Skip to main content
Log in

Biological Therapy of Breast Cancer

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Breast cancer treatment has now entered a new era in which biological therapies, based on a rapidly expanding cellular and molecular understanding of breast cancer pathogenesis, have joined the standard armamentarium of surgery, radiation, chemotherapy, and hormone therapy. In 1998, the anti-HER2 humanised monoclonal antibody trastuzumab became the first biological therapy to receive US Food and Drug Administration (FDA) approval for the treatment of breast cancer, thus marking a milestone that almost certainly will be repeated with other new agents. HER2 (ErbB2) has been the focus of many therapeutic strategies because of its frequent gene amplification and overexpression in breast cancer, its role in tumourigenesis and cancer progression, and its prognostic and predictive significance in clinical studies.

In preclinical studies, trastuzumab showed antiproliferative activity against HER2-overexpressing breast cancers in vitro and in tumour xenograft models. In a phase II clinical trial of 222 stage IV patients, trastuzumab was associated with an objective response rate of 15%. A randomised phase III clinical trial demonstrated that first-line chemotherapy for stage IV patients in combination with trastuzumab was significantly superior to chemotherapy alone. Chemotherapy plus trastuzumab was associated with a median time to progression of 7.2 months, versus 4.5 months for chemotherapy alone (p < 0.001), and a response rate of 45% versus 29% for chemotherapy alone (p = 0.001).

Other novel therapies involving antibody targeting of HER2 are under development, including bispecific antibodies, immunotoxins, and immunoliposomes. Vaccine approaches are also under active investigation, including those directed against HER2 and mucin antigens. Gene therapy strategies under development include gene transfer of immunomodulatory genes and of anti-oncogene constructs. Other biological therapies include agents designed to induce differentiaio nor inhibit invasion, angiogenesis and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

Notes

  1. Use of a trade names is for product identification purposes only, and does not imply endorsement.

References

  1. Shih C, Padhy LC, Murray M, et al. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 1981; 290 (5803): 261–4

    Article  PubMed  CAS  Google Scholar 

  2. Schechter AL, Stern DF, Vaidyanathan L, et al. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 1984; 312 (5994): 513–6

    Article  PubMed  CAS  Google Scholar 

  3. Bargmann CI, Hung MC, Weinberg RA. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of pl85. Cell 1986; 45 (5): 649–57

    Article  PubMed  CAS  Google Scholar 

  4. Semba K, Kamata N, Toyoshima K, et al. A verbB-related pro-tooncogene, cerbB-2, is distinct from the cerbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc NaT1 Acad Sci U S A 1985; 82 (19): 6497–501

    Article  CAS  Google Scholar 

  5. King CR, Kraus MH, Aaronson SA. Amplification of a novel verbB-related gene in a human mammary carcinoma. Science 1985; 229 (4717): 974–6

    Article  PubMed  CAS  Google Scholar 

  6. Schechter AL, Hung MC, Vaidyanathan L, et al. The neu gene: an erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 1985; 229 (4717): 976–8

    Article  PubMed  CAS  Google Scholar 

  7. Lemoine NR, Staddon S, Dickson C, et al. Absence of activating transmembrane mutations in the cerbB-2 proto-oncogene in human breast cancer. Oncogene 1990; 5 (2): 237–9

    PubMed  CAS  Google Scholar 

  8. Fukushige S, Matsubara K, Yoshida M, et al. Localization of a novel verbB-related gene, cerbB-2, on human chromosome 17 and its amplification in a gastric cancer cell line. Mol Cell Biol 1986; 6 (3): 955–8

    PubMed  CAS  Google Scholar 

  9. Di Fiore PP, Pierce JH, Kraus MH, et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 1987; 237 (4811): 178–82

    Article  PubMed  Google Scholar 

  10. Hudziak RM, Schlessinger J, Ullrich A. Increased expression of the putative growth factor receptor pl85HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc NaT1 Acad Sci U S A 1987; 84: 7159–63

    Article  CAS  Google Scholar 

  11. Muller WJ, Sinn E, Pattengale PK, et al. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988; 54 (1): 105–15

    Article  PubMed  CAS  Google Scholar 

  12. Guy CT, Webster MA, Schaller M, et al. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc NaT1 Acad Sci U S A 1992; 89: 10578–82

    Article  CAS  Google Scholar 

  13. Lucchini F, Sacco MG, Hu N, et al. Early and multifocal tumors in breast, salivary, harderian and epididymal tissues developed in MMTV-Neu transgenic mice. Cancer Lett 1992; 64 (3): 203–9

    Article  PubMed  CAS  Google Scholar 

  14. Bouchard L, Lamarre L, Tremblay PJ, et al. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 1989; 57 (6): 931–6

    Article  PubMed  CAS  Google Scholar 

  15. Suda Y, Aizawa S, Furuta Y, et al. Induction of a variety of tumors by cerbB2 and clonal nature of lymphomas even with the mutated gene (Val659-Glu659). Embo J 1990; 9 (1): 181–90

    PubMed  CAS  Google Scholar 

  16. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of HER2/neu oncogene. Science 1987; 235: 177–82

    Article  PubMed  CAS  Google Scholar 

  17. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–12

    Article  PubMed  CAS  Google Scholar 

  18. Mitchell MS, Press MF. The role of immunohistochemistry and fluorescence in situ hybridization for HER-2/neu in assessing the prognosis of breast cancer. Semin Oncol 1999; 26 Suppl. 12: 108–16

    PubMed  CAS  Google Scholar 

  19. Benz CC, Scott GK, Sarup JC, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 1992; 24: 85–95

    Article  PubMed  CAS  Google Scholar 

  20. Pietras RJ, Arboleda J, Reese DM, et al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 1995; 10 (12): 2435–46

    PubMed  CAS  Google Scholar 

  21. Muss HB, Thor AD, Berry DA, et al. cerbB-2 expression and response to adjuvant chemotherapy in women with node-positive early breast cancer. N Engl J Med 1994; 330: 1260–6

    Article  PubMed  CAS  Google Scholar 

  22. Thor AD, Berry DA, Budman DR, et al. erbB-2, p53, and efficacy of adjuvant therapy in lymph node-positive breast cancer. J NaT1 Cancer Inst 1998; 90: 1346–60

    Article  CAS  Google Scholar 

  23. Paik S, Bryant J, Park C, et al. erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J NaT1 Cancer Inst 1998; 90: 1361–70

    Article  CAS  Google Scholar 

  24. Hayes DF. Should we treat HER, too? J Clin Oncol 1996; 14: 697–9

    PubMed  CAS  Google Scholar 

  25. Press MF, Cordon-Cardo C, Slamon DJ. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene 1990; 5: 953–62

    PubMed  CAS  Google Scholar 

  26. Niehans GA, Singleton TP, Dykoski D, et al. Stability of HER-2/neu expression over time and at multiple metastatic sites. J NaT1 Cancer Inst 1993; 85: 1230–5

    Article  CAS  Google Scholar 

  27. van Leeuwen F, van de Vijver MJ, Lomans J, et al. Mutation of the human neu protein facilitates down-modulation by monoclonal antibodies. Oncogene 1990; 5 (4): 497–503

    PubMed  Google Scholar 

  28. Myers JN, Drebin JA, Wada T, et al. Biological effects of monoclonal antireceptor antibodies reactive with neu oncogene product, pl85neu. Methods Enzymol 1991; 198 (1): 277–90

    Article  PubMed  CAS  Google Scholar 

  29. Kasprzyk PG, Song SU, Di Fiore PP, et al. Therapy of an animal model of human gastric cancer using a combination of anti-erbB-2 monoclonal antibodies. Cancer Res 1992; 52 (10): 2771–6

    PubMed  CAS  Google Scholar 

  30. Klapper LN, Vaisman N, Hurwitz E, et al. A subclass of tumorinhibitory monoclonal antibodies to ErbB-2/HER2 blocks crosstalk with growth factor receptors. Oncogene 1997; 14 (17): 2099–109

    Article  PubMed  CAS  Google Scholar 

  31. Yen L, Nie ZR, You XL, et al. Regulation of cellular response to cisplatin-induced DNA damage and DNA repair in cells overexpressing pl85 (erbB-2) is dependent on the ras signaling pathway. Oncogene 1997; 14 (15): 1827–35

