Skip to main content
Log in

Role of Adenosine Receptors in the Treatment of Asthma and Chronic Obstructive Pulmonary Disease

Recent Developments

  • Review Article
  • Published:
Drugs in R & D Aims and scope Submit manuscript

Abstract

Adenosine is a naturally occurring purine nucleoside with a ubiquitous presence in human tissue, where it plays a key role in many biological processes such as energy generation and protein metabolism. It has been shown that adenosine induces bronchoconstriction in asthmatic and chronic obstructive pulmonary disease (COPD) patients, but not in normal airways. Four different G-protein-coupled adenosine receptors have been described, namely adenosine A1, A2A, A2B and A3 receptors. The main mechanism of adenosine-induced bronchoconstriction appears to involve the release of inflammatory mediators from mast cells via activation of the A2B receptor. However, adenosine can also act on A1, A2A and A3 receptors. In recent years there has been an increasing interest in the role of adenosine receptors in asthma and COPD, since it is now clear that they play an important role in the pathophysiology of asthma and COPD. Adenosine receptors are involved in the production and release of a variety of mediators from inflammatory and structural cells. A therapeutic potential for adenosine receptor modulation has even been anticipated. This review focuses on the role of adenosine and adenosine receptors in the treatment of asthma and COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I

Similar content being viewed by others

References

  1. Cushley MJ, Tattersfield AE, Holgate ST. Inhaled adenosine and guanosine on airway resistance in normal and asthmatic subjects. Br J Clin Pharmacol 1983; 15: 161–5

    Article  PubMed  CAS  Google Scholar 

  2. Oosterhoff Y, de Jong JW, Jansen MA, et al. Airway responsiveness to adenosine 52’-monophosphate in chronic obstructive pulmonary disease is determined by smoking. Am Rev Respir Dis 1993; 147: 553–8

    PubMed  CAS  Google Scholar 

  3. Church MK, Holgate ST, Hughes PJ. Adenosine inhibits and potentiates IgE-dependent histamine release from human basophils by an A2-receptor mediated mechanism. Br J Pharmacol 1983; 80: 719–26

    Article  PubMed  CAS  Google Scholar 

  4. Hughes PJ, Holgate ST, Church MK. Adenosine inhibits and potentiates IgE-dependent histamine release from human lung mast cells by an A2-purinoceptor mediated mechanism. Biochem Pharmacol 1984; 33: 3847–52

    Article  PubMed  CAS  Google Scholar 

  5. Phillips GD, Ng WH, Church MK, et al. The response of plasma histamine to bronchoprovocation with methacholine, adenosine 5′-monophosphate, and allergen in atopic nonasthmatic subjects. Am Rev Respir Dis 1990; 141: 9–13

    PubMed  CAS  Google Scholar 

  6. Polosa R, Ng WH, Crimi N, et al. Release of mast-cell-derived mediators after endobronchial adenosine challenge in asthma. Am J Respir Crit Care Med 1995; 151: 624–9

    PubMed  CAS  Google Scholar 

  7. Driver AG, Kukoly CA, Metzger WJ, et al. Bronchial challenge with adenosine causes the release of serum neutrophil chemotactic factor in asthma. Am Rev Respir Dis 1991; 143: 1002–7

    PubMed  CAS  Google Scholar 

  8. Church MK. The role of basophils in asthma: I. Sodium cromoglycate on histamine release and content. Clin Allergy 1982; 12: 223–8

    Article  PubMed  CAS  Google Scholar 

  9. Crimi N, Palermo F, Oliveri R, et al. Comparative study of the effects of nedocromil sodium (4mg) and sodium cromoglycate (10mg) on adenosine-induced bronchoconstriction in asthmatic subjects. Clin Allergy 1988; 18: 367–74

    Article  PubMed  CAS  Google Scholar 

  10. Phillips GD, Finnerty JP, Holgate ST. Comparative protective effect of the inhaled beta 2-agonist salbutamol (albuterol) on bronchoconstriction provoked by histamine, methacholine, and adenosine 5′-monophosphate in asthma. J Allergy Clin Immunol 1990; 85: 755–62

