Skip to main content
Log in

Preventing Alzheimer’s Disease

Separating Fact From Fiction

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is an ever-increasing health concern among the aging population, and as we research new and existing treatments for this disease we begin to uncover possibilities for its prevention. Observational studies and animal models have provided promising findings and generated excitement, but placebo-controlled clinical trials are required to demonstrate true efficacy for these treatments.

In the past two decades, clinical trials have led to the approval of symptomatic treatments for Alzheimer’s disease, including cholinesterase inhibitors and, more recently, an NMDA receptor antagonist. Clinical trials have also examined antioxidants, NSAIDs, hormone replacement, nutritional supplements and non-pharmacological interventions for the treatment and prevention of Alzheimer’s disease. While the results of many of these trials have been disappointing, new mechanisms targeting the hallmark pathology of Alzheimer’s disease are currently under investigation, including immunotherapy and secretase modulation, targeted at reducing the amyloid burden, for which we await the results. We review the evidence from completed trials, support for ongoing studies and propose directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1

Similar content being viewed by others

References

  1. Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 1998; 88(9): 1337–42

    Article  PubMed  CAS  Google Scholar 

  2. Winblad B, Wimo A, Jonsson L. Public health impact [abstract]. Alzheimers Dement 2007; 3(3): S165

    Article  Google Scholar 

  3. Howard J, Taylor JA, Ganikos ML, et al. An overview of prevention research: issues, answers, and agendas. Pub Health Rep 1988; 103: 674–83

    CAS  Google Scholar 

  4. Froom P. Benbassat J. Inconsistencies in the classification of preventive interventions. Prev Med 2000; 31: 153–8

    CAS  Google Scholar 

  5. Petersen RC, Thomas RG, Grundman M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 2005 Jun 9; 352(23): 2379–88

    Article  PubMed  CAS  Google Scholar 

  6. Cummings JL, Doody R, Clark C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology 2007; 69(16): 1622–34

    Article  PubMed  Google Scholar 

  7. Courtney C, Farrell D, Gray R, et al. Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomized double-blind trial. Lancet 2004; 363: 2105–15

    Article  PubMed  CAS  Google Scholar 

  8. Racchi M, Govoni S. The pharmacology of amyloid precursor protein processing. Exp Gerontol 2003; 38(1-2): 145–57

    Article  PubMed  CAS  Google Scholar 

  9. Nitsch RM, Slack BE, Wurtman RJ, et al. Release of Alzheimer amyloid precursor derivatives stimulated by activation of mus-carinic acetylcholine receptors. Science 1992; 258: 304–7

    Article  PubMed  CAS  Google Scholar 

  10. Van Dam D, De Deyn PP. Cognitive evaluation of disease-modifying efficacy of galantamine and memantine in the APP23 model. Eur Neuropsychopharmacol 2006 Jan; 16(1): 59–69

    Article  PubMed  CAS  Google Scholar 

  11. Clarke NA, Soininen H, Gustafson L, et al. Tacrine may alter APP-like protein levels in the lumbar CSF of Alzheimer patients. Int J Geriatr Psychiatry 2001 Nov; 16(11): 1104–6

    Article  PubMed  CAS  Google Scholar 

  12. Parnetti L, Amici S, Lanari A, et al. Cerebrospinal fluid levels of biomarkers and activity of acetylcholinesterase (AChE) and butyrylcholinesterase in AD patients before and after treatment with different AChE inhibitors. Neurol Sci 2002 Sep; 23Suppl. 2: S95–6

    Article  PubMed  Google Scholar 

  13. Li L, Sengupta A, Haque N, et al. Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. FEBS Lett 2004 May 21; 566(1-3): 261–9

    Article  PubMed  CAS  Google Scholar 

  14. Peskind ER, Potkin SG, Pomara N, et al. Memantine treatment in mild to moderate Alzheimer disease: a 24-week randomized controlled trial. Am J Geriatr Psychiatry 2006; 14: 704–15

