Skip to main content
Log in

Prospects for Vaccines for Allergic and Other Immunologic Skin Disorders

  • Leading Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

The human skin hosts a variety of immune response-associated components that together form the skin immune system. Any abnormality in the functioning of the skin immune system leads to a variety of dermatologic complications, including dermatitis, psoriasis, and eczema. Exposure to antigens/allergens can lead to allergic skin disorders such as atopic dermatitis, urticaria, and allergic contact dermatitis. Recent investigations have provided new insights into the immunologic processes leading to the development of skin diseases. T cells play a central role in the activation and regulation of immune responses by recognizing antigen and inducing cytokine production. Despite advances in the understanding of the immunologic events leading to the development of skin diseases, no effective prevention measure exists. Current therapeutic treatments are based on either alleviating the symptoms or suppressing the immune system with immunosuppressive drugs. Allergen-specific immunotherapy is expected to induce specific T cells that abolish allergen-induced proliferation of T helper cells, as well as their cytokine production. Recent approaches using recombinant protein, polycytosine guanine oligonucleotides, and plasmid DNA for vaccination suggest the possibility of protection against these skin disorders. The involvement of T cells in psoriasis indicates that the development of a T-cell receptor peptide vaccine may be beneficial. Dendritic cell-based vaccines using tolerogenic dendritic cells that can induce T-cell tolerance have been shown to be useful in dealing with autoimmune disorders and allergic conditions. In the light of these developments, this article presents the current status and prospects of developing vaccines for allergic and other immunologic skin disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I

Similar content being viewed by others

Notes

  1. 1 The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Roberts MS, Walters KA. The relationship between structure and barrier function of skin. In: Roberts MS, Walters KA, editors. Dermal absorption and toxicity assessment. New York: Marcel Dekker, 1998: 1–42

    Google Scholar 

  2. Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol. 2004; 4: 211–22

    Article  PubMed  CAS  Google Scholar 

  3. Mao-Qiang M, Elias PM, Feingold KR. Fatty acids are required for epidermal permeability barrier function. J Clin Invest. 1993; 92: 791–8

    Article  PubMed  CAS  Google Scholar 

  4. Blauvelt A, Huang ST, Udey MC. Allergic and immunologic diseases of the skin. J Allergy Clin Immunol. 2003; 111: S560–70

    Article  PubMed  CAS  Google Scholar 

  5. Williams IR, Kupper TS. Immunity at the surface: homeostatic mechanisms of the skin immune system. Life Sci. 1996; 58: 1485–507

    Article  PubMed  CAS  Google Scholar 

  6. Hassan-Zahraee M, Wu J, Gordon J. Rapid synthesis of IFN-gamma by T cells in skin may play a pivotal role in the human skin immune system. Int Immunol. 1998; 10: 1599–612

    Article  PubMed  CAS  Google Scholar 

  7. Bos JD. Skin immune system (SIS). In: Bruijnzeel-Koomen AFM, Knol EF, editors. Immunology and drug therapy of allergic skin diseases. Basel: Birkhauser Verlag, 2000

    Google Scholar 

  8. Nickoloff BJ, Denning M. Sensing and killing bacteria in skin: innate immune defense system: good and bad news [letter]. J Invest Dermatol. 2001; 117: 170

    PubMed  CAS  Google Scholar 

  9. Bos JD. The pathomechanisms of psoriasis; the skin immune system and cyclosporin. Br J Dermatol. 1988; 118: 141–55

    Article  PubMed  CAS  Google Scholar 

  10. Roy K, Mao HQ, Huang SK, et al. Oral gene delivery with chitosan: DNA nanoparticles generate immunologic protection in a murine model of peanut allergy. Nat Med. 1999; 5: 387–91

    Article  PubMed  CAS  Google Scholar 

  11. Kohama Y, Akizuki O, Hagihara K, et al. Immunostimulatory oligodeoxynucleotide induces THI immune response and inhibition of IgE antibody production to cedar pollen allergens in mice. J Allergy Clin Immunol. 1999; 104: 1231–8

    Article  PubMed  CAS  Google Scholar 

  12. Draghi M, Jarman ER, Grifantini R, et al. Different profile of CD8+ effector T cells induced in Der p 1-allergic and naive mice by DNA vaccination. Fur J Immunol. 2002; 32: 3720–8