    Article  PubMed  CAS  Google Scholar 

  11. Phillips GD, Rafferty P, Beasley R, et al. Effect of oral terfenadine on the bronchoconstrictor response to inhaled histamine and adenosine 5′-monophosphate in non-atopic asthma. Thorax 1987; 42: 939–45

    Article  PubMed  CAS  Google Scholar 

  12. Phillips GD, Holgate ST. The effect of oral terfenadine alone and in combination with flurbiprofen on the bronchoconstrictor response to inhaled adenosine 5′-monophosphate in nonatopic asthma. Am Rev Respir Dis 1989; 139: 463–9

    Article  PubMed  CAS  Google Scholar 

  13. Rutgers SR, Koeter GH, Van Der Mark TW, et al. Protective effect of oral terfenadine and not inhaled ipratropium on adenosine 5′-monophosphate-induced bronchoconstriction in patients with COPD. Clin Exp Allergy 1999; 29: 1287–92

    Article  PubMed  CAS  Google Scholar 

  14. Van Den Berge M. Kerstjens HAM, Postma DS. Provocation with adenosine 5′-monophosphate as a marker of inflammation in asthma, allergic rhinitis and chronic obstructive pulmonary disease. Clin Exp Allergy 2002; 32: 824–30

    Article  PubMed  Google Scholar 

  15. Driver AG, Kukoly CA, Ali S, et al. Adenosine in bronchoalveolar lavage fluid in asthma. Am Rev Respir Dis 1993; 148: 91–7

    PubMed  CAS  Google Scholar 

  16. Varani K, Caramori G, Vincenzi F, et al. Alteration of adenosine receptors in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006; 173: 398–406

    Article  PubMed  CAS  Google Scholar 

  17. Ma B, Blackburn MR, Lee CG, et al. Adenosine metabolism and murine strain-specific IL-4-induced inflammation, emphysema, and fibrosis. J Clin Invest 2006; 116: 1274–83

    Article  PubMed  CAS  Google Scholar 

  18. Hasko G, Cronstein BN. Adenosine: an endogenous regulator of innate immunity. Trends Immunology 2004; 25 (1): 33-9

    Google Scholar 

  19. Cushley MJ, Tallant N, Holgate ST. The effect of dipyridamole on histamine- and adenosine-induced bronchoconstriction in normal and asthmatic subjects. Eur J Respir Dis 1985; 67: 185–92

    PubMed  CAS  Google Scholar 

  20. Yu KH, Luo SF, Liou LB, et al. Concomitant septic and gouty arthritis: an analysis of 30 cases. Rheumatology (Oxford) 2003; 42: 1062–6

    Article  CAS  Google Scholar 

  21. van Calker D, Muller M, Hamprecht B. Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells. Nature 1978; 276: 839–41

    Article  PubMed  Google Scholar 

  22. Rees DA, Scanlon MF, Ham J. Adenosine signalling pathways in the pituitary gland: one ligand, multiple receptors. J Endocrinol 2003; 177: 357–64

    Article  PubMed  CAS  Google Scholar 

  23. Razin E, Pecht I, Rivera J. Signal transduction in the activation of mast cells and basophils. Immunol Today 1995; 16: 370–3

    Article  PubMed  CAS  Google Scholar 

  24. Fredholm BB, IJzerman AP, Jacobson KA, et al. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001; 53: 527–52

    PubMed  CAS  Google Scholar 

  25. Toward TJ, Broadley KJ. Airway reactivity, inflammatory cell influx and nitric oxide in guinea-pig airways after lipopolysaccharide inhalation. Br J Pharmacol 2000; 131: 271–81

    Article  PubMed  CAS  Google Scholar 

  26. Thorne JR, Danahay H, Broadley KJ. Analysis of the bronchoconstrictor responses to adenosine receptor agonists in sensitized guinea-pig lungs and trachea. Eur J Pharmacol 1996; 316: 263–71

    Article  PubMed  CAS  Google Scholar 

  27. Fozard JR, Hannon JP. Species differences in adenosine receptor-mediated bronchoconstrictor responses. Clin Exp Allergy 2000; 30: 1213–20

    Article  PubMed  CAS  Google Scholar 

  28. Cronstein BN, Daguma L, Nichols D, et al. The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest 1990; 85: 1150–7