    Article  PubMed  CAS  Google Scholar 

  32. Lewis GD, Figari I, Fendly B, et al. Differential responses of human tumor cell lines to anti-pl85HER2 monoclonal antibodies. Cancer Immunol Immunother 1993; 37: 255–63

    Article  PubMed  CAS  Google Scholar 

  33. Park JW, Stagg R, Lewis GD, et al. Anti-pl85HER2 monoclonal antibodies: biological properties and potential for immunotherapy. In: Dickson RB, Lippman ME, editors. Genes, oncogenes, and hormones: advances in cellular and molecular biology of breast cancer. Boston: Kluwer Academic Publishers, 1992: 193–211

    Google Scholar 

  34. Baselga J, Norton L, Albanell J, et al. Recombinant humanized anti-HER2 antibody (Herceptin™) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing breast cancer xenografts. Cancer Res 1998; 58: 2825–31

    PubMed  CAS  Google Scholar 

  35. Carter P, Presta L, Gorman CM, et al. Humanization of an antipi 85HER2 antibody for human cancer therapy. Proc NaT1 Acad Sci U S A 1992; 89: 4285–9

    Article  CAS  Google Scholar 

  36. Sliwkowski MX, Lofgren JA, Lewis GD, et al. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 1999; 26: 60–70

    PubMed  CAS  Google Scholar 

  37. Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized anti-pl85HER2 monoclonal antibody in patients with HER/neu-overexpressing metastatic breast cancer. J Clin Oncol 1996; 14 (3): 737–44

    PubMed  CAS  Google Scholar 

  38. Pegram MD, Lipton A, Hayes DF, et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-pl85HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 1998; 16 (8): 2659–71

    PubMed  CAS  Google Scholar 

  39. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17: 2639–48

    PubMed  CAS  Google Scholar 

  40. Vogel CL, Cobleigh M, Tripathy D, et al. Efficacy and safety of Herceptin (Trastuzumab, humanized anti-HER-2 antibody) as a single agent in first-line treatment of HER-2 overexpressing metastatic breast cancer (HER-2+/MBC). Breast Cancer Res Treat 1998; 50: 232a

    Google Scholar 

  41. Slamon D, Leyland-Jones B, Shak S, et al. Addition of Herceptin™ (humanized anti-HER2 antibody) to first line chemotherapy for HER2 overexpressing metastatic breast cancer (HER2+/MBC) markedly increases anticancer activity: a randomized multinational controlled phase III trial. Proc Am Soc Clin Oncol 1998; 17: 98a

    Google Scholar 

  42. Norton L, Slamon D, Leyland-Jones B, et al. Overall survival advantage to simultaneous chemotherapy plus the humanized anti-HER2 monoclonal antibody Herceptin in HER2-overexpressing metastatic breast cancer. Proc Am Soc Clin Oncol 1999; 18: 127a

    Google Scholar 

  43. Hudis C, Seidman A, Paton V, et al. Characterization of cardiac dysfunction observed in the Herceptin™ (trastuzumab) clinical trials. Breast Cancer Res Treat 1998; 50: 232a

    Google Scholar 

  44. Former M, Seidman AD, Esteva FJ, et al. Weekly (W) Herceptin (H) + 1 hour taxol (T): phase II study in HER2 overexpressing (H2+) and non-overexpressing (H2−) metastatic breast cancer (MBC). Proc Am Soc Clin Oncol 1999; 18: 126a

    Google Scholar 

  45. Burstein HJ, Kuter I, Richardson PG, et al. Herceptin (H) and vinorelbine (V) as second-line therapy for HER2-positive (HER2+) metastatic breast cancer (MBC) [abstract 18]. Breast Cancer Res Treat 1999; 57: 29

    Google Scholar 

  46. Valone FH, Kaufman PA, Guyre PM, et al. Phase Ia/Ib trial of bispecific antibody MDX-210 in patients with advanced breast or ovarian cancer that overexpress the proto-oncogene HER2/neu. J Clin Oncol 1995; 13: 2281–92

    PubMed  CAS  Google Scholar 

  47. Weiner LM, Holmes M, Adams GP, et al. A human tumor xenograft model of therapy with a bispecific monoclonal antibody targeting cerbB-2 and CD16. Cancer Res 1993; 53: 94–100

    PubMed  CAS  Google Scholar 

  48. Weiner LM, Clark JI, Davey M, et al. Phase I trial of 2B1, a bispecific monoclonal antibody targeting cerbB-2 and Fc gamma RIII. Cancer Res 1995; 55 (20): 4586–93

    PubMed  CAS  Google Scholar 

  49. Pai-Scherf LH, Villa J, Pearson D, et al. Hepatotoxicity in cancer patients receiving erb-38, a recombinant immunotoxin that targets the erbB2 receptor. Clin Cancer Res 1999; 5 (9): 2311–5

    PubMed  CAS  Google Scholar 

  50. Park JW, Hong K, Kirpotin DB, et al. Immunoliposomes for cancer treatment. Adv Pharmacol 1997; 40: 399–435

    Article  PubMed  CAS  Google Scholar 

  51. Park JW, Kirpotin D, Shalaby R, et al. Anti-HER2 immunoliposomes: significanT1y superior efficacy vs. doxorubicin, liposomal doxorubicin, and anti-her2 antibody treatment, via novel mechanism of action. Proc Am Soc Clin Oncol 1998; 17: 216a

    Google Scholar 

  52. Park JW, Hong K, Carter P, et al. Development of anti-pl85HER2 immunoliposomes for cancer therapy. Proc NaT1 Acad Sci U S A 1995; 92: 1327–31

    Article  CAS  Google Scholar 

  53. Kirpotin D, Park JW, Hong K, et al. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cell in vitro. Biochemistry 1997; 36: 66–75

    Article  PubMed  CAS  Google Scholar 

  54. Park JW, Hong K, Kirpotin DB, et al. Anti-HER2 immunoposomes for targeted therapy of human tumors. Cancer Lett 1997; 118 (2): 153–60

    Article  PubMed  CAS  Google Scholar 

  55. Sainsbury JR, Malcolm AJ, Appleton DR, et al. Presence of epidermal growth factor receptor as an indicator of poor prognosis in patients with breast cancer. J Clin Pathol 1985; 38 (11): 1225–8

    Article  PubMed  CAS  Google Scholar 

  56. Klijn GGM, Berns PMJJ, Schmitz PIM, et al. The clinical significance of epidermal growth factor receptor (EGFR) in human reast cancer: a review of 5232 patients. Endocrinol Rev 1992; 13: 3–17

    CAS  Google Scholar 

  57. Gill GN, Kawamoto T, Cochet C, et al. Monoclonal anti-epidermal growth factor receptor antibodies which are inhibitors of epidermal growth factor binding and antagonists of epidermal growth factor-stimulated tyrosine protein kinase activity. J Biol Chem 1984; 259 (12): 7755–60

    PubMed  CAS  Google Scholar 

  58. Mendelsohn J. Epidermal growth factor receptor as a target for therapy with antireceptor monoclonal antibodies. J NaT1 Cancer Inst Monogr 1992; 13: 125–31

    Google Scholar 

  59. Baselga J, Norton L, Masui H, et al. Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J NaT1 Cancer Inst 1993; 85 (16): 1327–33

    Article  CAS  Google Scholar 

  60. Fan Z, Baselga J, Masui H, et al. Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cisdiamminedichloroplatinum on well established A431 cell xenografts. Cancer Res 1993; 53 (19): 4637–42

    PubMed  CAS  Google Scholar 

  61. Prewett M, Rockwell P, Rockwell RF, et al. The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J Immunother Emphasis Tumor Immunol 1996; 19 (6): 419–27

    Article  PubMed  CAS  Google Scholar 

  62. Prewett M, Rothman M, Waksal H, et al. Mouse-human chimeric anti-epidermal growth factor receptor antibody C225 inhibits the growth of human renal cell carcinoma xenografts in nude mice. Clin Cancer Res 1998; 4 (12): 2957–66

    PubMed  CAS  Google Scholar 

  63. Mendelsohn J. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin Cancer Res 1997; 3 (12 Pt 2): 2703–7

    PubMed  CAS  Google Scholar 

  64. Marken JS, Schieven GL, Hellstrom I, et al. Cloning and expression of the tumor-associated antigen L6. Proc NaT1 Acad Sci U S A 1992; 89 (8): 3503–7