    Article  PubMed  Google Scholar 

  15. Scharf S, Mander A, Ugoni A, et al. A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer’s disease. Neurology 1999; 53(1): 197–201

    Article  PubMed  CAS  Google Scholar 

  16. Aisen PS, Schafer KA, Grundman M, et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 2003; 289(21): 2819–26

    Article  PubMed  CAS  Google Scholar 

  17. Thal LJ, Ferris SH, Kirby L, et al. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology 2005 Jun; 30(6): 1204–15

    Article  PubMed  CAS  Google Scholar 

  18. Steering Committee. Statement from the steering committee of the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT). Statement for the FDA Joint Advisory Committee; 2005 Feb 18 [online]. Available from URL: http://www.jhucct.com/adapt/pdf%20documents/FDA%20-ADAPT%20STATEMENT_web%20posting.pdf [Accessed 2008 Oct 6]

  19. US Department of Health and Human Services. NIH halts use of COX-2 inhibitor in large cancer prevention trial. NIH News, 2004 Dec 17 [online]. Available from URL: http://www.nih.gov/news/pr/dec2004/od-17URL.htm [Accessed 2004 Dec 21]

  20. US FDA. FDA statement on naproxen, 2004 Dec 20 [online]. Available from URL: http://www.fda.gov/bbs/topics/news/2004/NEW01148.html [Accessed 2008 Aug 13]

  21. Wang PN, Liao SQ, Liu RS, et al. Effects of estrogen on cognition, mood, and cerebral blood flow in AD: a controlled study. Neurology 2000; 54: 2061–6

    Article  PubMed  CAS  Google Scholar 

  22. Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease. JAMA 2000; 283: 1007–15

    Article  PubMed  CAS  Google Scholar 

  23. Henderson VW, Paganini-Hill A, Miller BL, et al. Estrogen for Alzheimer’s disease in women: randomized, double-blind, placebo-controlled trial. Neurology 2000; 54: 295–301

    Article  PubMed  CAS  Google Scholar 

  24. Tierney, M. Estradiol and norethindrone for the prevention of decline in verbal memory in older women at risk for cognitive impairment: a randomized controlled trial [abstract no. 02-04-05]. 11th International Conference on Alzheimer’s Disease; 2008 Jul 26–31; Chicago (IL)

  25. Shumaker SA, Legault C, Rapp SR, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women. The Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA 2003 May 28; 289(20): 2651–62

    CAS  Google Scholar 

  26. Shumaker SA, Legault C, Kuller L, et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women. The Women’s Health Initiative Memory Study. JAMA 2004 Jun 23; 291(24): 2947–58

    CAS  Google Scholar 

  27. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002; 288(3): 321–33

    Article  PubMed  CAS  Google Scholar 

  28. Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med 1997; 336(17): 1216–22

    CAS  Google Scholar 

  29. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360(9326): 23–33

    Article  Google Scholar 

  30. Onofrj M, Thomas A, Luciano AL, et al. Donepezil versus vitamin E in Alzheimer’s disease: part 2. Mild versus moderate-severe Alzheimer’s disease. Clin Neuropharmacol 2002 Jul–Aug; 25(4): 207–15

    Google Scholar 

  31. Lonn E, Bosch J, Yusuf S, et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 2005; 293: 1338–47

    Article  PubMed  Google Scholar 

  32. Sparks DL, Sabbagh M, Connor DJ, et al. Atorvastatin for the treatment of mild to moderate Alzheimer’s disease. Arch Neurol 2005; 62: 753–7

    Article  PubMed  Google Scholar 

  33. PROSPER study group. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomized controlled trial. Lancet 2002; 360: 1623–30

    Article  Google Scholar 

  34. Collins R, Armitage J, Parish S, et al. Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20,536 people with cerebrovascular disease or other high-risk conditions. Lancet 2004; 363(9411): 757–67

    Article  PubMed  CAS  Google Scholar 

  35. Bodovitz S, Klein WL. Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J Biol Chem 1996 Feb 23; 271(8): 4436–40

    Article  PubMed  CAS  Google Scholar 

  36. Sparks DL, Scheff SW, Hunsaker III JC, et al. Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 1994 Mar; 126(1): 88–94

