Skip to main content
Log in

The Role of Paraoxonase 1 Activity in Cardiovascular Disease

Potential for Therapeutic Intervention

  • Leading Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

The antioxidant activity of high density lipoprotein (HDL) is largely due to the paraoxonase (PON) 1 located on it. Experiments with transgenic PON1 knockout mice indicate the potential for PON1 to protect against atherogenesis. This effect of HDL in decreasing low density lipoprotein (LDL) lipid peroxidation is maintained for longer than that of antioxidant vitamins and could therefore be more protective. Several important advances in the field of PON research have occurred recently, not least the discovery that two other members of the PON gene family — PON2 and PON3 — may also have important antioxidant properties. Significant advances have been made in understanding the basic biochemical function of PON1 and the discovery of possible modulators of its activity.

Case-control studies of PON1 activity and coronary heart disease (CHD) have shown a clear association between CHD and low serum PON1 activity. This relationship has been further strengthened by the publication of the first prospective study showing low serum PON1 activity to be an independent predictor of new CHD events. Furthermore, decreased CHD risk has been revealed by meta-analysis to be associated with the polymorphisms of PON1, which are most active in lipid peroxide hydrolysis. Although this is likely to be an underestimate of the true contribution of PON1 to CHD (because these polymorphisms explain only a small component of the variation in PON1 activity), it is important because genetic influences are unlikely to be confounded by other factors linked with both CHD and diminished PON1 activity. PON1 is being extensively researched and it is hoped that therapeutic approaches will emerge to increase its activity. Clinical trials of these, if successful, will not only provide a novel means of preventing atherosclerosis, but also provide a more satisfactory means of testing the oxidant hypothesis of atherosclerosis than antioxidant vitamin supplementation has proved to be.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The use of trade names is for identification purposes only and does not imply endorsement.

References

  1. Miller GJ, Miller NE. Plasma high-density lipoprotein concentration and the development of ischaemic heart disease. Lancet 1975; I: 16–9

    Article  Google Scholar 

  2. Castelli WP, Garrison RJ, Wilson PW, et al. Incidence of coronary heart disease and lipoprotein cholesterol levels: the Framingham Study. JAMA 1986; 256: 2835–8

    Article  PubMed  CAS  Google Scholar 

  3. Tanne D, Yaari S, Goldbourt U. High-density lipoprotein cholesterol and risk of ischaemic stroke mortality: a 21 year follow-up of 8586 men from the Israeli Ischaemic Heart Disease Study. Stroke 1997; 21: 83–7

    Article  Google Scholar 

  4. Assmann G, Schulte H, von Eckardstein A, et al. High density lipoprotein cholesterol as a predictor of coronary heart disease risk: the PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis 1996; 124: S11–20

    Article  PubMed  CAS  Google Scholar 

  5. Primo-Parma SL, Sorenson RC, Teiber J, et al. The human serum paraoxonase/ arylesterase gene (PON1) is one member of a multigene family. Genomics 1996; 33: 498–509

    Article  Google Scholar 

  6. La Du BN, Aviram M, Billecke S, et al. On the physiological role(s) of the paraoxonases. Chem Biol Interact 1999; 119-120: 379–88

    Article  PubMed  Google Scholar 

  7. Durrington PN, Mackness B, Mackness MI. Paraoxonase and atherosclerosis. Arterioscler Thromb Vasc Biol 2001; 21: 473–80

    Article  PubMed  CAS  Google Scholar 

  8. Mackness MI, Abbott CA, Arrol S, et al. The role of high density lipoprotein and lipid-soluble antioxidant vitamins in inhibiting low-density lipoprotein oxidation. Biochem J 1993; 294: 829–35

    PubMed  CAS  Google Scholar 

  9. Mackness MI, Arrol S, Durrington PN. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Letts 1991; 286: 152–4

    Article  CAS  Google Scholar 

  10. Watson AD, Berliner JA, Hama SY, et al. Protective effect of high density lipoprotein associated paraoxonase: inhibition of the biological activity of minimally oxidised low-density lipoprotein. J Clin Invest 1995; 96: 2882–91