    Google Scholar 

  13. Erb KJ, Wohlleben G. Novel vaccines protecting against the development of allergic disorders: a double-edged sword?. Curr Opin Immunol. 2002; 14: 633–43

    Article  PubMed  CAS  Google Scholar 

  14. Leopold CS, Maibach HI. PVAC (Corixa/Genesis/Medicis). Curr Opin Investig Drugs. 2002; 3: 1604–7

    PubMed  CAS  Google Scholar 

  15. Chisholm D, Libet L, Hayashi T, et al. Airway peptidoglycan and immunostimulatory DNA exposures have divergent effects on the development of airway allergen hypersensitivities. J Allergy Clin Immunol. 2004; 113: 448–54

    Article  PubMed  CAS  Google Scholar 

  16. Romagnani S. Immunologic influences on allergy and the THI/TH2 balance. J Allergy Clin Immunol. 2004; 113: 395–400

    Article  PubMed  CAS  Google Scholar 

  17. Akdis M, Blaser K, Akdis CA. T regulatory cells in allergy: novel concepts in the pathogenesis, prevention, and treatment of allergic diseases. J Allergy Clin Immunol. 2005; 116: 961–8

    Article  PubMed  CAS  Google Scholar 

  18. Uchida T, Suto H, Ra C, et al. Preferential expression of T(h)2-type chemokine and its receptor in atopic dermatitis. Int Immunol. 2002; 14: 1431–8

    Article  PubMed  CAS  Google Scholar 

  19. Kaplan AP. Chronic urticaria: pathogenesis and treatment. J Allergy Clin Immunol. 2004; 114: 465–74

    Article  PubMed  CAS  Google Scholar 

  20. Trautmann A, Akdis M, Kleemann D, et al. T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J Clin Invest. 2000; 106: 25–35

    Article  PubMed  CAS  Google Scholar 

  21. Trautmann A, Schmid-Grendelmeier P, Kruger K, et al. T cells and eosinophils cooperate in the induction of bronchial epithelial apoptosis in asthma. J Allergy Clin Immunol. 2002; 109: 329–37

    Article  PubMed  Google Scholar 

  22. Nickoloff BJ, Nestle FO. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J Clin Invest. 2004; 113: 1664–75

    PubMed  CAS  Google Scholar 

  23. Simons FE. Allergic rhinobronchitis: the asthma-allergic rhinitis link. J Allergy Clin Immunol. 1999; 104: 534–40

    Article  PubMed  CAS  Google Scholar 

  24. Mudde GC, Van Reijsen FC, Boland GJ, et al. Allergen presentation by epidermal Langerhans’ cells from patients with atopic dermatitis is mediated by IgE. Immunology. 1990; 69: 335–41

    PubMed  CAS  Google Scholar 

  25. Leung DY, Bieber T. Atopic dermatitis. Lancet. 2003; 361: 151–60

    Article  PubMed  Google Scholar 

  26. Sampson HA. Food allergy. Part 1: immunopathogenesis and clinical disorders. J Allergy Clin Immunol. 1999; 103: 717–28

    Article  PubMed  CAS  Google Scholar 

  27. Shah D, Hales J, Cooper R, et al. Recognition of pathogenically relevant house dust mite hypersensitivity in adults with atopic dermatitis: a new approach?. J Allergy Clin Immunol. 2002; 109: 532–8

    Article  Google Scholar 

  28. Wedi B, Wieczorek D, Stunkel T, et al. Staphylococcal exotoxins exert proinflammatory effects through inhibition of eosinophil apoptosis, increased surface antigen expression (CD I1b, CD45, CD54, and CD69), and enhanced cytokine activated oxidative burst, thereby triggering allergic inflammatory reactions. J Allergy Clin Immunol. 2002; 109: 477–84

    Article  PubMed  CAS  Google Scholar 

  29. Leung DY. Atopic dermatitis: new insights and opportunities for therapeutic intervention. J Allergy Clin Immunol. 2000; 105: 860–76

    Article  PubMed  CAS  Google Scholar 

  30. Hamid Q, Boguniewicz M, Leung DY. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest. 1994; 94: 870–6

    Article  PubMed  CAS  Google Scholar 

  31. Akdis CA, Akdis M, Simon HU, et al. Regulation of allergic inflammation by skin-homing T cells in allergic eczema. Int Arch Allergy Immunol. 1999; 118: 140–4