    Article  PubMed  CAS  Google Scholar 

  37. Sparks DL, Liu H, Gross DR, et al. Increased density of cortical apolipoprotein E immunoreactive neurons in rabbit brain after dietary administration of cholesterol. Neurosci Lett 1995 Mar 3; 187(2): 142–4

    Article  PubMed  CAS  Google Scholar 

  38. Streit WJ, Sparks DL. Activation of microglia in the brains of humans with heart disease and hypercholesterolemic rabbits. J Mol Med 1997 Feb; 75(2): 130–8

    Article  PubMed  CAS  Google Scholar 

  39. Shie FS, Jin LW, Cook DG, et al. Diet-induced hypercholester-olemia enhances brain A beta accumulation in transgenic mice. Neuroreport 2002 Mar 25; 13(4): 455–9

    Article  PubMed  CAS  Google Scholar 

  40. Fishman CE, White SL, DeLong CA, et al. High fat diet potentiates β-amyloid deposition in the APP V717F transgenic mouse model of Alzheimer’s Disease. Soc Neurosci 1999; 25: 1859

    Google Scholar 

  41. Wolozin B, Kellman W, Ruosseau P, et al. Decreased prevalence of Alzheimer’s disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch Neurol 2000; 57: 1439–43

    Article  PubMed  CAS  Google Scholar 

  42. Jick H, Zornberg GL, Jick SS, et al. Statins and the risk of dementia. Lancet 2000; 356: 1627–31

    Article  PubMed  CAS  Google Scholar 

  43. Zamrini E, McGwinn G, Roseman JM. Association between statin use and Alzheimer’s disease. Neuroepidemiology 2004; 23: 94–8

    Article  PubMed  Google Scholar 

  44. Dufoil C, Richard F, Fievet N, et al. APOE genotype, cholesterol level, lipid-lowering treatment and dementia. Neurology 2005; 65: 1531–8

    Article  CAS  Google Scholar 

  45. Rockwood K, Kirkland S, Hogan DB, et al. Use of lipid-lowering agents, indication bias and the risk of dementia in community-dwelling elderly people. Arch Neurol 2002; 59: 223–7

    Article  PubMed  Google Scholar 

  46. Rockwood K, Kirkland S, Fisk J, et al. Use of lipid lowering agents and the risk of cognitive impairment, not dementia, in relation to apolipoprotein E status [abstract]. Neurobiol Aging 2004; 25Suppl. 2: S27

    Article  Google Scholar 

  47. Yaffe K, Barrett-Connor E, Lin F, et al. Serum lipoprotein levels, statin use and cognitive function in older women. Arch Neurol 2002; 59: 378–84

    Article  PubMed  Google Scholar 

  48. Bernick C, Katz R, Smith NL, et al. Statins and cognitive function in the elderly. Neurology 2005; 65: 1388–94

    Article  PubMed  CAS  Google Scholar 

  49. Masse I, Bordet R, Deplanque D, et al. Lipid lowering agents are associated with a slower cognitive decline in Alzheimer’s disease. J Neurol Neurosurg Psych 2005; 76: 1624–9

    Article  CAS  Google Scholar 

  50. Doraiswamy PM, Steffens DC, McQuoid DR. Statin use and hippocampal volumes in elderly subjects at risk for Alzheimer’s disease: a pilot observational study. Am J Alzheimers Dis Other Demen 2004; 19: 275–8

    Article  PubMed  Google Scholar 

  51. Rodriguez EG, Dodge HH, Birzescu MA, et al. Use of lipid-lowering drugs in older adults with and without dementia: a community based epidemiological study. J Am Geriatr Soc 2002; 50: 1852–6

    Article  PubMed  Google Scholar 

  52. Reitz C, Tang MX, Luchsinger J, et al. Relation of plasma lipids to Alzheimer’s disease and vascular dementia. Arch Neurol 2004; 61: 705–14