    Article  PubMed  CAS  Google Scholar 

  11. Aviram M, Billecke S, Sorenson R, et al. Paraoxonase active site required for protection against LDL oxidation involves its free sulphydryl group and is different from that required for its arylesterase/paraoxonase activities: selective action of human paraoxonase alloenzymes Q and R. Arterioscl Thromb Vasc Biol 1998; 10: 1617–24

    Article  Google Scholar 

  12. Arrol S, Mackness MI, Durrington PN. High-density lipoprotein associated enzymes and the prevention of low-density lipoprotein oxidation. Eur J Lab Med 1996; 4: 33–8

    CAS  Google Scholar 

  13. Mackness MI, Arrol S, Abbott CA, et al. Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis 1993; 104: 129–35

    Article  PubMed  CAS  Google Scholar 

  14. Rodrigo L, Mackness B, Durrington PN, et al. Hydrolysis of platelet-activating factor by human serum paraoxonase. Biochem J 2001; 354: 1–7

    Article  PubMed  CAS  Google Scholar 

  15. Mackness MI, Durrington PN. High density lipoprotein, its enzymes and its potential to influence lipid peroxidation. Atherosclerosis 1995; 115: 243–53

    Article  PubMed  CAS  Google Scholar 

  16. Packard CJ, O’Reilly DSJ, Caslake MJ, et al. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. N Engl J Med 2000; 343: 1148–55

    Article  PubMed  CAS  Google Scholar 

  17. Klimov AN, Kozhevnikova KA, Kuzmin AA, et al. On the ability of high density lipoproteins to remove phospholipid peroxidation products from erythrocyte membranes. Biochemistry (Mosc) 2001; 66: 300–4

    Article  CAS  Google Scholar 

  18. Shih DM, Gu L, Xia Y-R, et al. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 1998; 394: 284–7

    Article  PubMed  CAS  Google Scholar 

  19. Mackness B, Durrington PN, Mackness MI. Lack of protection against oxidative modification of LDL by avian HDL. Biochem Biophys Res Commun 1998; 247: 443–6

    Article  PubMed  CAS  Google Scholar 

  20. Tward A, Xia YR, Wang XP, et al. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation 2002; 106: 484–90

    Article  PubMed  CAS  Google Scholar 

  21. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 1991; 88: 1785–92

    Article  PubMed  CAS  Google Scholar 

  22. Hessler JR, Robertson AL, Chisholm GM. LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis 1979; 32: 213–29

    Article  PubMed  CAS  Google Scholar 

  23. Parthasarathy S, Barnett J, Fong LG. High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim Biophys Acta 1990; 1044: 275–83

    Article  PubMed  CAS  Google Scholar 

  24. Navab M, Imes SS, Hama SY, et al. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest 1991; 88: 2039–46

    Article  PubMed  CAS  Google Scholar 

  25. Aviram M, Rosenblat M, Bisgaier CL, et al. Paraoxonase inhibits high-density lipoprotein and preserves its functions. J Clin Invest 1998; 101: 1581–90

    Article  PubMed  CAS  Google Scholar 

  26. Steinbrecher UP, Lougheed M, Kwan W-C, et al. Recognition of oxidised low density lipoprotein by the scavenger receptor of macrophages results from derivatisation of apolipoprotein B by products of fatty acid peroxidation. J Biol Chem 1989; 264: 15216–23

    PubMed  CAS  Google Scholar 

  27. Sangvanich P, Mackness B, Gaskill S, et al. The effect of HDL on the formation of lipid/protein conjugates during in vitro oxidation of LDL. Biochem Biophys Res Commun 2002; 300: 501–6

    Article  Google Scholar 

  28. Myant NB. The biology of cholesterol and related steroids. London: William Heinemann Medical Books Ltd, 1981

    Google Scholar 

  29. The Heart Outcomes Prevention Evaluation Study Investigators. Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 2000; 342: 154–60

    Article  Google Scholar 

  30. Arrol S, Mackness MI, Durrington PN. Vitamin E supplementation increases the resistance of both LDL and HDL to oxidation and increases cholesteryl ester transfer activity. Atherosclerosis 2000; 150: 129–34

    Article  PubMed  CAS  Google Scholar 

  31. Okamoto H, Yonemori F, Wakitani K, et al. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 2000; 406: 203–7

    Article  PubMed  CAS  Google Scholar 

  32. Arrol S, Mackness MI, Durrington PN. High-density lipoprotein associated enzymes and the prevention of low-density lipoprotein oxidation. Eur J Lab Med 1996; 4: 33–8