    Article  PubMed  CAS  Google Scholar 

  32. Mastrandrea F. The potential role of allergen-specific sublingual immunotherapy in atopic dermatitis. Am J Clin Dermatol. 2004; 5: 281–94

    Article  PubMed  Google Scholar 

  33. Leung DY, Boguniewicz M, Howell MD, et al. New insights into atopic dermatitis. J Clin Invest. 2004; 113: 651–7

    PubMed  CAS  Google Scholar 

  34. Cohen DE. Contact dermatitis: a quarter century perspective. J Am Acad Dermatol. 2004; 51 (1 Suppl.): S60–3

    Article  PubMed  Google Scholar 

  35. Li LY, Cruz Jr PD. Allergic contact dermatitis: pathophysiology applied to future therapy. Dermatol Ther. 2004; 17 (3): 219–23

    Article  PubMed  Google Scholar 

  36. Kimber I, Dearman RJ. Allergic contact dermatitis: the cellular effectors. Contact Dermatitis. 2002; 46: 1–5

    Article  PubMed  Google Scholar 

  37. Girolomoni G, Gisondi P, Ottaviani C, et al. Immunoregulation of allergic contact dermatitis. J Dermatol. 2004; 31: 264–70

    PubMed  CAS  Google Scholar 

  38. Leung DY. Molecular basis of allergic diseases. Mot Genet Metab. 1998; 63: 157–67

    Article  CAS  Google Scholar 

  39. Wai YC, Sussman GL. Evaluating chronic urticaria patients for allergies, infections, or autoimmune disorders. Clin Rev Allergy Immunol. 2002; 23: 185–93

    Article  PubMed  CAS  Google Scholar 

  40. Vonakis BM, Saini SS. Basophils and mast cells in chronic idiopathic urticaria. Curr Allergy Asthma Rep. 2005; 5: 270–6

    Article  PubMed  CAS  Google Scholar 

  41. Clarke P. Urticaria. Aust Fam Physician. 2004; 33: 501–3

    PubMed  Google Scholar 

  42. Tedeschi A, Airaghi L, Lorini M, et al. Chronic urticaria: a role for newer immunomodulatory drugs?. Am J Clin Dermatol. 2003; 4: 297–305

    Article  PubMed  Google Scholar 

  43. Kozel MM, Sabroe RA. Chronic urticaria: aetiology, management and current and future treatment options. Drugs. 2004; 64: 2515–36

    Article  PubMed  CAS  Google Scholar 

  44. Valenta R, Ball T, Focke M, et al. Immunotherapy of allergic disease. Adv Immunol. 2004; 82: 105–53

    Article  PubMed  CAS  Google Scholar 

  45. Wohlleben G, Erb KJ. Atopic disorders: a vaccine around the corner?. Trends Immunol. 2001; 22: 618–26

    Article  PubMed  CAS  Google Scholar 

  46. Akdis M, Blaser K, Akdis CA. T regulatory cells in allergy. Chem Immunol Allergy. 2006; 91: 159–73

    Article  PubMed  CAS  Google Scholar 

  47. Taylor A, Verhagen J, Akdis CA, et al. T regulatory cells in allergy and health: a question of allergen specificity and balance. Int Arch Allergy Immunol. 2004; 135: 73–82

    Article  PubMed  CAS  Google Scholar 

  48. Bousquet J, Lockey R, Malling HJ. Allergen immunotherapy: therapeutic vaccines for allergic diseases: a WHO position paper. J Allergy Clin Immunol. 1998; 102: 558–62

    Article  PubMed  CAS  Google Scholar 

  49. Huggins JL, Looney RJ. Allergen immunotherapy. Am Fam Physician. 2004; 70: 689–96

    PubMed  Google Scholar 

  50. Theodoropoulos DS, Lockey RF. Allergen immunotherapy: guidelines, update, and recommendations of the World Health Organization. Allergy Asthma Proc. 2000; 21: 159–66

    Article  PubMed  CAS  Google Scholar 

  51. Singh MB, Bhalla PL. Hypoallergenic derivatives of major grass pollen allergens for allergy vaccination. Immunol Cell Biol. 2003; 81: 86–91

    Article  PubMed  CAS  Google Scholar 

  52. Singh MB, de Weerd N, Bhalla PL. Genetically engineered plant allergens with reduced anaphylactic activity. Int Arch Allergy Immunol. 1999; 119: 75–85