    Article  CAS  Google Scholar 

  65. Goodman GE, Hellstrom I, Brodzinsky L, et al. Phase I trial of murine monoclonal antibody L6 in breast, colon, ovarian, and lung cancer. J Clin Oncol 1990; 8 (6): 1083–92

    PubMed  CAS  Google Scholar 

  66. Ziegler LD, Palazzolo P, Cunningham J, et al. Phase I trial of murine monoclonal antibody L6 in combination with subcutaneous interleukin-2 in patients with advanced carcinoma of the breast, colorectum, and lung. J Clin Oncol 1992; 10 (9): 1470–8

    PubMed  CAS  Google Scholar 

  67. Goodman GE, Hellstrom I, Yelton DE, et al. Phase I trial of chimeric (human-mouse) monoclonal antibody L6 in patients with non-small-cell lung, colon, and breast cancer. Cancer Immunol Immunother 1993; 36 (4): 267–73

    Article  PubMed  CAS  Google Scholar 

  68. Denardo SJ, O’Grady LF, Richman CM, et al. Radioimmuno-therapy for advanced breast cancer using I-131-ChL6 antibody. Anticancer Res 1997; 17 (3B): 1745–51

    PubMed  CAS  Google Scholar 

  69. Trail PA, Willner D, Lasch SJ, et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates [published erratum appears in Science 1994 Feb 25; 263 (5150): 1076]. Science 1993; 261 (5118): 212–5

    Article  PubMed  CAS  Google Scholar 

  70. Sjogren HO, Isaksson M, Willner D, et al. Antitumor activity of carcinoma-reactive BR96-doxorubicin conjugate against human carcinomas in athymic mice and rats and syngeneic rat carcinomas in immunocompetent rats. Cancer Res 1997; 57 (20): 4530–6

    PubMed  CAS  Google Scholar 

  71. Saleh MN, Sugarman S, Murray J, et al. Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J Clin Oncol 2000; 18 (11): 2282–92

    PubMed  CAS  Google Scholar 

  72. Tolcher AW, Sugarman S, Gelmon KA, et al. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol 1999; 17 (2): 478–84

    PubMed  CAS  Google Scholar 

  73. Campbell MJ, Carroll W, Kon S, et al. Idiotype vaccination against murine B cell lymphoma. Humoral and cellular responses elicited by tumor-derived immunoglobulin M and its molecular subunits. J Immunol 1987; 139 (8): 2825–33

    PubMed  CAS  Google Scholar 

  74. Campbell MJ, Esserman L, Levy R. Immunotherapy of established murine B cell lymphoma. Combination of idiotype immunization and cyclophosphamide. J Immunol 1988; 141 (9): 3227–33

    PubMed  CAS  Google Scholar 

  75. Campbell MJ, Esserman L, Byars NE, et al. Development of a new therapeutic approach to B cell malignancy. The induction of immunity by the host against cell surface receptor on the tumor. Int Rev Immunol 1989; 4 (4): 251–70

    Article  PubMed  CAS  Google Scholar 

  76. Campbell MJ, Esserman L, Byars NE, et al. Idiotype vaccination against murine B cell lymphoma. Humoral and cellular requirements for the full expression of antitumor immunity. J Immunol 1990; 145 (3): 1029–36

    PubMed  CAS  Google Scholar 

  77. Kaminski MS, Kitamura K, Maloney DG, et al. Idiotype vaccination against murine B cell lymphoma. Inhibition of tumor immunity by free idiotype protein. J Immunol 1987; 138 (4): 1289–96

    PubMed  CAS  Google Scholar 

  78. Kwak LW, Campbell MJ, Zelenetz AD, et al. Combined syngeneic bone marrow transplantation and immunotherapy of a murine B-cell lymphoma: active immunization with tumor-derived idiotypic immunoglobulin. Blood 1990; 76 (11): 2411–7

    PubMed  CAS  Google Scholar 

  79. Tao MH, Levy R. Idiotype/granulocyte-macrophage colonystimulating factor fusion protein as a vaccine for B-cell lymphoma [see comments]. Nature 1993; 362 (6422): 755–8

    Article  PubMed  CAS  Google Scholar 

  80. Kwak LW, Campbell MJ, Czerwinski DK, et al. Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors [see comments]. N Engl J Med 1992; 327 (17): 1209–15

    Article  PubMed  CAS  Google Scholar 

  81. Hsu FJ, Kwak L, Campbell M, et al. Clinical trials of idiotype-specific vaccine in B-cell lymphomas. Ann N Y Acad Sci 1993; 690: 385–7

    Article  PubMed  CAS  Google Scholar 

  82. Hsu FJ, Caspar CB, Czerwinski D, et al. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma — long-term results of a clinical trial. Blood 1997; 89 (9): 3129–35

    PubMed  CAS  Google Scholar 

  83. Biragyn A, Kwak LW. B-cell malignancies as a model for cancer vaccines: from prototype protein to next generation genetic chemokine fusions. Immunol Rev 1999; 170: 115–26

    Article  PubMed  CAS  Google Scholar 

  84. Biragyn A, Tani K, Grimm MC, et al. Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity [see comments]. Nat Biotechnol 1999; 17 (3): 253–8

    Article  PubMed  CAS  Google Scholar 

  85. Bendandi M, Gocke CD, Kobrin CB, et al. Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma [see comments]. Nature Med 1999; 5 (10): 1171–7

    Article  PubMed  CAS  Google Scholar 

  86. Kwak LW, Pennington R, Boni L, et al. Liposomal formulation of a self lymphoma antigen induces potent protective antitumor immunity. J Immunol 1998; 160 (8): 3637–41

    PubMed  CAS  Google Scholar 

  87. Kobrin CB, Kwak LW. Development of vaccine strategies for the treatment of B-cell malignancies. Cancer Invest 1997; 15 (6): 577–87

    Article  PubMed  CAS  Google Scholar 

  88. Caspar CB, Levy S, Levy R. Idiotype vaccines for non-Hodgkin’s lymphoma induce polyclonal immune responses that cover mutated tumor idiotypes: comparison of different vaccine formulations. Blood 1997; 90 (9): 3699–706

    PubMed  CAS  Google Scholar 

  89. McCormick AA, Kumagai MH, Hanley K, et al. Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. Proc NaT1 Acad Sci U S A 1999; 96 (2): 703–8

    Article  CAS  Google Scholar 

  90. Timmerman JM, Levy R. Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 1999; 50: 507–29

    Article  PubMed  CAS  Google Scholar 

  91. Bystryn JC. Vaccines for melanoma. Design strategies and clinical results. Dermatol Clin 1998; 16 (2): 269–75

    Article  PubMed  CAS  Google Scholar 

  92. Ollila DW, Kelley MC, Gammon G, et al. Overview of melanoma vaccines: active specific immunotherapy for melanoma patients. Semin Surg Oncol 1998; 14 (4): 328–36

    Article  PubMed  CAS  Google Scholar 

  93. Gajewski TF, Fallarino F. Rational development of tumour antigen-specific immunization in melanoma. Ther Immunol 1995; 2 (4): 211–25

    PubMed  CAS  Google Scholar 

  94. Conforti AM, Ollila DW, Kelley MC, et al. Update on active specific immunotherapy with melanoma vaccines. J Surg Oncol 1997; 66 (1): 55–64

    Article  PubMed  CAS  Google Scholar 

  95. Kuhn CA, Hanke CW. Current status of melanoma vaccines. Dermatol Surg 1997; 23 (8): 649–54; discussion 54-5

    Article  PubMed  CAS  Google Scholar 

  96. Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res 1970; 13: 1–27

    PubMed  CAS  Google Scholar 

  97. Burnet FM. Immunological surveillance in neoplasia. Transplant Rev 1971; 7: 3–25

    PubMed  CAS  Google Scholar 

  98. Burnet FM. Implications of immunological surveillance for cancer therapy. Isr J Med Sci 1971; 7 (1): 9–16

    PubMed  CAS  Google Scholar 

  99. Fuchs EJ, Matzinger P. Is cancer dangerous to the immune system? Semin Immunol 1996; 8 (5): 271–80

    Article  PubMed  CAS  Google Scholar 

  100. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994; 12: 991–1045

    Article  PubMed  CAS  Google Scholar 

  101. Bakker AB, Schreurs MW, de Boer AJ, et al. Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med 1994; 179 (3): 1005–9