    Article  PubMed  CAS  Google Scholar 

  29. Cronstein BN, Levin RI, Philips M, et al. Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol 1992; 148: 2201–6

    PubMed  CAS  Google Scholar 

  30. McNamara N, Gallup M, Khong A, et al. Adenosine up-regulation of the mucin gene, MUC2, in asthma. FASEB J 2004; 18: 1770–2

    PubMed  CAS  Google Scholar 

  31. Ethier MF, Madison JM. Adenosine A1 receptors mediate mobilization of calcium in human bronchial smooth muscle cells. Am J Respir Cell Mol Biol 2006; 35 (4): 496–502

    Article  PubMed  CAS  Google Scholar 

  32. el Hashim A, D’Agostino B, Matera MG, et al. Characterization of adenosine receptors involved in adenosine-induced bronchoconstriction in allergic rabbits. Br J Pharmacol 1996; 119: 1262–8

    Article  PubMed  Google Scholar 

  33. Obiefuna PC, Batra VK, Nadeem A, et al. A novel A1 adenosine receptor antagonist, L-97-1 [3-[2-(4-aminophenyl)-ethyl]-8-benzyl-7-t{2-ethyl-(2-hydroxy-ethyl)-amino]-ethyl∼-1- propyl-3,7-dihydro-purine-2,6-dione], reduces allergic responses to house dust mite in an allergic rabbit model of asthma. J Pharmacol Exp Ther 2005; 315: 329–36

    Article  PubMed  CAS  Google Scholar 

  34. Nyce JW, Metzger WJ. DNA antisense therapy for asthma in an animal model. Nature 1997; 385: 721–5

    Article  PubMed  CAS  Google Scholar 

  35. Sandrasagra A, Leonard SA, Tang L, et al. Discovery and development of respirable antisense therapeutics for asthma. Antisense Nucleic Acid Drug Dev 2002; 12: 177–81

    Article  PubMed  CAS  Google Scholar 

  36. Nyce J. Respirable antisense oligonucleotides: a new, third drug class targeting respiratory disease. Curr Opin Allergy Clin Immunol 2002; 2: 533–6

    Article  PubMed  Google Scholar 

  37. Ball HA, Van Scott MR, Robinson CB. Sense and antisense: therapeutic potential of oligonucleotides and interference RNA in asthma and allergic disorders. Clin Rev Allergy Immunol 2004; 27: 207–17

    Article  PubMed  CAS  Google Scholar 

  38. Chunn JL, Young HW, Banerjee SK, et al. Adenosine-dependent airway inflammation and hyperresponsiveness in partially adenosine deaminase-deficient mice. J Immunol 2001; 167: 4676–85

    PubMed  CAS  Google Scholar 

  39. Zhong H, Chunn JL, Volmer JB, et al. Adenosine-mediated mast cell degranulation in adenosine deaminase-deficient mice. J Pharmacol Exp Ther 2001; 298: 433–40

    PubMed  CAS  Google Scholar 

  40. Sun CX, Young HW, Molina JG, et al. A protective role for the A1 adenosine receptor in adenosine-dependent pulmonary injury. J Clin Invest 2005; 115: 35–43

    PubMed  CAS  Google Scholar 

  41. Sajjadi FG, Takabayashi K, Foster AC, et al. Inhibition of TNF-alpha expression by adenosine: role of A3 adenosine receptors. J Immunol 1996; 156: 3435–42

    PubMed  CAS  Google Scholar 

  42. Hasko G, Szabo C, Nemeth ZH, et al. Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol 1996; 157: 4634–40

    PubMed  CAS  Google Scholar 

  43. Le Moine O, Stordeur P, Schandene L, et al. Adenosine enhances IL-10 secretion by human monocytes. J Immunol 1996; 156: 4408–14

    PubMed  Google Scholar 

  44. Elzein E, Kalla R, Li X, et al. N(6)-Cycloalkyl-2-substituted adenosine derivatives as selective, high affinity adenosine A(1) receptor agonists. Bioorg Med Chem Lett 2006 [epub ahead of print]

    Google Scholar 

  45. Suzuki H, Takei M, Nakahata T, et al. Inhibitory effect of adenosine on degranulation of human cultured mast cells upon cross-linking of Fc epsilon RI. Biochem Biophys Res Commun 1998; 242: 697–702