    CAS  Google Scholar 

  33. Graham A, Hassall DG, Rafique S, et al. Evidence for a paraoxonase independent inhibition of low-density lipoprotein oxidation by high-density lipoprotein. Atherosclerosis 1997; 135: 193–204

    Article  PubMed  CAS  Google Scholar 

  34. Suehiro T, Nakamura T, Inoue M, et al. A polymorphism upstream from the human paraoxonase (PON1) gene and its association with PON1 expression. Atherosclerosis 2000; 150: 295–8

    Article  PubMed  CAS  Google Scholar 

  35. Leviev I, James RW. Promoter polymorphisms of human paraoxonase PON1 gene and serum activities and concentrations. Arterioscl Thromb Vasc Biol 2000; 20: 516–21

    Article  PubMed  CAS  Google Scholar 

  36. Brophy VH, Hastings MD, Clendenning JB, et al. Polymorphisms in the human paraoxonase (PON1) promoter. Pharmacogenetics 2001; 11: 77–84

    Article  PubMed  CAS  Google Scholar 

  37. Brophy VH, Jampsa RL, Clendenning JB, et al. Effects of 5′regulatory-region polymorphisms on paraoxonase-gene (PON1) expression. Am J Hum Genet 2001; 68: 1428–36

    Article  PubMed  CAS  Google Scholar 

  38. Wheeler JG, Keavney BD, Watkins H, et al. Four paraoxonase gene polymorphisms in 11212 cases of coronary heart disease and 12786 controls: metaanalysis of 43 studies. Lancet 2004; 363: 689–95

    Article  PubMed  CAS  Google Scholar 

  39. Ikeda Y, Suehiro T, Inoue M, et al. Serum paraoxonase activity and its relationship to diabetic complications in patients with non-insulin-dependent diabetes mellitus. Metabolism 1998; 47: 598–602

    Article  PubMed  CAS  Google Scholar 

  40. James RW, Leviev K, Righetti A. Smoking is associated with reduced serum paraoxonase activity and concentration in patients with coronary artery disease. Circulation 2000; 101: 2252–7

    Article  PubMed  CAS  Google Scholar 

  41. Senti M, Tomas M, Vila J, et al. Relationship of age-related myocardial infarction risk and Gln/Arg 192 variants of the human paraoxonase gene: the Regicor study. Atherosclerosis 2001; 156: 443–9

    Article  PubMed  CAS  Google Scholar 

  42. Blatter-Garin M-C, James RW, Dussoix P, et al. Paraoxonase Polymorphism Met-Leu 54 is associated with modified serum concentrations of the enzyme. J Clin Invest 1997; 99: 62–6

    Article  Google Scholar 

  43. Salonen JT, Malin R, Toumaineu T-P, et al. Polymorphism in high density lipoprotein gene and risk of acute myocardial infarction in men: prospective nested case-control study. BMJ 1999; 319: 487–8

    Article  PubMed  CAS  Google Scholar 

  44. Sanghera DK, Saha N, Kamboh MI. The codon 55 polymorphism of the paraoxonase 1 gene is not associated with risk of coronary heart disease in Asian Indians and Chinese. Atherosclerosis 1998; 136: 217–23

    Article  PubMed  CAS  Google Scholar 

  45. Arca M, Ombres D, Montali A, et al. PON1 L55M polymorphism is not a predictor of coronary atherosclerosis either alone or in combination with Q192R polymorphism in an Italian population. Eur J Clin Invest 2002; 32: 9–15

    Article  PubMed  CAS  Google Scholar 

  46. Robertson KS, Hawe E, Miller GJ, et al. Northwick Park Heart Study II: human paraoxonase gene cluster polymorphisms as predictors of coronary heart disease risk in the prospective Northwick Park Heart Study II. Biochim Biophys Acta 2003; 1639: 203–12

    Article  PubMed  CAS  Google Scholar 

  47. McElveen J, Mackness MI, Colley CM, et al. Distribution of paraoxon hydrolysing activity in the serum of patients after myocardial infarction. Clin Chem 1986; 32: 671–3