    Article  PubMed  CAS  Google Scholar 

  53. Niederberger V, Horak F, Vrtala S, et al. Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc Nall Acad Sci U S A. 2004; 101 Suppl. 2: 14677–82

    Article  CAS  Google Scholar 

  54. Mahler V, Vrtala S, Kuss O, et al. Vaccines for birch pollen allergy based on genetically engineered hypoallergenic derivatives of the major birch pollen allergen, Bet v 1. Clin Exp Allergy. 2004; 34: 115–22

    Article  PubMed  CAS  Google Scholar 

  55. Drachenberg KJ, Wheeler AW, Stuebner P, et al. A well-tolerated grass pollen-specific allergy vaccine containing a novel adjuvant, monophosphoryl lipid A, reduces allergic symptoms after only four preseasonal injections. Allergy. 2001; 56: 498–505

    Article  PubMed  CAS  Google Scholar 

  56. Suenobu N, Kweon MN, Kiyono H. Nasal vaccination induces the ability to eliminate Candida colonization without influencing the pre-existing antigen-specific IgE Abs: a possibility for the control of Candida-related atopic dermatitis. Vaccine. 2002; 20: 2972–80

    Article  PubMed  CAS  Google Scholar 

  57. Donnelly JJ, Wahren B, Liu MA. DNA vaccines: progress and challenges. J Immunol. 2005; 175: 633–9

    PubMed  CAS  Google Scholar 

  58. Hartl A, Weiss R, Hochreiter R, et al. DNA vaccines for allergy treatment. Methods. 2004; 32: 328–39

    Article  PubMed  CAS  Google Scholar 

  59. Spiegelberg HL, Raz E. DNA-based approaches to the treatment of allergies. Curr Opin Mot Ther. 2002; 4: 64–71

    CAS  Google Scholar 

  60. Hochreiter R, Stepanoska T, Ferreira F, et al. Prevention of allergen-specific IgE production and suppression of an established Th2-type response by immunization with DNA encoding hypoallergenic allergen derivatives of Bet v 1, the major birch-pollen allergen. Fur J Immunol. 2003; 33: 1667–76

    CAS  Google Scholar 

  61. Spiegelberg HL, Takabayashi K, Beck L, et al. DNA-based vaccines for allergic disease. Expert Rev Vaccines. 2002; 1: 169–77

    Article  PubMed  CAS  Google Scholar 

  62. Homer AA, Van Uden JH, Zubeldia JM, et al. DNA-based immunotherapeutics for the treatment of allergic disease. Immunol Rev. 2001; 179: 102–18

    Article  Google Scholar 

  63. Nguyen MD, Cinman N, Yen J, et al. DNA-based vaccination for the treatment of food allergy. Allergy. 2001; 56: 127–30

    Article  PubMed  Google Scholar 

  64. Broide DH, Stachnick G, Castaneda D, et al. Systemic administration of immunos-timulatory DNA sequences mediates reversible inhibition of Th2 responses in a mouse model of asthma. J Clin Immunol. 2001; 21: 175–82

    Article  PubMed  CAS  Google Scholar 

  65. Rhee CS, Libet L, Chisholm D, et al. Allergen-independent immunostimulatory sequence oligodeoxynucleotide therapy attenuates experimental allergic rhinitis. Immunology. 2004; 113: 106–13

    Article  PubMed  CAS  Google Scholar 

  66. Norman PS, Ohman Jr JL, Long AA, et al. Treatment of cat allergy with T-cell reactive peptides. Am J Respir Crit Care Med. 1996; 154: 1623–8

    PubMed  CAS  Google Scholar 

  67. Muller U, Akdis CA, Fricker M, et al. Successful immunotherapy with T-cell epitope peptides of bee venom phospholipase A2 induces specific T-cell anergy in patients allergic to bee venom. J Allergy Clin Immunol. 1998; 101: 747–54

    Article  PubMed  CAS  Google Scholar 

  68. Alexander C, Tarzi M, Larche M, et al. The effect of Fel d 1-derived T-cell peptides on upper and lower airway outcome measurements in cat-allergic subjects. Allergy. 2005; 60: 1269–74