    Article  PubMed  CAS  Google Scholar 

  102. Gaugler B, Van den Eynde B, van der Bruggen P, et al. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med 1994; 179 (3): 921–30

    Article  PubMed  CAS  Google Scholar 

  103. Kawakami Y, Eliyahu S, Sakaguchi K, et al. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 1994; 180 (1): 347–52

    Article  PubMed  CAS  Google Scholar 

  104. Disis ML, Calenoff E, McLaughlin G, et al. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res 1994; 54 (1): 16–20

    PubMed  CAS  Google Scholar 

  105. Fisk B, Blevins T1, Wharton JT, et al. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 1995; 181 (6): 2109–17

    Article  PubMed  CAS  Google Scholar 

  106. Peoples GE, Goedegebuure PS, Smith R, et al. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc NaT1 Acad Sci U S A 1995; 92 (2): 432–6

    Article  CAS  Google Scholar 

  107. Disis ML, Cheever MA. Oncogenic proteins as tumor antigens. Curr Opin Immunol 1996; 8 (5): 637–42

    Article  PubMed  CAS  Google Scholar 

  108. Yoshino I, Goedegebuure PS, Peoples GE, et al. HER2/neu-derived peptides are shared antigens among human non-small cell lung cancer and ovarian cancer. Cancer Res 1994; 54 (13): 3387–90

    PubMed  CAS  Google Scholar 

  109. Cheever MA, Disis ML, Bernhard H, et al. Immunity to oncogenic proteins. Immunol Rev 1995; 145: 33–59

    Article  PubMed  CAS  Google Scholar 

  110. Zaks TZ, Rosenberg SA. Immunization with a peptide epitope (p369-377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res 1998; 58 (21): 4902–8

    PubMed  CAS  Google Scholar 

  111. Disis ML, Grabstein KH, Sleath PR, et al. Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res 1999; 5 (6): 1289–97

    PubMed  CAS  Google Scholar 

  112. Ernster VL, Barclay J, Kerlikowske K, et al. Incidence of and treatment for ductal carcinoma in situ of the breast [see comments]. JAMA 1996; 275 (12): 913–8

    Article  PubMed  CAS  Google Scholar 

  113. Lagios MD. Duct carcinoma in situ. Pathology and treatment. Surg Clin North Am 1990; 70 (4): 853–71

    PubMed  CAS  Google Scholar 

  114. VandeVijver MJ, Peterse ML, Mooi WJ, et al. Neu-protein expression in breast cancer. N Engl J Med 1988; 319: 1239–45

    Article  PubMed  Google Scholar 

  115. Liu E, Thor A, He M, et al. The HER2 (cerbB-2) oncogene is frequenT1y amplified in in situ carcinomas of the breast. Oncogene 1992; 7: 1027–32

    PubMed  CAS  Google Scholar 

  116. Solin LJ, Kurtz J, Fourquet A, et al. Fifteen-year results of breast-conserving surgery and definitive breast irradiation for the treatment of ductal carcinoma in situ of the breast. J Clin Oncol 1996; 14 (3): 754–63

    PubMed  CAS  Google Scholar 

  117. Esserman LJ, Lopez T, Montes R, et al. Vaccination with the extracellular domain of pl85neu prevents mammary tumor development in neu transgenic mice. Cancer Immunol Immunother 1999; 47 (6): 337–42

    Article  PubMed  CAS  Google Scholar 

  118. Disis ML, Gralow JR, Bernhard H, et al. Peptide-based, but not whole protein, vaccines elicit immunity to HER-2/neu, oncogenic self-protein. J Immunol 1996; 156 (9): 3151–8

    PubMed  CAS  Google Scholar 

  119. Nagata Y, Furagen R, Hiasa A, et al. Peptides derived from a wild-type murine proto-oncogene c erbB-2/HER2/neu can induce CT1 and tumor suppression in syngeneic hosts. J Immunol 1997; 159 (3): 1336–43

    PubMed  CAS  Google Scholar 

  120. Roussel P, Lamblin G, Lhermitte M, et al. The complexity of MUC1ns. Biochimie 1988; 70: 1471–82

    Article  PubMed  CAS  Google Scholar 

  121. Strouss G, Deker J. MUC1n-type glycoproteins. Crit Rev Biochem Mol Biol Int 1992; 27: 57–92

    Article  Google Scholar 

  122. McGuckin M, Walsh M, Hohn B, et al. Prognostic significance of MUC1 epithelial MUC1n expression in breast cancer. Hum Pathol 1995; 26: 432–9

    Article  PubMed  CAS  Google Scholar 

  123. Kinney A, Sahin A, Vernon S, et al. The prognostic significance of sialyl-Tn antigen in women treated with breast carcinoma treated with adjuvant chemotherapy. Cancer 1997; 80: 2240–9

    Article  PubMed  CAS  Google Scholar 

  124. Gendler SJ, Spicer AP. Epithelial MUC1n genes. Annu Rev Physiol 1995; 57: 607–34

    Article  PubMed  CAS  Google Scholar 

  125. Xing PX, Tjandra JJ, Stacker SA, et al. Monoclonal antibodies reactive with MUC1n expressed in breast cancer. Immunol Cell Biol 1989; 67 (Pt 3): 183–95

    Article  PubMed  Google Scholar 

  126. Xing PX, Prenzoska J, McKenzie IF. Epitope mapping of antibreast and anti-ovarian MUC1n monoclonal antibodies. Mol Immunol 1992; 29 (5): 641–50

    Article  PubMed  CAS  Google Scholar 

  127. Kotera Y, Fontenot JD, Pecher G, et al. Humoral immunity against a tandem repeat epitope of human MUC1n MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res 1994; 54 (11): 2856–60

    PubMed  CAS  Google Scholar 

  128. von Mensdorff-Pouilly S, Gourevitch MM, Kenemans P, et al. Humoral immune response to polymorphic epithelial MUC1n (MUC-1) in patients with benign and malignant breast tumours. Eur J Cancer 1996; 32A (8): 1325–31

    Article  Google Scholar 

  129. Jerome K, Barnd D, Bendt K, et al. Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a MUC1n molecule preferentially expressed by malignant cells. Cancer Res 1991; 51: 2908–16

    PubMed  CAS  Google Scholar 

  130. Barnd DL, Kerr LA, Metzgar RS, et al. Human tumor-specific cytotoxic T cell lines generated from tumor-draining lymph node infiltrate. Transplant Proc 1988; 20 (2): 339–41

    PubMed  CAS  Google Scholar 

  131. Ioannides CG, Fisk B, Jerome KR, et al. Cytotoxic T cells from ovarian malignant tumors can recognize polymorphic epithelial MUC1n core peptides. J Immunol 1993; 151 (7): 3693–703

    PubMed  CAS  Google Scholar 

  132. Jerome KR, Domenech N, Finn OJ. Tumor-specific cytotoxic T cell clones from patients with breast and pancreatic adenocarcinoma recognize EBV-immortalized B cells transfected with polymorphic epithelial MUC1n complementary DNA. J Immunol 1993; 151 (3): 1654–62

    PubMed  CAS  Google Scholar 

  133. Domenech N, Henderson RA, Finn OJ. Identification of an HLA-A11-restricted epitope from the tandem repeat domain of the epithelial tumor antigen MUC1n. J Immunol 1995; 155 (10): 4766–74

    PubMed  CAS  Google Scholar 

  134. Xing PX, Apostolopoulos V, Michaels M, et al. Phase I study of synthetic MUC1 peptides in cancer. Int J Oncol 1995; 6: 1283–9

    PubMed  CAS  Google Scholar 

  135. Goydos JS, Elder E, Whiteside T1, et al. A phase I trial of a synthetic MUC1n peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J Surg Res 1996; 63 (1): 298–304

    Article  PubMed  CAS  Google Scholar 

  136. Apostolopoulos V, Pietersz GA, Xing PX, et al. The immunogenicity of MUC1 peptides and fusion protein. Cancer Lett 1995; 90 (1): 21–6

    Article  PubMed  CAS  Google Scholar 

  137. Apostolopoulos V, Pietersz GA, McKenzie IF. Cell-mediated immune responses to MUC1 fusion protein coupled to man-nan. Vaccine 1996; 14 (9): 930–8