    PubMed  CAS  Google Scholar 

  48. Ayub A, Mackness MI, Arrol S, et al. Serum paraoxonase after myocardial infarction. Arterioscl Thromb Vasc Biol 1999; 19: 330–5

    Article  PubMed  CAS  Google Scholar 

  49. Mackness B, Davies GK, Turkie W, et al. Paraoxonase status in coronary heart disease: are activity and concentration more important than genotype? Arterioscler Thromb Vasc Biol 2001; 21: 1451–7

    Article  PubMed  CAS  Google Scholar 

  50. Mackness MI, Harty D, Bhatnagar D, et al. Serum paraoxonase activity in familial hypercholesterolaemia and insulin-dependent diabetes mellitus. Atherosclerosis 1991; 86: 193–9

    Article  PubMed  CAS  Google Scholar 

  51. Abbott CA, Mackness MI, Kumar S, et al. Serum paraoxonase activity, concentration, and phenotype distribution in diabetes mellitus and its relationship to serum lipids and lipoproteins. Arterioscler Thromb Vasc Biol 1995; 15: 1812–8

    Article  PubMed  CAS  Google Scholar 

  52. Mackness B, Mackness MI, Arrol S, et al. Serum paraoxonase (PON1) 55 and 192 polymorphism and paraoxonase activity and concentration in non-insulin dependent diabetes mellitus. Atherosclerosis 1998; 139: 341–9

    Article  PubMed  CAS  Google Scholar 

  53. Patel BN, Mackness MI, Harty DW, et al. Serum esterase activities and hyperlipidaemia in the streptozotocin-diabetic rat. Biochim Biophys Acta 1990; 1035: 113–6

    Article  PubMed  CAS  Google Scholar 

  54. Hasselwander O, McMaster D, Fogarty DG, et al. Serum paraoxonase and plateletactivating factor acetylhydrolase in chronic renal failure. Clin Chem 1998; 44: 179–81

    PubMed  CAS  Google Scholar 

  55. Mackness B, Durrington P, McElduff P, et al. Low paraoxonase activity predicts coronary events in the Caerphilly Prospective Study. Circulation 2003; 107: 2775–9

    Article  PubMed  CAS  Google Scholar 

  56. Mackness B, Hunt R, Durrington PN, et al. Increased immunolocalisation of paraoxonase, clusterin and apolipoprotein AI in the human artery wall with progression of atherosclerosis. Arterioscler Thromb Vasc Biol 1997; 17: 1233–8

    Article  PubMed  CAS  Google Scholar 

  57. Aviram M, Hardak E, Vaya J, et al. Human serum paraoxonase (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation 2000; 101: 2510–7

    Article  PubMed  CAS  Google Scholar 

  58. Jarvik GP, Tsai NT, McKinstry LA, et al. Vitamin C and E intake are associated with increased PON1 activity. Arterioscl Thromb Vasc Biol 2002; 22: 1329–33

    Article  PubMed  CAS  Google Scholar 

  59. Kleemola P, Freese R, Jauhiainen M, et al. Dietary determinants of serum paraoxonase activity in healthy humans. Atheroslcerosis 2002; 160: 425–32

    Article  CAS  Google Scholar 

  60. Kordonouri O, James RW, Bennetts JB, et al. Modulation by blood glucose levels of activity and concentration of paraoxonase in young patients with type 1 diabetes mellitus. Metabolism 2001; 50: 657–60

    Article  PubMed  CAS  Google Scholar 

  61. Van Lenten BJ, Wagner AC, Navab M, et al. Oxidised phospholipids induce changes in hepatic paraoxonase and Apo J but not monocyte chemoattractant protein-1 via interleukin-6. J Biol Chem 2001; 276: 1923–9

    Article  PubMed  Google Scholar 

  62. Kudchodkar BJ, Lacko AG, Dory L, et al. Dietary fat modulates serum paraoxonase 1 activity in rats. J Nutr 2000; 130: 2427–33

    PubMed  CAS  Google Scholar 

  63. Sutherland WHF, Walker RJ, de Jong SA, et al. Reduced postprandial serum paraoxonase activity after a meal rich in used cooking fat. Arterioscl Thromb Vasc Biol 1999; 19: 1340–7