    Article  PubMed  CAS  Google Scholar 

  69. Tarzi M, Larche M. Peptide immunotherapy for allergic disease. Expert Opin Biol Ther. 2003; 3: 617–26

    Article  PubMed  CAS  Google Scholar 

  70. Enk AH, Knop J. T cell receptor mimic peptides and their potential application in T-cell-mediated disease. Int Arch Allergy Immunol. 2000; 123: 275–81

    Article  PubMed  CAS  Google Scholar 

  71. Gollner GP, Muller G, Alt R, et al. Therapeutic application of T cell receptor mimic peptides or cDNA in the treatment of T cell-mediated skin diseases. Gene Ther. 2000; 7: 1000–4

    Article  PubMed  CAS  Google Scholar 

  72. Vemersson M, Ledin A, Johansson J, et al. Generation of therapeutic antibody responses against IgE through vaccination. FASEB J. 2002; 16: 875–7

    Google Scholar 

  73. Holgate ST, Djukanovic R, Casale T, et al. Anti-immunoglobulin E treatment with omalizumab in allergic diseases: an update on anti-inflammatory activity and clinical efficacy. Clin Exp Allergy. 2005; 35: 408–16

    Article  PubMed  CAS  Google Scholar 

  74. Baker BS. The role of microorganisms in atopic dermatitis. Clin Exp Immunol. 2006; 144: 1–9

    Article  PubMed  CAS  Google Scholar 

  75. Arkwright PD, David TJ. Intradermal administration of a killed Mycobacterium vaccae suspension (SRL 172) is associated with improvement in atopic dermatitis in children with moderate-to-severe disease. J Allergy Clin Immunol. 2001; 107: 531–4

    Article  PubMed  CAS  Google Scholar 

  76. Arkwright PD, David TJ. Effect of Mycobacterium vaccae on atopic dermatitis in children of different ages. Br J Dermatol. 2003; 149: 1029–34

    Article  PubMed  CAS  Google Scholar 

  77. Guilhou J. Immunopathogenesis of psoriasis: news in an old concept. Dermatology. 1998; 197: 310–2

    Article  PubMed  CAS  Google Scholar 

  78. Henseler T, Christophers E. Psoriasis of early and late onset: characterization of two types of psoriasis vulgaris. J Am Acad Dermatol. 1985; 13: 45–6

    Article  Google Scholar 

  79. Bowcock AM. The genetics of psoriasis and autoimmunity. Annu Rev Genomics Hum Genet. 2005; 6: 93–122

    Article  PubMed  CAS  Google Scholar 

  80. Kapp A. The role of cytokines in the psoriatic inflammation. J Dermatol Sci. 1993; 5: 133–42

    Article  PubMed  CAS  Google Scholar 

  81. Ortonne JP. Recent developments in the understanding of the pathogenesis of psoriasis. Br J Dermatol. 1999; 140: 1–7

    Article  PubMed  CAS  Google Scholar 

  82. Myers W, Opeola M, Gottlieb AB. Common clinical features and disease mechanisms of psoriasis and psoriatic arthritis. Curr Rheumatol Rep. 2004; 6: 306–13

    Article  PubMed  Google Scholar 

  83. Kormeili T, Lowe NJ, Yamauchi PS. Psoriasis: immunopathogenesis and evolving immunomodulators and systemic therapies; US experiences. Br J Dermatol. 2004; 151: 3–15

    Article  PubMed  CAS  Google Scholar 

  84. Wrone-Smith T, Nickoloff BJ. Dermal injection of immunocytes induces psoriasis. J Clin Invest. 1996; 98: 1878–87

    Article  PubMed  CAS  Google Scholar 

  85. Brostoff SW. T cell receptor peptide vaccines as immunotherapy. Agents Actions Suppl. 1995; 47: 53–8

    PubMed  CAS  Google Scholar 

  86. Moreland LW, Morgan EE, Adamson III TC, et al. T cell receptor peptide vaccination in rheumatoid arthritis: a placebo-controlled trial using a combination of Vbeta3, Vbetal4, and Vbetal7 peptides. Arthritis Rheum. 1998; 41: 1919–29

    Article  PubMed  CAS  Google Scholar 

  87. Chou YK, Weinberg AD, Buenafe A, et al. MHC-restriction, cytokine profile, and immunoregulatory effects of human T cells specific for TCR V beta CDR2 peptides: comparison with myelin basic protein-specific T cells. J Neurosci Res. 1996; 45: 838–51