    Article  PubMed  CAS  Google Scholar 

  138. McKenzie IF, Apostolopoulos V, Lees C, et al. Oxidised mannan antigen conjugates preferentially stimulate T1 type immune responses. Vet Immunol Immunopathol 1998; 63 (1–2): 185–90

    Article  PubMed  CAS  Google Scholar 

  139. Pietersz GA, Li W, Popovski V, et al. Parameters for using mannan-MUC1 fusion protein to induce cellular immunity. Cancer Immunol Immunother 1998; 45 (6): 321–6

    Article  PubMed  CAS  Google Scholar 

  140. Karanikas V, Hwang LA, Pearson J, et al. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J Clin Invest 1997; 100 (11): 2783–92

    Article  PubMed  CAS  Google Scholar 

  141. Adluri S, Gilewski T, Zhang S, et al. Specificity analysis of sera from breast cancer patients vaccinated with MUC1-KLH plus QS-21. Br J Cancer 1999; 79 (11–12): 1806–12

    Article  PubMed  CAS  Google Scholar 

  142. Springer GF, Desai PR, Spencer BD, et al. T/Tn antigen vaccine is effective and safe in preventing recurrence of advanced breast carcinoma. Cancer Detect Prev 1995; 19 (4): 374–80

    PubMed  CAS  Google Scholar 

  143. MacLean GD, Reddish M, Koganty RR, et al. Immunization of breast cancer patients using a synthetic sialyl-Tn glycoconjugate plus Detox adjuvant. Cancer Immunol Immunother 1993; 36 (4): 215–22

    Article  PubMed  CAS  Google Scholar 

  144. Berd D, Mastrangelo MJ, Engstrom PF, et al. Augmentation of the human immune response by cyclophosphamide. Cancer Res 1982; 42 (11): 4862–6

    PubMed  CAS  Google Scholar 

  145. Berd D, Maguire HC, Jr., Mastrangelo MJ. Potentiation of human cell-mediated and humoral immunity by low-dose cyclophosphamide. Cancer Res 1984; 44 (11): 5439–43

    PubMed  CAS  Google Scholar 

  146. MacLean GD, Miles DW, Rubens RD, et al. Enhancing the effect of THERATOPE STn-KLH cancer vaccine in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamide. J Immunother Emphasis Tumor Immunol 1996; 19 (4): 309–16

    Article  PubMed  CAS  Google Scholar 

  147. MacLean GD, Reddish MA, Koganty RR, et al. Antibodies against mucin-associated sialylTn epitopes correlate with survival of metastatic adenocarcinoma patients undergoing active specific immunotherapy with synthetic STn vaccine. J Immunother Emphasis Tumor Immunol 1996; 19 (1): 59–68

    Article  PubMed  CAS  Google Scholar 

  148. Sandmaier BM, Oparin DV, Holmberg LA, et al. Evidence of a cellular immune response against sialyl-Tn in breast and ovarian cancer patients after high-dose chemotherapy, stem cell rescue, and immunization with Theratope STn-KLH cancer vaccine. J Immunother 1999; 22 (1): 54–66

    Article  PubMed  CAS  Google Scholar 

  149. Esteban JM, Felder B, Ahn C, et al. Prognostic relevance of carcinoembryonic antigen and estrogen receptor status in breast cancer patients [see comments]. Cancer 1994; 74 (5): 1575–83

    Article  PubMed  CAS  Google Scholar 

  150. Robbins PF, Eggensperger D, Qi CF, et al. Definition of the expression of the human carcinoembryonic antigen and nonspecific cross-reacting antigen in human breast and lung carcinomas. Int J Cancer 1993; 53 (6): 892–7

    Article  PubMed  CAS  Google Scholar 

  151. Pignatelli M, Durbin H, Bodmer WF. Carcinoembryonic antigen functions as an accessory adhesion molecule mediating colon epithelial cell-collagen interactions. Proc Natl Acad Sci U S A 1990; 87 (4): 1541–5

    Article  PubMed  CAS  Google Scholar 

  152. Benchimol S, Fuks A, Jothy S, etal. Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 1989; 57 (2): 327–34

    Article  PubMed  CAS  Google Scholar 

  153. Von Kleist S, Burtin P. Antigens cross-reacting with CEA. In: Herberman RB, McIntire KR, editors. Immunodiagnosis of cancer. New York: Marcel Dekkar, 1979: 322–41

    Google Scholar 

  154. Mavligit GM, Stuckey S. Colorectal carcinoma. Evidence for circulating CEA-anti-CEA complexes. Cancer 1983; 52 (1): 146–9

    Article  PubMed  CAS  Google Scholar 

  155. Fuchs C, Krapf F, Kern P, et al. CEA-containing immune complexes in sera of patients with colorectal and breast canceranalysis of complexed immunoglobulin classes. Cancer Immunol Immunother 1988; 26 (2): 180–4

    Article  PubMed  CAS  Google Scholar 

  156. Foon KA, Chakraborty M, John WJ, et al. Immune response to the carcinoembryonic antigen in patients treated with an anti-idiotype antibody vaccine. J Clin Invest 1995; 96 (1): 334–42

    Article  PubMed  CAS  Google Scholar 

  157. Foon KA, John WJ, Chakraborty M, et al. Clinical and immune responses in advanced colorectal cancer patients treated with anti-idiotype monoclonal antibody vaccine that mimics the carcinoembryonic antigen. Clin Cancer Res 1997; 3 (8): 1267–76

    PubMed  CAS  Google Scholar 

  158. Bhattacharya-Chatterjee M, Foon KA, Kohler H. Anti-idiotype monoclonal antibodies as vaccines for human cancer. Int Rev Immunol 1991; 7 (4): 289–302

    Article  PubMed  CAS  Google Scholar 

  159. Bhattacharya-Chatterjee M, Foon KA. Anti-idiotype antibody vaccine therapies of cancer. Cancer Treat Res 1998; 94: 51–68

    Article  PubMed  CAS  Google Scholar 

  160. Kantor J, Irvine K, Abrams S, et al. Antitumor activity and immune responses induced by a recombinant carcinoembryonic antigen-vaccinia virus vaccine [see comments]. J Natl Cancer Inst 1992; 84 (14): 1084–91

    Article  PubMed  CAS  Google Scholar 

  161. Kantor J, Irvine K, Abrams S, et al. Immunogenicity and safety of a recombinant vaccinia virus vaccine expressing the carcinoembryonic antigen gene in a nonhuman primate. Cancer Res 1992; 52 (24): 6917–25

    PubMed  CAS  Google Scholar 

  162. Schlom J, Kantor J, Abrams S, et al. Strategies for the development of recombinant vaccines for the immunotherapy of breast cancer. Breast Cancer Res Treat 1996; 38 (1): 27–39

    Article  PubMed  CAS  Google Scholar 

  163. Tsang KY, Zaremba S, Nieroda CA, et al. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine [see comments]. J Natl Cancer Inst 1995; 87 (13): 982–90

    Article  PubMed  CAS  Google Scholar 

  164. Wong C, Morse M, Nair SK. Induction of primary, human antigen-specific cytotoxic T lymphocytes in vitro using dendritic cells pulsed with peptides. J Immunother 1998; 21 (1): 32–40

    Article  PubMed  CAS  Google Scholar 

  165. Alters SE, Gadea JR, Philip R. Immunotherapy of cancer, generation of CEA specific CTL using CEA peptide pulsed dendritic cells. In: Castagnoli R, editor. Dendritic cells in fundamental and clinical immunology. New York: Plenum Press, 1997: 519–24

    Google Scholar 

  166. Morse MA, Deng Y, Coleman D, et al. A phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-l)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen [In process citation]. Clin Cancer Res 1999; 5 (6): 1331–8

    PubMed  CAS  Google Scholar 

  167. Bartek J, Bartkova J, Vojtesek B, et al. Patterns of expression of the p53 tumour suppressor in human breast tissues and tumours in situ and in vitro. Int J Cancer 1990; 46: 839–44

    Article  PubMed  CAS  Google Scholar 

  168. Horak E, Smith K, Bromley L, et al. Mutant p53, EGF receptor and cerbB-2 expression in human breast cancer. Oncogene 1991; 6: 2277–84