    Article  PubMed  CAS  Google Scholar 

  64. Shih DM, Gu L, Hama S, et al. Genetic-dietary regulation of serum paraoxonase expression and its role in atherogenesis in a mouse model. J Clin Invest 1996; 97: 1630–9

    Article  PubMed  CAS  Google Scholar 

  65. Mackness MI, Bouiller A, Hennuyer M, et al. Paraoxonase activity is reduced by a pro-atherosclerotic diet in rabbits. Biochem Biophys Res Commun 2000; 269: 232–6

    Article  PubMed  CAS  Google Scholar 

  66. Aviram M, Dornfold L, Rosenblat M, et al. Pomegranate juice consumption reduces oxidative stress, atherogenic modification of LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin Nutr 2000; 71: 1062–76

    PubMed  CAS  Google Scholar 

  67. van der Gaag MS, van Tol A, Scheek LM, et al. Daily moderate alcohol consumption increases serum paraoxonase activity; a diet controlled, randomised intervention study in middle-aged men. Atherosclerosis 1999; 147(2): 405–10

    Article  PubMed  Google Scholar 

  68. Sözmen EY, Mackness B, Sözmen B, et al. Effect of organophosphate intoxications on human serum paraoxonase. Hum Exp Toxicol 2002; 21(5): 247–52

    Article  PubMed  Google Scholar 

  69. Mackness B, Durrington PN, Mackness MI. Human serum paraoxonase. Gen Pharmacol 1998; 31: 329–36

    Article  PubMed  CAS  Google Scholar 

  70. Tomas M, Senti M, Garcia-Faria F, et al. Effect of simvastatin therapy on paraoxonase activity and related lipoproteins in familial hypercholesterolaemic patients. Arterioscler Thromb Vasc Biol 2000; 20: 2113–9

    Article  PubMed  CAS  Google Scholar 

  71. Aviram M, Rosenblat M, Bisgaier CL, et al. Atorvastatin and gemfibrozil metabolites, but not the parent drugs are potent antioxidants against lipoprotein oxidation. Atherosclerosis 1998; 138: 271–80

    Article  PubMed  CAS  Google Scholar 

  72. Paragh G, Balogh Z, Seres I, et al. Effect of gemfibrozil on HDL-associated serum paraoxonase activity and lipoprotein profile in patients with hyperlipidaemia. Clin Drug Invest 2000; 19: 277–82

    Article  CAS  Google Scholar 

  73. Durrington PN, Mackness MI, Bhatnagar D, et al. Effects of two different fibric acid derivatives on lipoproteins, cholesteryl ester transfer, fibrinogen, plasminogen activator inhibitor and paraoxonase activity in type IIb hyperlipoproteinaemia. Atherosclerosis 1998; 138: 217–25

    Article  PubMed  CAS  Google Scholar 

  74. Balogh Z, Fülöp P, Seres I, et al. Effect of simvastatin on serum paraoxonase activity. Clin Drug Invest 2001; 21: 505–10

    Article  CAS  Google Scholar 

  75. Turay J, Grniaková V, Valka J. Changes in paraoxonase and apolipoprotein A-I, B, C-III and E in subjects with combined familial hyperlipoproteinaemia treated with ciprofibrate. Drugs Exp Clin Res 2000; 26: 83–8

    PubMed  CAS  Google Scholar 

  76. Gouédard C, Koum-Besson N, Barouki R, et al. Opposite regulation of the human paraoxonase-1 gene PON1 by fenofibrate and statins. Mol Pharmacol 2003; 63: 945–56

    Article  PubMed  Google Scholar 

  77. Calabresi L, Villa B, Canavesi M, et al. An omega-3 polyunsaturated fatty acid concentrate increases plasma high-density lipoprotein 2 cholesterol and paraoxonase levels in patients with familial combined hyperlipidemia. Metabolism 2004; 53(2): 153–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Ms Caroline Price for expert typing of the manuscript and all the friends and colleagues who have contributed to this work over the years. Bharti Mackness is supported by an International HDL Research Award. The authors have no conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackness, M.I., Durrington, P.N. & Mackness, B. The Role of Paraoxonase 1 Activity in Cardiovascular Disease. Am J Cardiovasc Drugs 4, 211–217 (2004). https://doi.org/10.2165/00129784-200404040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200404040-00002

Keywords

Navigation