    Article  PubMed  CAS  Google Scholar 

  46. Wollner A, Wollner S, Smith JB. Acting via A2 receptors, adenosine inhibits the upregulation of Mac-1 (Cd11b/CD18) expression on FMLP-stimulated neutrophils. Am J Respir Cell Mol Biol 1993; 9: 179–85

    PubMed  CAS  Google Scholar 

  47. Fredholm BB, Zhang Y, van der Ploeg I. Adenosine A2A receptors mediate the inhibitory effect of adenosine on formyl-Met-Leu-Phe-stimulated respiratory burst in neutrophil leucocytes. Naunyn Schmiedebergs Arch Pharmacol 1996; 354: 262–7

    Article  PubMed  CAS  Google Scholar 

  48. Le V, Chen YL, Masson I, et al. Inhibition of human monocyte TNF production by adenosine receptor agonists. Life Sci 1993; 52: 1917–24

    Article  Google Scholar 

  49. Hasko G, Kuhel DG, Chen JF, et al. Adenosine inhibits IL-12 and TNF-[alpha] production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J 2000; 14: 2065–74

    Article  PubMed  CAS  Google Scholar 

  50. Allen-Gipson DS, Wong J, Spurzem JR, et al. Adenosine A2A receptors promote adenosine-stimulated wound healing in bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 290: L849–55

    Article  PubMed  CAS  Google Scholar 

  51. Cronstein BN, Eberle MA, Gruber HE, et al. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci U S A 1991; 88: 2441–5

    Article  PubMed  CAS  Google Scholar 

  52. Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 2001; 414: 916–20

    Article  PubMed  CAS  Google Scholar 

  53. Fozard JR, Ellis KM, Villela Dantas MF, et al. Effects of CGS 21680, a selective adenosine A2A receptor agonist, on allergic airways inflammation in the rat. Eur J Pharmacol 2002; 438: 183–8

    Article  PubMed  CAS  Google Scholar 

  54. Bonneau O, Wyss D, Ferretti S, et al. Effect of adenosine A2A receptor activation in murine models of respiratory disorders. Am J Physiol Lung Cell Mol Physiol 2006; 290: L1036–43

    Article  PubMed  CAS  Google Scholar 

  55. Holgate ST. The Quintiles Prize Lecture 2004. The identification of the adenosine A2B receptor as a novel therapeutic target in asthma. Br J Pharmacol 2005; 145: 1009–15

    Article  PubMed  CAS  Google Scholar 

  56. Luijk B, Van den Berge M, Kerstjens HAM. Effect of an inhaled adenosine agonist A2A agonist on the allergen induced late allergic response. Abstract presented at the Annual Congress of the ERS 2003

    Google Scholar 

  57. Clancy JP, Ruiz FE, Sorscher EJ. Adenosine and its nucleotides activate wild-type and R117H CFTR through an A2B receptor-coupled pathway. Am J Physiol 1999; 276: C361–9

    PubMed  CAS  Google Scholar 

  58. Marquardt DL, Walker LL, Heinemann S. Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells. J Immunol 1994; 152: 4508–15

    PubMed  CAS  Google Scholar 

  59. Zhang JG, Hepburn L, Cruz G, et al. The role of adenosine A2A and A2B receptors in the regulation of TNF-alpha production by human monocytes. Biochem Pharmacol 2005; 69: 883–9

    Article  PubMed  CAS  Google Scholar 

  60. Zhong H, Belardinelli L, Maa T, et al. Synergy between A2B adenosine receptors and hypoxia in activating human lung fibroblasts. Am J Respir Cell Mol Biol 2005; 32: 2–8

    Article  PubMed  CAS  Google Scholar 

  61. Mundell SJ, Olah ME, Panettieri RA, et al. Regulation of G protein-coupled receptor-adenylyl cyclase responsiveness in human airway smooth muscle by exogenous and autocrine adenosine. Am J Respir Cell Mol Biol 2001; 24: 155–63

    PubMed  CAS  Google Scholar 

  62. Walker BA, Jacobson MA, Knight DA, et al. Adenosine A3 receptor expression and function in eosinophils. Am J Respir Cell Mol Biol 1997; 16: 531–7

