Brockmoller J, Bauer S, et al. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–95

    PubMed  CAS  Google Scholar 

  8. Iyer L, Hall D, Das S, et al. Phenotype-genotype correlation of in vitro SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. Clin Pharmacol Ther 1999; 65: 576–8

    Article  PubMed  CAS  Google Scholar 

  9. Martinez FD, Graves PE, Baldini M, et al. Association between genetic polymorphisms of the beta2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J Clin Invest 1997; 100: 3184–8

    Article  PubMed  CAS  Google Scholar 

  10. Drazen JM, Yandava CN, Dube L, et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet 1999; 22: 168–70

    Article  PubMed  CAS  Google Scholar 

  11. Kuivenhoven JA, Jukema JW, Zwinderman AH, et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis: the Regression Growth Evaluation Statin Study Group. N Engl J Med 1999; 338: 86–93

    Article  Google Scholar 

  12. Durant J, Clevenbergh P, Halfon P, et al. Drug-resistance genotyping in HIV-1 therapy: the VIRADAPT randomised controlled trial. Lancet 1999; 353: 2195–9

    Article  PubMed  CAS  Google Scholar 

  13. Chaix-Couturier C, Holtzer C, Phillips KA, et al. HIV-1 drug resistance genotyping: a review of clinical and economic issues. Pharmacoeconomics 2000 Nov; 18(5): 425–33

    Article  PubMed  CAS  Google Scholar 

  14. Shi MM, Bleavins MR, de la Iglesia FA. Technologies for detecting genetic polymorphisms in pharmacogenomics. Mol Diagnosis 1999; 4: 343–51

    Article  CAS  Google Scholar 

  15. Nickerson DA, Kaiser R, Lappin S, et al. Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc Natl Acad Sci U S A 1990 Nov; 87(22): 8923–7

    Article  PubMed  CAS  Google Scholar 

  16. Baron H, Fung S, Aydin A, et al. Oiligonucleotide ligation assay (OLA) for the diagnosis of familial hypercholesterolemia. Nat Biotechnol 1996; 14: 1279–82

    Article  PubMed  CAS  Google Scholar 

  17. Hansen TS, Petersen NE, Iitia A, et al. Robust nonradioactive oligonucleotide ligation assay to detect a common point mutation in the CYP2D6 gene causing abnormal drug metabolism. Clin Chem 1995; 41: 413–8

    PubMed  CAS  Google Scholar 

  18. Beutler E, Gelbart T, Demina A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1 A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci USA 1998; 95: 8170–4

    Article  PubMed  CAS  Google Scholar 

  19. Clegg RM. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 1992; 211: 353–88

    Article  PubMed  CAS  Google Scholar 

  20. Shi MM, Myrand SP, Bleavins MR, et al. High throughput genotyping for the detection of a single nucleotide polymorphism in NAD(P)H quinone oxidoreductase (DT diaphorase) using TaqMan probes. Mol Pathol 1999; 52: 295–9

    Article  PubMed  CAS  Google Scholar 

  21. Shi MM, Myrand SP, Bleavins MR, et al. High-throughput genotyping method for glutathione S-transferase T1 and M1 gene deletions using TaqMan probes. Res Commun Mol Pathol Pharmacol 1999; 103: 3–15

    PubMed  CAS  Google Scholar 

  22. Tyagi S, Bratu DP, Kramer FR. Multicolor molecular beacons for allele discrimination. Nat Biotechnol 1998; 16: 49–53

    Article  PubMed  CAS  Google Scholar 

  23. Lyamichev V, Mast AL, Hall JG, et al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat Biotechnol 1999; 17: 292–6

    Article  PubMed  CAS  Google Scholar 

  24. Kwiatkowski RW, Lyamichev V, de Arruda M, et al. Clinical, genetic, and pharmacogenetic applications of the Invader assay. Mol Diagn 1999; 4: 353–64