    Article  PubMed  Google Scholar 

  53. Zandi PP, Sparks DL, Khachaturian AS, et al. Do statins reduce risk of incident dementia and Alzheimer Disease? Arch Gen Psychiatry 2005; 62: 217–24

    Article  PubMed  CAS  Google Scholar 

  54. Li G, Higdon R, Kukull WA, et al. Statin therapy and the risk of dementia in the elderly. Neurology 2004; 63: 1624–8

    Article  PubMed  CAS  Google Scholar 

  55. Rea TD, Breitner JC, Psaty BM, et al. Statin use and the risk of incident dementia. Arch Neurol 2005; 62: 1047–51

    Article  PubMed  Google Scholar 

  56. Hajjar I, Schumpert J, Hirth V, et al. The impact of the use of statins on the prevalence of dementia and progression of cognitive impairment. J Gerontol A Biol Sci Med Sci 2002; 57: M414–8

    Article  PubMed  Google Scholar 

  57. Dufoil C, Richard F, Fievet N, et al. APOE genotype, cholesterol level, lipid-lowering treatment and dementia. Neurology 2005; 65: 1531–8

    Article  CAS  Google Scholar 

  58. Rockwood K, Kirkland S, Hogan DB, et al. Use of lipid-lowering agents, indication bias and the risk of dementia in community dwellng elderly people. Arch Neurol 2002; 59: 223–7

    Article  PubMed  Google Scholar 

  59. Rockwood K, Kirkland S, Fisk J, et al. Use of lipid lowering agents and the risk of cognitive impairment, not dementia, in relation to apolipoprotein E status [abstract]. Neurobiol Aging 2004; 25Suppl. 2: S27

    Article  Google Scholar 

  60. Zandi PP, Sparks DL, Khachaturian AS, et al. Do statins reduce risk of incident dementia and Alzheimer Disease? Arch Gen Psychiatry 2005; 62: 217–24

    Article  PubMed  CAS  Google Scholar 

  61. Rea TD, Breitner JC, Psaty BM, et al. Statin use and the risk of incident dementia. Arch Neurol 2005; 62: 1047–51

    Article  PubMed  Google Scholar 

  62. Gibellato MG, Moore JL, Selby K, et al. Effects of lovastatin and pravastatin on cognitive function in military aircrew. Aviat Space Environ Med 2001; 72: 805–12

    PubMed  CAS  Google Scholar 

  63. Kostis JB, Rosen RC, Wilson AC. Central nervous system effects of HMG-CoA reductase inhibitors: lovastatin and pravastatin on sleep and cognitive performance in patients with hypercholesterolemia. J Clin Pharmacol 1994; 34: 989–96

    PubMed  CAS  Google Scholar 

  64. Harrison RW, Ashton CH. Do cholesterol-lowering agents affect brain activity? A comparison of simvastatin, pravastatin or placebo in healthy volunteers. Br J Clin Pharmacol 1994; 37: 231–6

    Article  PubMed  CAS  Google Scholar 

  65. Cutler N, Sramke J, Veroff A, et al. Effects of treatment with simvastatin and pravastatin on cognitive function in patients with hypercholesterolemia. Br J Clin Pharmacol 1995; 39: 333–6

    Article  PubMed  CAS  Google Scholar 

  66. Heart Protection Study Collaborative Group. MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20536 high-risk individuals. Lancet 2002; 360: 7–22

    Article  Google Scholar 

  67. Simons M, Schwarzler F, Luthjohann D, et al. Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: a 26-week, randomized, placebo-controlled double-blind trial. Ann Neurol 2002; 52: 346–50

    Article  PubMed  CAS  Google Scholar 

  68. Aisen PS, Saumier D, Briand R, et al. A phase II study targeting amyloid-beta with 3APS in mild-to-moderate Alzheimer disease. Neurology 2006 Nov 28; 67(10): 1757–63

    Article  PubMed  CAS  Google Scholar 

  69. Neurochem announces results from tramiprosate (Alzhemed™) North American phase III clinical trial [press release]. Laval (QC): Neurochem, 2007 Aug 26 [online]. Available from URL: http://72.232.136.18/~neurochem/getpage.php [Accessed 2008 Aug 19]