    PubMed  CAS  Google Scholar 

  63. Marquardt R, Fischer J, Kustner W. Effect of arterial hypoxia and acidosis on fibrillation threshold in the cat heart in vivo. Z Kardiol 1976; 65: 585–9

    PubMed  CAS  Google Scholar 

  64. Feoktistov I, Biaggioni I. Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells: an enprofylline-sensitive mechanism with implications for asthma. J Clin Invest 1995; 96: 1979–86

    Article  PubMed  CAS  Google Scholar 

  65. Van den Berge M, Kerstjens HA, de Reus DM, et al. Provocation with adenosine 5’-monophosphate, but not methacholine, induces sputum eosinophilia. Clin Exp Allergy 2004; 34: 71–6

    Article  PubMed  Google Scholar 

  66. Walls AF, He S, Teran LM, et al. Granulocyte recruitment by human mast cell tryptase. Int Arch Allergy Immunol 1995; 107: 372–3

    Article  PubMed  CAS  Google Scholar 

  67. He S, Walls AF. Human mast cell chymase induces the accumulation of neutrophils, eosinophils and other inflammatory cells in vivo. Br J Pharmacol 1998; 125: 1491–500

    Article  PubMed  CAS  Google Scholar 

  68. Compton SJ, Cairns JA, Holgate ST, et al. Interaction of human mast cell tryptase with endothelial cells to stimulate inflammatory cell recruitment. Int Arch Allergy Immunol 1999; 118: 204–5

    Article  PubMed  CAS  Google Scholar 

  69. Gauvreau GM, Parameswaran KN, Watson RM, et al. Inhaled leukotriene E(4), but not leukotriene D(4), increased airway inflammatory cells in subjects with atopic asthma. Am J Respir Crit Care Med 2001; 164: 1495–500

    PubMed  CAS  Google Scholar 

  70. Mulder A, Gauvreau GM, Watson RM, et al. Effect of inhaled leukotriene D4 on airway eosinophilia and airway hyperresponsiveness in asthmatic subjects. Am J Respir Crit Care Med 1999; 159: 1562–7

    PubMed  CAS  Google Scholar 

  71. Hirata N, Kohrogi H, Iwagoe H, et al. Allergen exposure induces the expression of endothelial adhesion molecules in passively sensitized human bronchus: time course and the role of cytokines. Am J Respir Cell Mol Biol 1998; 18: 12–20

    PubMed  CAS  Google Scholar 

  72. Blease K, Seybold J, Adcock IM, et al. Interleukin-4 and lipopolysaccharide synergize to induce vascular cell adhesion molecule-1 expression in human lung microvascular endothelial cells. Am J Respir Cell Mol Biol 1998; 18: 620–30

    PubMed  CAS  Google Scholar 

  73. Zhong H, Belardinelli L, Maa T, et al. A(2B) adenosine receptors increase cytokine release by bronchial smooth muscle cells. Am J Respir Cell Mol Biol 2004; 30: 118–25

    Article  PubMed  CAS  Google Scholar 

  74. Zhong H, Wu Y, Belardinelli L, et al. A2B Adenosine receptors induce IL-19 from bronchial epithelial cells and results in TNF-{alpha} increase. Am J Respir Cell Mol Biol 2006 Nov; 35 (5): 587–92

    Article  PubMed  CAS  Google Scholar 

  75. Ryzhov S, Goldstein AE, Matafonov A, et al. Adenosine-activated mast cells induce IgE synthesis by B lymphocytes: an A2B-mediated process involving Th2 cytokines IL-4 and IL-13 with implications for asthma. J Immunol 2004; 172: 7726–33

    PubMed  CAS  Google Scholar 

  76. Lim S, Tomita K, Carramori G, et al. Low-dose theophylline reduces eosinophilic inflammation but not exhaled nitric oxide in mild asthma. Am J Respir Crit Care Med 2001; 164: 273–6

    PubMed  CAS  Google Scholar 

  77. Morali T, Yilmaz A, Erkan F, et al. Efficacy of inhaled budesonide and oral theophylline in asthmatic subjects. J Asthma 2001; 38: 673–9

    Article  PubMed  CAS  Google Scholar 

  78. Sullivan P, Bekir S, Jaffar Z, et al. Anti-inflammatory effects of low-dose oral theophylline in atopic asthma. Lancet 1994; 343: 1006–8