    Article  PubMed  CAS  Google Scholar 

  25. Huber S, McMaster KJ, Voelkerding KV. Analytical evaluation of primer engineered multiplex polymerase chain reaction-restriction fragment length polymorphism for detection of factor V Leiden and prothrombin G20210A. J Mol Diagn 2000 Aug; 2(3): 153–7

    Article  PubMed  CAS  Google Scholar 

  26. Mein CA, Barratt BJ, Dunn MG, et al. Evaluation of single nucleotide polymorphism typing with invader on PCR amplicons and its automation. Genome Res 2000 Mar; 10(3): 330–43

    Article  PubMed  CAS  Google Scholar 

  27. Ronaghi M, Karamohamed S, Pettersson B, et al. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 1996 Nov 1; 242(1): 84–9

    Article  PubMed  CAS  Google Scholar 

  28. Nikiforov TT, Rendle RB, Goelet P, et al. Genetic bit analysis: a solid phase method for typing single nucleotide polymorphisms. Nucleic Acids Res. 1994 Oct 11; 22(20): 4167–75

    Article  PubMed  CAS  Google Scholar 

  29. Chen X, Levine L, Kwok P-Y. Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res 1999; 9: 492–8

    PubMed  CAS  Google Scholar 

  30. Ross P, Hall L, Smirnov I, et al. High level multiplex genotyping by MALDI-TOF mass spectrometry. Nat Biotechnol 1998; 16: 1347–51

    Article  PubMed  CAS  Google Scholar 

  31. Tang K, Fu D, Julien D, et al. Chip-based genotyping by mass spectrometry. Proc Natl Acad Sci USA 1999; 96: 10016–20

    Article  PubMed  CAS  Google Scholar 

  32. Buetow KH, Edmonson M, MacDonald R, et al. High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Prroc Natl Acad Sci USA 2001; 98: 581–4

    Article  CAS  Google Scholar 

  33. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–9

    Article  PubMed  CAS  Google Scholar 

  34. Chee M, Yang R, Hubbell E, et al. Accessing genetic information with high-density DNA arrays. Science 1996; 274: 610–4

    Article  PubMed  CAS  Google Scholar 

  35. Lipshutz RJ, Fodor SPA, Gingeras TR, et al. High density synthetic oligonucleotide arrays. Nat Genet 1999 (Suppl); 21: 20–4

    Article  PubMed  CAS  Google Scholar 

  36. Hirschhorn JN, Sklar P, Lindblad-Toh K, et al. SBE-TAGS: an array-based method for efficient single-nucleotide polymorphism genotyping. Proc Natl Acad Sci U S A 2000 Oct 24; 97(22): 12164–9

    Article  PubMed  CAS  Google Scholar 

  37. Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 1998; 280: 1077–82

    Article  PubMed  CAS  Google Scholar 

  38. Hacia JG, Fan JB, Ryder O, et al. Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays. Nat Genet 1999; 22: 164–7

    Article  PubMed  CAS  Google Scholar 

  39. Fulton RJ, McDade RL, Smith PL, et al. Advanced multiplexed analysis with the FlowMetrix system. Clin Chem 1997 Sep; 43(9): 1749–56

    PubMed  CAS  Google Scholar 

  40. Dunbar SA, Jacobson JW. Application of the luminex LabMAP in rapid screening for mutations in the cystic fibrosis transmembrane conductance regulator gene: a pilot study. Clin Chem 2000 Sep; 46(9): 1498–500

    PubMed  CAS  Google Scholar 

  41. Ferguson JA, Steemers FJ, Walt DR. High-density fiber-optic DNA random microsphere array. Anal Chem 2000 Nov 15; 72(22): 5618–24

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author is employed by Sequenom Inc., San Diego, CA, USA.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, M.M. Technologies for Individual Genotyping. Am J Pharmacogenomics 2, 197–205 (2002). https://doi.org/10.2165/00129785-200202030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200202030-00005

Keywords

Navigation