  70. Neurochem announces important initiatives to provide medical and health benefits to patients [press release]. Laval (QC): Neurochem, 2007 Nov 8 [online]. Available from URL: http://72.232.136.18/~neurochem/getpage.php [Accessed 2008 Aug19]

  71. Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999 Jul 8; 400(6740): 173–7

    Article  PubMed  CAS  Google Scholar 

  72. Orgogozo JM, Gilman S, Dartigues JF, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003 Jul 8; 61(1): 46–54

    Article  PubMed  CAS  Google Scholar 

  73. Nicoll JA, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003 Apr; 9(4): 448–52

    Article  PubMed  CAS  Google Scholar 

  74. Holmes C, Boche D, Wilkinson D, et al. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled, phase I trial. Lancet 2008; 372(9634): 216–23

    Article  PubMed  CAS  Google Scholar 

  75. Gilman S, Koller M, Black RS, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 2005; 64(9): 1553–62

    Article  PubMed  CAS  Google Scholar 

  76. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189–98

    Article  PubMed  CAS  Google Scholar 

  77. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry 1984; 141: 1356–64

    PubMed  CAS  Google Scholar 

  78. Fox NC, Black RS, Gilman S, et al. Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 2005 May 10; 64(9): 1563–72

    Article  PubMed  CAS  Google Scholar 

  79. Gupta RK, Rost BE. Aluminum compounds as vaccine adjuvants. In: O’Hagan DT, editor. Vaccine adjuvants. Totowa (NJ): Humana Press, 2000: 65–89

    Chapter  Google Scholar 

  80. Hilbich C, Kisters-Woike B, Reed J, et al. Substitutions of hydrophobic amino acids reduce the amyloidenicity of Alzheimer’s disease Abeta 4 peptides. J Mol Biol 1992; 228: 1–14

    Article  Google Scholar 

  81. Dodel RC, Du Y, Depboylu C, et al. Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2004 Oct; 75(10): 1472–4

    Article  PubMed  CAS  Google Scholar 

  82. Relkin NR, Szabo P, Adamiak B, et al. 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging. Epub 2008 Feb 20

  83. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics [published erratum appears in Science 2002 Sep 27; 297(5590): 2209]. Science 2002 Jul 19; 297(5580): 353–6

    Article  PubMed  CAS  Google Scholar 

  84. Chang W, Koelsch G, Down D, et al. Memapsin 2 (Beta-Secretase, BACE) immunizations as therapy for Alzheimer’s disease [abstract no. 01-06-03]. International Conference on Alzheimer’s Disease; 2006 Jul 15–20; Madrid

  85. May PC, Boggs LN, Yang Z, et al. Bace inhibitor in vivo proof-of-concept studies in PDAPP mice [abstract no. P4-271]. International Conference on Alzheimer’s Disease; 2006 Jul 15–20; Madrid

  86. Arbel M, Sivan G, Idan R, et al. Inhibition of amyloid precursor protein processing by beta-secretase via site directed antibodies [abstract no. 02-05-02]. International Conference on Alzheimer’s Disease; 2006 Jul 15–20; Madrid

  87. Xiu H, Sweeney D, Wang R, et al. Generation of Alzheimer beta-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation. Proc Natl Acad Sci U S A 1997; 94: 3748–52

    Article  Google Scholar 

  88. Launer LJ. Demonstrating the case that AD is a vascular disease: epidemiologic evidence. Ageing Res Rev 2002; 1: 61–77

    Article  PubMed  Google Scholar 

  89. de La Torre JC. Is Alzheimer’s disease a neurodegenerative or vascular disorder? Data, dogma and dialectics. Lancet Neurol 2004; 3: 184–90

    Article  PubMed  Google Scholar 

  90. Morris MC, Scherr PA, Hebert LE, et al. Association of incident Alzheimer disease and blood pressure measured from 13 years before to 2 years after diagnosis in a large community study. Arch Neurol 2001; 58: 1640–6