    PubMed  CAS  Google Scholar 

  169. Davidoff A, Kerns B, Pence J, et al. p53 alterations in all stages of breast cancer. J Surg Oncol 1991; 48: 260–7

    Article  PubMed  CAS  Google Scholar 

  170. Fernando S, Wu X, McKenzie P, et al. Immunohistochemical detection of p53 protein expression in mammary carcinoma: a study of 80 cases. Pathology 1995; 27: 365–9

    Article  PubMed  CAS  Google Scholar 

  171. Lisboa B, Vogtlander S, Gilster T, et al. Molecular and immunohistochemical analysis of p53 mutations in scrapings and tissue from preinvasive and invasive breast cancer. Virchows Arch 1997; 431: 375–81

    Article  PubMed  CAS  Google Scholar 

  172. Molina R, Segui M, Climent M, et al. p53 oncoprotein as a prognostic indicator in patients with breast cancer. Anticancer Res 1998; 18: 507–11

    PubMed  CAS  Google Scholar 

  173. Yanuck M, Carbone DP, Pendleton CD, et al. A mutant p53 tumor suppressor protein is a target for peptide-induced CD8+ cytotoxic T-cells. Cancer Res 1993; 53 (14): 3257–61

    PubMed  CAS  Google Scholar 

  174. Noguchi Y, Chen YT, Old LJ. A mouse mutant p53 product recognized by CD4+ and CD8+ T cells. Proc Natl Acad Sci U S A 1994; 91 (8): 3171–5

    Article  PubMed  CAS  Google Scholar 

  175. Noguchi Y, Richards EC, Chen YT, et al. Influence of interleukin 12 on p53 peptide vaccination against established Meth A sarcoma. Proc Natl Acad Sci U S A 1995; 92 (6): 2219–23

    Article  PubMed  CAS  Google Scholar 

  176. Mayordomo JI, Loftus DJ, Sakamoto H, et al. Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J Exp Med 1996; 183 (4): 1357–65

    Article  PubMed  CAS  Google Scholar 

  177. Crawford LV, Pim DC, Bulbrook RD. Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer. Int J Cancer 1982; 30 (4): 403–8

    Article  PubMed  CAS  Google Scholar 

  178. Lubin R, Schlichtholz B, Teillaud JL, et al. p53 antibodies in patients with various types of cancer: assay, identification, and characterization. Clin Cancer Res 1995; 1 (12): 1463–9

    PubMed  CAS  Google Scholar 

  179. Tilkin AF, Lubin R, Soussi T, et al. Primary proliferative T cell response to wild-type p53 protein in patients with breast cancer. Eur J Immunol 1995; 25 (6): 1765–9

    Article  PubMed  CAS  Google Scholar 

  180. Soussi T. The humoral response to the tumor-suppressor geneproduct p53 in human cancer: implications for diagnosis and therapy. Immunol Today 1996; 17 (8): 354–6

    Article  PubMed  CAS  Google Scholar 

  181. Ralhan R, Nath N, Agarwal S, et al. Circulating p53 antibodies as early markers of oral cancer: correlation with p53 alterations. Clin Cancer Res 1998; 4 (9): 2147–52

    PubMed  CAS  Google Scholar 

  182. Gnjatic S, Cai Z, Viguier M, et al. Accumulation of the p53 protein allows recognition by human CTL of a wild-type p53 epitope presented by breast carcinomas and melanomas. J Immunol 1998; 160 (1): 328–33

    PubMed  CAS  Google Scholar 

  183. Theobald M, Biggs J, Dittmer D, et al. Targeting p53 as a general tumor antigen. Proc Natl Acad Sci U S A 1995; 92 (26): 11993–7

    Article  PubMed  CAS  Google Scholar 

  184. Roth J, Dittmer D, Rea D, et al. p53 as a target for cancer vaccines: recombinant canarypox virus vectors expressing p53 protect mice against lethal tumor cell challenge. Proc Natl Acad Sci U S A 1996; 93 (10): 4781–6

    Article  PubMed  CAS  Google Scholar 

  185. Tuting T, DeLeo AB, Lotze MT, et al. Genetically modified bone marrow-derived dendritic cells expressing tumor-associated viral or “self” antigens induce antitumor immunity in vivo. Eur J Immunol 1997; 27 (10): 2702–7

    Article  PubMed  CAS  Google Scholar 

  186. Ben-Hur H, Ben-Meir A, Hagay Z, et al. Tumor-preventive effects of the soluble p53 antigen on chemically-induced skin cancer in mice. Anticancer Res 1998; 18 (6A): 4237–41

    PubMed  CAS  Google Scholar 

  187. Wikstrand CJ, McLendon RE, Friedman AH, et al. Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII. Cancer Res 1997; 57 (18): 4130–40

    PubMed  CAS  Google Scholar 

  188. Wikstrand CJ, Hale LP, Batra SK, et al. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 1995; 55 (14): 3140–8

    PubMed  CAS  Google Scholar 

  189. Cannon PM, Ellis IO, Blarney RW, et al. Expression of tumour-associated antigens in breast cancer primary tissue compared with serum levels. Eur J Surg Oncol 1993; 19 (6): 523–7

    PubMed  CAS  Google Scholar 

  190. Croce MV, Price MR, Segal-Eiras A. Expression of monoclonal-antibody-defined antigens in fractions isolated from human breast carcinomas and patients’ serum. Cancer Immunol Immunother 1995; 40 (2): 132–7

    Article  PubMed  CAS  Google Scholar 

  191. Croce MV, Colussi AG, Price MR, et al. Expression of tumour associated antigens in normal, benign and malignant human mammary epithelial tissue: a comparative immunohisto-chemical study. Anticancer Res 1997; 17 (6D): 4287–92

    PubMed  CAS  Google Scholar 

  192. Boon T. Tumor antigens recognized by cytolytic T lymphocytes: present perspectives for specific immunotherapy. Int J Cancer 1993; 54 (2): 177–80

    Article  PubMed  CAS  Google Scholar 

  193. Boon T, Cerottini JC, Van den Eynde B, et al. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 1994; 12: 337–65

    Article  PubMed  CAS  Google Scholar 

  194. Itoh K, Hayashi A, Nakao M, et al. Human tumor rejection antigens MAGE. J Biochem (Tokyo) 1996; 119 (3): 385–90

    Article  CAS  Google Scholar 

  195. Russo V, Traversari C, Verrecchia A, et al. Expression of the MAGE gene family in primary and metastatic human breast cancer: implications for tumor antigen-specific immunotherapy. Int J Cancer 1995; 64 (3): 216–21

    Article  PubMed  CAS  Google Scholar 

  196. Kawamoto M, Shichijo S, Imai Y, et al. Expression of the SART-1 tumor rejection antigen in breast cancer. Int J Cancer 1999; 80 (1): 64–7

    Article  PubMed  CAS  Google Scholar 

  197. Nakao M, Yamana H, Imai Y, et al. HLAA2601-restricted CTLs recognize a peptide antigen expressed on squamous cell carcinoma. Cancer Res 1995; 55 (19): 4248–52

    PubMed  CAS  Google Scholar 

  198. Shichijo S, Nakao M, Imai Y, et al. A gene encoding antigenic peptide s of human squamous cell carcinoma recognized by cytotoxic T lymphocytes. J Exp Med 1998; 187 (3): 277–88

    Article  PubMed  CAS  Google Scholar 

  199. Rettig WJ, Cordon-Cardo C, Koulos JP, et al. Cell surface antigens of human trophoblast and choriocarcinoma defined by monoclonal antibodies. Int J Cancer 1985; 35 (4): 469–75

    Article  PubMed  CAS  Google Scholar 

  200. Weitman SD, Lark RH, Coney LR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992; 52 (12): 3396–401

    PubMed  CAS  Google Scholar 

  201. Garin-Chesa P, Campbell I, Saigo PE, et al. Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folatebinding protein. Am J Pathol 1993; 142 (2): 557–67

    PubMed  CAS  Google Scholar 

  202. Alberti S, Miotti S, Fornaro M, et al. The Ca-MOvl8 molecule, a cell-surface marker of human ovarian carcinomas, is anchored to the cell membrane by phosphatidylinositol. Biochem Biophys Res Commun 1990; 171 (3): 1051–5