    Article  PubMed  CAS  Google Scholar 

  88. Vandenbark AA, Morgan E, Bartholomew R, et al. TCR peptide therapy in human autoimmune diseases. Neurochem Res. 2001; 26: 713–30

    Article  PubMed  CAS  Google Scholar 

  89. Link H, Huang YM, Masterman T, et al. Vaccination with autologous dendritic cells: from experimental autoimmune encephalomyelitis to multiple sclerosis. J Neuroimmunol. 2001; 114: 1–7

    Article  PubMed  CAS  Google Scholar 

  90. Xiao BG, Huang YM, Link H. Dendritic cell vaccine design: strategies for eliciting peripheral tolerance as therapy of autoimmune diseases. BioDrugs. 2003; 17: 103–11

    Article  PubMed  CAS  Google Scholar 

  91. Dhodapkar MV, Steinman RM, Krasovsky J, et al. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med. 2001; 193: 233–8

    Article  PubMed  CAS  Google Scholar 

  92. Menges M, Rossner S, Voigtlander C, et al. Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. J Exp Med. 2002; 195: 15–21

    Article  PubMed  CAS  Google Scholar 

  93. Shinomiya M, Fazle Akbar SM, Shinomiya H, et al. Transfer of dendritic cells (DC) ex vivo stimulated with interferon-gamma (IFN-gamma) down-modulates autoimmune diabetes in non-obese diabetic (NOD) mice. Clin Exp Immunol. 1999; 117: 38–43

    Article  PubMed  CAS  Google Scholar 

  94. Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Nall Acad Sci U S A. 2002; 99: 351–8

    Article  CAS  Google Scholar 

  95. Krueger GG, Duvic M. Epidemiology of psoriasis: clinical issues. J Invest Dermalot. 1994; 102: 14S–8S

    Article  CAS  Google Scholar 

  96. Farber EM, Nall L. Epidemiology: natural history and genetics. In: Roenigk H, Maibach HI, editors. Psoriasis. 3rd ed. New York (NY): Marcel Dekker, 1998

    Google Scholar 

  97. Rath N, Kar HK. Efficacy of intradermal heat-killed Mycobacterium win psoriasis: a pilot study. Int J Dermatol. 2003; 42: 756–7

    Article  PubMed  Google Scholar 

  98. Lehrer A, Bressanelli A, Wachsmann V, et al. Immunotherapy with Mycobacterium vaccae in the treatment of psoriasis. FEMS Immunol Med Microbiol. 1998; 21: 71–7

    Article  PubMed  CAS  Google Scholar 

  99. Balagon MV, Walsh DS, Tan PL, et al. Improvement in psoriasis after intradermal administration of heat-killed Mycobacterium vaccae. Int J Dermatol. 2000; 39: 51–8

    Article  PubMed  CAS  Google Scholar 

  100. Balagon MV, Tan PL, Prestidge R, et al. Improvement in psoriasis after intradermal administration of delipidated, deglycolipidated Mycobacterium vaccae (PVAC): results of an open-label trial. Clin Exp Dermatol. 2001; 26: 233–41

    Article  PubMed  CAS  Google Scholar 

  101. Dalbeth N, Yeoman S, Dockerty JL, et al. A randomised placebo controlled trial of delipidated, deglycolipidated Mycobacterium vaccae as immunotherapy for psoriatic arthritis. Ann Rheum Dis. 2004; 63: 718–22

    Article  PubMed  CAS  Google Scholar 

  102. Cohen MR, Reda DJ, Clegg DO. Baseline relationships between psoriasis and psoriatic arthritis: analysis of 221 patients with active psoriatic arthritis. Department of Veterans Affairs Cooperative Study Group on Seronegative Spondyloarthropathies. J Rheumatol. 1999; 26: 1752–6

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Khaled Al-Tahami and Ashwin Basarkar for their help in preparing the manuscript. Dr Medi was the recipient of a Presidential Doctoral Fellowship from the North Dakota State University (Fargo, ND, USA). No other sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medi, B.M., Singh, J. Prospects for Vaccines for Allergic and Other Immunologic Skin Disorders. Am J Clin Dermatol 7, 145–153 (2006). https://doi.org/10.2165/00128071-200607030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128071-200607030-00001

Keywords

Navigation