    Article  PubMed  CAS  Google Scholar 

  91. Glynn RJ, Beckett LA, Hebert LE, et al. Current and remote blood pressure and cognitive decline. JAMA 1999; 281: 438–45

    Article  PubMed  CAS  Google Scholar 

  92. Scherr PA, Hebert LE, Smith LA, et al. Relation of blood pressure to cognitive function in the elderly. Am J Epidemiol 1991; 134: 1303–131

    PubMed  CAS  Google Scholar 

  93. Lindsay J, Laurin D, Verreault R, et al. Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 2002; 156: 445–53

    Article  PubMed  Google Scholar 

  94. Andre-Peterson L, Hagberg B, Janzon L, et al. A comparison of cognitive ability in normotensive and hypertensive 68-year-old men: results from population study ‘Men born in 1914’ in Malmo, Sweden. Exp Aging Res 2001; 27: 319–40

    Article  Google Scholar 

  95. Hajjar I, Catoe H, Sixta S, et al. Cross-sectional and longitudinal association between antihypertensive medications and cognitive impairment in an elderly population. J Gerontol A Biol Sci Med Sci 2005; 60: 76–3

    Article  Google Scholar 

  96. Tzourio C, Dufouil C, Ducimetiere P, et al. Cognitive decline in individuals with high blood pressure: a longitudinal study in the elderly-EVA study group. Epidemiology of vascular aging. Neurology 1999; 53: 1948–52

    CAS  Google Scholar 

  97. Kilander L, Nyman H, Boberg M, et al. Hypertension is related to cognitive impairment: a 20 year follow-up of 999 men. Hypertension 1998; 31: 780–6

    Article  PubMed  CAS  Google Scholar 

  98. Elias MF, Wolf PA, D’Agostino RB, et al. Untreated blood pressure level is inversely related to cognitive functioning: the Framingham study. Am J Epidemiol 1993; 6: 353–64

    Google Scholar 

  99. Launer LJ, Ross GW, Petrovitch H, et al. Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging 2000; 21: 49–55

    Article  PubMed  CAS  Google Scholar 

  100. in’t Veld BA, Ruitenberg A, Hofman A, et al. Antihypertensive drugs and incidence of dementia: the Rotterdam study. Neurobiol Aging 2001; 22: 407–12

    Article  PubMed  Google Scholar 

  101. Cacciatore F, Abete P, Ferrara N, et al. The role of blood pressure in cognitive impairment in an elderly population. J Hypertens 1997; 15: 135–42

    Article  PubMed  CAS  Google Scholar 

  102. Farmer ME, Kittner SJ, Abbott RD, et al. Longitudinally measured blood pressure, antihypertensive medication use and cognitive performance: the Framingham study. J Clin Epidemiol 1990; 43: 475–80

    Article  PubMed  CAS  Google Scholar 

  103. Waldstein SR, Giggey PP, Thayer JF, et al. Nonlinear relations of blood pressure to cognitive function. The Baltimore Longitudinal Study of Aging. Hypertension 2005; 45: 374–9

    CAS  Google Scholar 

  104. Murray MD, Lane KA, Gao S, et al. Preservation of cognitive function with antihypertensive medications. Arch Intern Med 2002; 162: 2090–6

    Article  PubMed  Google Scholar 

  105. Lithell H, Hansson L, Skoog I, et al. The study on cognition and prognosis in the elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens 2003; 21: 875–86

    Article  PubMed  CAS  Google Scholar 

  106. Skoog I, Lithell H, Hansson L, et al. Effect of baseline cognitive function and antihypertensive treatment on cognitive and cardiovascular outcomes. Study on Cognition and Prognosis in the Elderly (SCOPE). Am J Hypertens 2005; 18: 1052–9

    PubMed  CAS  Google Scholar 

  107. Prince MJ, Bird AS, Blizard RA, et al. Is the cognitive function of older patients affected by antihypertensive treatment? Results from 54 months of the Medical Research Council’s treatment trial of hypertension in older adults. BMJ 1996; 312: 801–5