    Article  PubMed  CAS  Google Scholar 

  203. Elwood PC. Molecular cloning and characterization of the human folate-binding protein cDNA from placenta and malignant tissue culture (KB) cells. J Biol Chem 1989; 264 (25): 14893–901

    PubMed  CAS  Google Scholar 

  204. Li PY, Del Vecchio S, Fonti R, et al. Local concentration of folate binding protein GP38 in sections of human ovarian carcinoma by in vitro quantitative autoradiography. J Nucl Med 1996; 37 (4): 665–72

    PubMed  CAS  Google Scholar 

  205. Peoples GE, Anderson BW, Fisk B, et al. Ovarian cancer-associated lymphocyte recognition of folate binding protein peptides. Ann Surg Oncol 1998; 5 (8): 743–50

    Article  PubMed  CAS  Google Scholar 

  206. Peoples GE, Anderson BW, Lee TV, et al. Vaccine implications of folate binding protein, a novel cytotoxic T lymphocyte-recognized antigen system in epithelial cancers. Clin Cancer Res 1999; 5 (12): 4214–23

    PubMed  CAS  Google Scholar 

  207. Kim DK, Lee TV, Castilleja A, et al. Folate binding protein peptide 191-199 presented on dendritic cells can stimulate CTL from ovarian and breast cancer patients. Anticancer Res 1999; 19 (4B): 2907–16

    PubMed  CAS  Google Scholar 

  208. Mehta K, McQueen T, Neamati N, et al. Activation of retinoid receptors RAR alpha and RXR alpha induces differentiation and apoptosis, respectively, in HL-60 cells. Cell Growth Differ 1996; 7 (2): 179–86

    PubMed  CAS  Google Scholar 

  209. Gottardis MM, Bischoff ED, Shirley MA, et al. Chemoprevention of mammary carcinoma by LGD1069 (Targretin): an RXR-selective ligand. Cancer Res 1996; 56 (24): 5566–70

    PubMed  CAS  Google Scholar 

  210. Bischoff ED, Gottardis MM, Moon TE, et al. Beyond tamoxifen: the retinoid X receptor-selective ligand LGD1069 (TARGRETIN) causes complete regression of mammary carcinoma. Cancer Res 1998; 58 (3): 479–84

    PubMed  CAS  Google Scholar 

  211. Miller VA, Benedetti FM, Rigas JR, et al. Initial clinical trial of a selective retinoid X receptor ligand, LGD 1069. J Clin Oncol 1997; 15 (2): 790–5

    PubMed  CAS  Google Scholar 

  212. Veronesi U, De Palo G, Marubini E, et al. Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer [see comments]. J Natl Cancer Inst 1999; 91 (21): 1847–56

    Article  PubMed  CAS  Google Scholar 

  213. Fidler IJ. Critical determinants of cancer metastasis: rationale for therapy. Cancer Chemother Pharmacol 1999; 43 Suppl. 5337: S3–10

    Article  PubMed  CAS  Google Scholar 

  214. Shalinsky DR, Brekken J, Zou H, et al. Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann N Y Acad Sci 1999; 878 (4): 236–70

    Article  PubMed  CAS  Google Scholar 

  215. Shalinsky DR, Brekken J, Zou H, et al. Marked antiangiogenic and antitumor efficacy of AG3340 in chemoresistant human non-small cell lung cancer tumors: single agent and combination chemotherapy studies. Clin Cancer Res 1999; 5 (7): 1905–17

    PubMed  CAS  Google Scholar 

  216. D’Olimpio J, Hande K, Collier M, et al. Phase I study of the matrix metalloprotease inhibitor AG3340 in combination with paclitaxel and carboplatin for the treatment of patients with advanced solid tumors. Proc Am Soc Clin Oncol 1999; 18: 160a

    Google Scholar 

  217. Jones L, Ghaneh P, Humphreys M, et al. The matrix metalloproteinases and their inhibitors in the treatment of pancreatic cancer. Ann N Y Acad Sci 1999; 880: 288–307

    Article  PubMed  CAS  Google Scholar 

  218. Low JA, Johnson MD, Bone EA, et al. The matrix metallo-proteinase inhibitor batimastat (BB-94) retards human breast cancer solid tumor growth but not ascites formation in nude mice. Clin Cancer Res 1996; 2 (7): 1207–14

    PubMed  CAS  Google Scholar 

  219. Gatto C, Rieppi M, Borsotti P, et al. BAY 12-9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity [In process citation]. Clin Cancer Res 1999; 5 (11): 3603–7

    PubMed  CAS  Google Scholar 

  220. Folkman J. Angiogenesis and angiogenesis inhibition: an overview. EXS 1997; 79 (1): 1–8

    PubMed  CAS  Google Scholar 

  221. Pluda J. Tumor-associated angiogenesis: mechanisms, clinical implications, and therapeutic strategies. Semin Oncol 1997; 24: 203–18

    PubMed  CAS  Google Scholar 

  222. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1992; 362: 841–4

    Article  Google Scholar 

  223. Brooks PC, Strömblad S, Klemke R, et al. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 1995; 96 (4): 1815–22

    Article  PubMed  CAS  Google Scholar 

  224. Shawver LK, Schwartz DP, Mann E, et al. Inhibition of platelet derived growth factor-mediated signal transduction and tumor growth by N-4- (trifluoromethyl)-phenyl] 5-methylisoxazole-4-carboxamide. Clin Can Res 1997; 3 (7): 1167–77

    CAS  Google Scholar 

  225. Fong TA, Shawver LK, Sun L, et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999; 59 (1): 99–106

    PubMed  CAS  Google Scholar 

  226. O’Reilly MS, Holmgren L, Chen C, et al. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med 1996; 2 (6): 689–92

    Article  PubMed  Google Scholar 

  227. O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88 (2): 277–85

    Article  PubMed  Google Scholar 

  228. Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into humans-immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction [see comments]. N Engl J Med 1990; 323 (9): 570–8

    Article  PubMed  CAS  Google Scholar 

  229. Tanaka K, Isselbacher KJ, Khoury G, et al. Reversal of oncogenesis by the expression of a major histocompatibility complex class I gene. Science 1985; 228 (4695): 26–30

    Article  PubMed  CAS  Google Scholar 

  230. Tanaka K, Hayashi H, Hamada C, et al. Expression of major histocompatibility complex class I antigens as a strategy for the potentiation of immune recognition of tumor cells. Proc Natl Acad Sci U S A 1986; 83 (22): 8723–7

    Article  PubMed  CAS  Google Scholar 

  231. Tanaka K, Gorelik E, Watanabe M, et al. Rejection of B16 melanoma induced by expression of a transfected major histocompatibility complex class I gene. Mol Cell Biol 1988; 8 (4): 1857–61

    PubMed  CAS  Google Scholar 

  232. Baskar S, Azarenko V, Garcia Marshall E, et al. MHC class II-transfected tumor cells induce long-term tumor-specific immunity in autologous mice. Cell Immunol 1994; 155 (1): 123–33

    Article  PubMed  CAS  Google Scholar 

  233. Nabel GJ, Nabel EG, Yang ZY, et al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci U S A 1993; 90 (23): 11307–11

    Article  PubMed  CAS  Google Scholar 

  234. Nabel GJ, Gordon D, Bishop DK, et al. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc Natl Acad Sci U S A 1996; 93 (26): 15388–93

    Article  PubMed  CAS  Google Scholar 

  235. Chen L, Ashe S, Brady WA, et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CT1A-4. Cell 1992; 71 (7): 1093–102

    Article  PubMed  CAS  Google Scholar 

  236. Chen L, Linsley PS, Hellstrom KE. Costimulation of T cells for tumor immunity. Immunol Today 1993; 14 (10): 483–6

    Article  PubMed  CAS  Google Scholar 

  237. Townsend SE, Allison JP. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 1993; 259 (5093): 368–70

    Article  PubMed  CAS  Google Scholar 

  238. Townsend SE, Su FW, Atherton JM, et al. Specificity and longevity of antitumor immune responses induced by B7-transfected tumors. Cancer Res 1994; 54 (24): 6477–83

    PubMed  CAS  Google Scholar 

  239. Yang G, Hellstrom KE, Hellstrom I, et al. Antitumor immunity elicited by tumor cells transfected with B7-2, a second ligand for CD28/CTLA-4 costimulatory molecules. J Immunol 1995; 154 (6): 2794–800