    Article  PubMed  CAS  Google Scholar 

  79. Feoktistov I, Polosa R, Holgate ST, et al. Adenosine A2B receptors: a novel therapeutic target in asthma? Trends Pharmacol Sci 1998; 19: 148–53

    Article  PubMed  CAS  Google Scholar 

  80. Klotz KN, Hessling J, Hegler J, et al. Comparative pharmacology of human adenosine receptor subtypes: characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol 1998; 357: 1–9

    Article  PubMed  CAS  Google Scholar 

  81. Evans DJ, Taylor DA, Zetterstrom O, et al. A comparison of low-dose inhaled budesonide plus theophylline and high-dose inhaled budesonide for moderate asthma. N Engl J Med 1997; 337: 1412–8

    Article  PubMed  CAS  Google Scholar 

  82. Feoktistov I, Garland EM, Goldstein AE, et al. Inhibition of human mast cell activation with the novel selective adenosine A(2B) receptor antagonist 3-isobutyl-8-pyrrolidinoxanthine (IPDX)(2). Biochem Pharmacol 2001; 62: 1163–73

    Article  PubMed  CAS  Google Scholar 

  83. Fozard JR, Baur F, Wolber C. Antagonist pharmacology of adenosine A2B receptors from rat, guinea pig and dog. Eur J Pharmacol 2003; 475: 79–84

    Article  PubMed  CAS  Google Scholar 

  84. Zablocki J, Kalla R, Perry T, et al. The discovery of a selective, high affinity A(2B) adenosine receptor antagonist for the potential treatment of asthma. Bioorg Med Chem Lett 2005; 15: 609–12

    Article  PubMed  CAS  Google Scholar 

  85. Kalla RV, Elzein E, Perry T, et al. Novel 1,3-disubstituted 8-(1-benzyl-1H-pyrazol-4-yl) xanthines: high affinity and selective A2B adenosine receptor antagonists. J Med Chem 2006; 49: 3682–92

    Article  PubMed  CAS  Google Scholar 

  86. Sun CX, Zhong H, Mohsenin A, et al. Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. J Clin Invest 2006; 116: 2173–82

    Article  PubMed  CAS  Google Scholar 

  87. Feoktistov I, Ryzhov S, Zhong H, et al. Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A2B angiogenic phenotype. Hypertension 2004; 44: 649–54

    Article  PubMed  CAS  Google Scholar 

  88. Spicuzza L, Di Maria G, Polosa R. Adenosine in the airways: implications and applications. Eur J Pharmacol 2006; 533: 77–88

    Article  PubMed  CAS  Google Scholar 

  89. Spruntulis LM, Broadley KJ. A3 receptors mediate rapid inflammatory cell influx into the lungs of sensitized guinea-pigs. Clin Exp Allergy 2001; 31: 943–51

    Article  PubMed  CAS  Google Scholar 

  90. Young HW, Molina JG, Dimina D, et al. A3 adenosine receptor signaling contributes to airway inflammation and mucus pro-duction in adenosine deaminase-deficient mice. J Immunol 2004; 173: 1380–9

    PubMed  CAS  Google Scholar 

  91. Young HW, Sun CX, Evans CM, et al. A3 adenosine receptor signaling contributes to airway mucin secretion following al-lergen challenge. Am J Respir Cell Mol Biol 2006 Nov; 35 (5): 549–58

    Article  PubMed  CAS  Google Scholar 

  92. Knight D, Zheng X, Rocchini C, et al. Adenosine A3 receptor stimulation inhibits migration of human eosinophils. J Leukoc Biol 1997; 62: 465–8

    PubMed  CAS  Google Scholar 

  93. Bouma MG, Stad RK, van den Wildenberg FA, et al. Differential regulatory effects of adenosine on cytokine release by activated human monocytes. J Immunol 1994; 153: 4159–68

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirkje S. Postma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Berge, M., Hylkema, M.N., Versluis, M. et al. Role of Adenosine Receptors in the Treatment of Asthma and Chronic Obstructive Pulmonary Disease. Drugs R D 8, 13–23 (2007). https://doi.org/10.2165/00126839-200708010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00126839-200708010-00002

Keywords

Navigation