    Article  PubMed  CAS  Google Scholar 

  108. Cervilla JA, Prince M, Joels S, et al. Long-term predictors of cognitive outcome in a cohort of older people with hypertension. Br J Psychiatry 2000; 177: 66–71

    Article  PubMed  CAS  Google Scholar 

  109. PROGRESS Collaborative Group. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med 2003; 163: 1069–75

    Article  Google Scholar 

  110. Geschwind DH. Tau phosphorylation, tangles, and neurodegen-eration: the chicken or the egg? Neuron 2003; 40: 457–60

    Article  PubMed  CAS  Google Scholar 

  111. Engel T, Hernandez F, Avila J, et al. Full reversal of Alzheimer’s disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. J Neurosci 2006; 26: 5083–90

    Article  PubMed  CAS  Google Scholar 

  112. Noble W, Olm V, Takata K. et al. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 2003; 38(4): 555–65

    CAS  Google Scholar 

  113. Butler D, Bendiske J, Michaelis ML, et al. Microtubule-stabilizing agent prevents protein accumulation-induced loss of synaptic markers. Eur J Pharmacol 2007 May 7; 562(1-2): 20–7

    Article  PubMed  CAS  Google Scholar 

  114. Nakashima H, Ishihara T, Suguimoto P, et al. Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies. Acta Neuropathol (Berl) 2005; 110: 547–56

    Article  CAS  Google Scholar 

  115. McEwen BS, Alves SE, Bulloch K, et al. Ovarian steroids and the brain: implications for cognition and aging. Neurology 1997; 48Suppl. 7: S8–15

    Article  PubMed  CAS  Google Scholar 

  116. Wen Y, Yang S, Liu R, et al. Estrogen attenuates nuclear factor-kappa B activation induced by transient cerebral ischemia. Brain Res 2004; 1008(2): 147–54

    Article  PubMed  CAS  Google Scholar 

  117. Dodel RC, Du Y, Bales KR, et al. Sodium salicylate and 17beta-estradiol attenuate nuclear transcription factor NF-kappaB translocation in cultured rat astroglial cultures following exposure to amyloid A beta(1-40) and lipopolysaccharides. J Neurochem 1999; 73: 1453–60

    Article  PubMed  CAS  Google Scholar 

  118. Simpkins JW, Yang SH, Wen Y, et al. Estrogens, progestins, menopause and neurodegeneration: basic and clinical studies. Cell Mol Life Sci 2005; 62: 271–80

    Article  PubMed  CAS  Google Scholar 

  119. Yue X, Lu M, Lancaster T, et al. Brain estrogen deficiency accelerates Abeta plaque formation in an Alzheimer’s disease animal model. Proc Natl Acad Sci U S A 2005 Dec 27; 102(52): 19198–203

    Article  PubMed  CAS  Google Scholar 

  120. Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 2002; 287(24): 3223–9

    Article  PubMed  CAS  Google Scholar 

  121. Morris MC, Evans DA, Bienias JL, et al. Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA 2002; 287(24): 3230–7

    Article  PubMed  CAS  Google Scholar 

  122. Thomas A, Iacono D, Bonanni L, et al. Donepezil, rivastigmine, and vitamin E in Alzheimer disease: a combined P300 eventrelated potentials/neuropsychologic evaluation over 6 months. Clin Neuropharmacol 2001 Jan–Feb; 24(1): 31–42

    Article  PubMed  CAS  Google Scholar 

  123. Thal LJ, Grundman M, Berg J, et al. Idebenone treatment fails to slow cognitive decline in Alzheimer’s disease. Neurology 2003 Dec 9; 61(11): 1498–502

    Article  PubMed  CAS  Google Scholar 

  124. Gutzmann H, Kuhl KP, Hadler D, et al. Safety and efficacy of idebenone versus tacrine in patients with Alzheimer’s disease: results of a randomized, double-blind, parallel-group multicenter study. Pharmacopsychiatry 2002 Jan; 35(1): 12–8