    PubMed  CAS  Google Scholar 

  240. Li Y, Hellstrom KE, Newby SA, et al. Costimulation by CD48 and B7-1 induces immunity against poorly immunogenic tumors. J Exp Med 1996; 183 (2): 639–44

    Article  PubMed  CAS  Google Scholar 

  241. Melero I, Bach N, Hellstrom KE, et al. Amplification of tumor immunity by gene transfer of the costimulatory 4-1BB ligand: synergy with the CD28 costimulatory pathway. Eur J Immunol 1998; 28 (3): 1116–21

    Article  PubMed  CAS  Google Scholar 

  242. Pardoll DM. Paracrine cytokine adjuvants in cancer immunotherapy. Annu Rev Immunol 1995; 13: 399–415

    Article  PubMed  CAS  Google Scholar 

  243. Pardoll DM. Cancer vaccines. Nature Med 1998; 4 (5 Suppl. ): 525–31

    Article  PubMed  CAS  Google Scholar 

  244. Manome Y, Wen PY, Hershowitz A, et al. Monocyte chemoattractant protein-1 (MCP-1) gene transduction: an effective tumor vaccine strategy for non-intracranial tumors. Cancer Immunol Immunother 1995; 41 (4): 227–35

    Article  PubMed  CAS  Google Scholar 

  245. Davis HL, Whalen RG. DNA-based immunization. Mol Cell Biol Hum Dis Ser 1995; 5: 368–87

    PubMed  CAS  Google Scholar 

  246. Conry RM, LoBuglio AF, Curiel DT. Polynucleotide-mediated immunization therapy of cancer. Semin Oncol 1996; 23 (1): 135–47

    PubMed  CAS  Google Scholar 

  247. Donnelly JJ, Ulmer JB, Shiver JW, et al. DNA vaccines. Annu Rev Immunol 1997; 15: 617–48

    Article  PubMed  CAS  Google Scholar 

  248. Moelling K. DNA for genetic vaccination and therapy. Cytokines Cell Mol Ther 1997; 3 (2): 127–35

    PubMed  CAS  Google Scholar 

  249. Chattergoon M, Boyer J, Weiner DB. Genetic immunization: a new era in vaccines and immune therapeutics. Faseb J 1997; 11 (10): 753–63

    PubMed  CAS  Google Scholar 

  250. Benton PA, Kennedy RC. DNA vaccine strategies for the treatment of cancer. Curr Top Microbiol Immunol 1998; 226: 1–20

    Article  PubMed  CAS  Google Scholar 

  251. Kucerova L. DNA/genetic vaccination (minireview). Viral Immunol 1998; 11 (2): 55–63

    Article  PubMed  CAS  Google Scholar 

  252. Lai WC, Bennett M. DNA vaccines. Crit Rev Immunol 1998; 18 (5): 449–84

    Article  PubMed  CAS  Google Scholar 

  253. Tuteja R. DNA vaccines: a ray of hope. Crit Rev Biochem Mol Biol 1999; 34 (1): 1–24

    Article  PubMed  CAS  Google Scholar 

  254. Conry RM, LoBuglio AF, Loechel F, et al. A carcinoembryonic antigen polynucleotide vaccine has in vivo antitumor activity. Gene Ther 1995; 2 (1): 59–65

    PubMed  CAS  Google Scholar 

  255. Chen Y, Hu D, Eling DJ, et al. DNA vaccines encoding full-length or truncated Neu induce protective immunity against Neu-expressing mammary tumors. Cancer Res 1998; 58 (9): 1965–71

    PubMed  CAS  Google Scholar 

  256. Dyall R, Bowne WB, Weber LW, et al. Heteroclitic immunization induces tumor immunity. J Exp Med 1998; 188 (9): 1553–61

    Article  PubMed  CAS  Google Scholar 

  257. Wei WZ, Shi WP, Galy A, et al. Protection against mammary tumor growth by vaccination with full-length, modified human ErbB-2 DNA. Int J Cancer 1999; 81 (5): 748–54

    Article  PubMed  CAS  Google Scholar 

  258. Nawrath M, Pavlovic J, Dummet R, et al. Reduced melanoma tumor formation in mice immunized with DNA expressing the melanoma-specific antigen gpl00/pmell7. Leukemia 1999; 13 Suppl. 1: S48–51

    Article  PubMed  CAS  Google Scholar 

  259. Syrengelas AD, Levy R. DNA vaccination against the idiotype of a murine B cell lymphoma: mechanism of tumor protection. J Immunol 1999; 162 (8): 4790–5

    PubMed  CAS  Google Scholar 

  260. Hong K, Zheng W, Baker A, et al. Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly (ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. FEBS Lett 1997; 400: 233–7

    Article  PubMed  CAS  Google Scholar 

  261. Templeton NS, Lasic DD, Frederik PM, et al. Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotech 1997; 15: 647–52

    Article  CAS  Google Scholar 

  262. Liu TJ, Zhang WW, Taylor DL, et al. Growth suppression of human head and neck cancer cells by the introduction of a wild-type p53 gene via a recombinant adenovirus. Cancer Res 1994; 54 (14): 3662–7

    PubMed  CAS  Google Scholar 

  263. Wills KN, Maneval DC, Menzel P, et al. Development and characterization of recombinant adenoviruses encoding human p53 for gene therapy of cancer. Hum Gene Ther 1994; 5: 1079–88

    Article  PubMed  CAS  Google Scholar 

  264. Bookstein R, Deniers W, Gregory R, et al. p53 gene therapy in vivo of hepatocellular and liver-metastatic colorectal cancer. Semin Oncol 1996; 23: 66–77

    PubMed  CAS  Google Scholar 

  265. Roth JA, Swisher SG, Meyn RE. p53 tumor suppressor gene therapy for cancer. Oncology (Huntingt) 1999; 1310 Suppl. 5: 148–54

    Google Scholar 

  266. Roth JA, Nguyen D, Lawrence DD, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nature Med 1996; 2: 985–91

    Article  PubMed  CAS  Google Scholar 

  267. Tait DL, Obermiller PS, Redlin-Frazier S, et al. A phase I trial of retroviral BRCA1 sv gene therapy in ovarian cancer. Clin Cancer Res 1997; 3 (11): 1959–68

    PubMed  CAS  Google Scholar 

  268. Tait DL, Obermiller PS, Hatmaker AR, et al. Ovarian cancer BRCA1 gene therapy: Phase I and II trial differences in immune response and vector stability. Clin Cancer Res 1999; 5 (7): 1708–14

    PubMed  CAS  Google Scholar 

  269. Tripathy D, Benz CC. Activated oncogenes and putative tumor suppressor genes involved in human breast cancers. In: Benz CC, Liu E, editors. Oncogenes and tumor suppressor genes in human malignancies. Boston: Kluwer Academic Publishers, 1993; 15–60

    Chapter  Google Scholar 

  270. Steeg PS, Zhou Q. Cyclins and breast cancer. Breast Cancer Res Treat 1998; 52: 17–28

    Article  PubMed  CAS  Google Scholar 

  271. Benz CC. Transcription factors and breast cancer. Endocrine-related cancer 1998; 5: 271–82

    Article  CAS  Google Scholar 

  272. Yan DH, Chang LS, Hung MC. Repressed expression of the HER-2/cerbB-2 proto-oncogene by the adenovirus E la gene products. Oncogene 1991; 6 (2): 343–5

    PubMed  CAS  Google Scholar 

  273. Hortobagyi GN, Hung MC, Lopez-Berestein G. A Phase I multicenter study of E1A gene therapy for patients with metastatic breast cancer and epithelial ovarian cancer that overexpresses HER-2/neu or epithelial ovarian cancer. Hum Gene Ther 1998; 9 (12): 1775–98

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Cancer Institute Specialized Programs of Research Excellence (SPORE) in Breast Cancer (P50-CA 58207-01), the Department of Defence Breast Cancer Research Program (DAMD17-94-J-4195), the American Society of Clinical Oncology Young Investigator Award (J.W.P.) sponsored by the Don Shula Foundation, and the Breast Cancer Research Foundation (New York, NY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.W., Tripathy, D., Campbell, M.J. et al. Biological Therapy of Breast Cancer. BioDrugs 14, 221–246 (2000). https://doi.org/10.2165/00063030-200014040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200014040-00003

Keywords

Navigation