    Article  PubMed  CAS  Google Scholar 

  125. Adair JC, Knoefel JE, Morgan N. Controlled trial of N-acetylcysteine for patients with probable Alzheimer’s disease. Neurology 2001; 57: 1515–7

    Article  PubMed  CAS  Google Scholar 

  126. Miller III ER, Pastor-Barriuso R, Dalai D, et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 2005; 142(1): 37–46

    PubMed  CAS  Google Scholar 

  127. Bales KR, Verina T, Dodel RC, et al. Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet 1997; 17(3): 263–4

    Article  PubMed  CAS  Google Scholar 

  128. Nilsson LN, Bales KR, DiCarlo G, et al. Alpha-1-antichymotrypsin promotes beta-sheet amyloid plaque deposition in a transgenic mouse model of Alzheimer’s disease. J Neurosci 2001; 21(5): 1444–51

    PubMed  CAS  Google Scholar 

  129. Eikelenboom P, van Gool WA. Neuroinflammatory perspectives on the two faces of Alzheimer’s disease. J Neural Transm 2004; 111(3): 281–94

    Article  PubMed  CAS  Google Scholar 

  130. Reines SA, Block GA, Morris JC, et al. Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology 2004; 62(1): 66–71

    Article  PubMed  CAS  Google Scholar 

  131. Wilcock GK. Flurizan in AD: efficacy and safety in a 24-month study. Lancet Neurol 2008 Jun; 7(6); 483–93

    Article  PubMed  CAS  Google Scholar 

  132. Green R. 18-Month phase III trial results for tarenflurbil (Flurizan) [abstract no. 03-04-01]. 11th International Conference on Alzheimer’s Disease; 2008 Jul 26–31; Chicago (IL)

  133. Kanowski S, Herrmann WM, Stephan K, et al. Proof of efficacy of the Ginkgo biloba special extract EGb 761 in outpatients suffering from mild to moderate primary degenerative dementia of the Alzheimer type or multi-infarct dementia. Pharmacopsychiatry 1996; 29: 47–56

    Article  PubMed  CAS  Google Scholar 

  134. van Dongen M, van Rossum E, Kessels A, et al. Ginkgo for elderly people with dementia and age-associated memory impairment: a randomized clinical trial. J Clin Epidemiol 2003; 56(4): 367–76

    Article  PubMed  Google Scholar 

  135. Solomon PR, Adams F, Silver A, et al. Ginkgo for memory enhancement: a randomized controlled trial. JAMA 2002; 288(7): 835–40

    Article  PubMed  Google Scholar 

  136. Blasko I, Kemmler G, Krampla W, et al. Plasma amyloid beta protein 42 in non-demented persons aged 75 years: effects of concomitant medication and medial temporal lobe atrophy. Neurobiol Aging 2005 Aug–Sep; 26(8): 1135–43

    Article  PubMed  CAS  Google Scholar 

  137. Oken BS, Storzbach DM, Kaye JA. The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol 1998 Nov; 55(11): 1409–15

    Article  PubMed  CAS  Google Scholar 

  138. Birks J, Grimley Evans J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev 2007; (2): CD003120

  139. DeKosky ST, Fitzpatrick A, Ives DG, et al. The Ginkgo Evaluation of Memory (GEM) study: design and baseline data of a randomized trial of Ginkgo biloba extract in prevention of dementia. Contemp Clin Trials 2006 Jun; 27(3): 238–53

    Article  Google Scholar 

  140. Akhondzadeh S, Noroozian M, Mohammadi M, et al. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther 2003 Feb; 28(1): 53–9

    Article  PubMed  CAS  Google Scholar 

  141. Akhondzadeh S, Noroozian M, Mohammadi M, et al. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomised, placebo controlled trial. J Neurol Neurosurg Psychiatry 2003 Jul; 74(7): 863–6

    Article  PubMed  CAS  Google Scholar 

  142. Mimori Y, Katsuoka H, Nakamura S. Thiamine therapy in Alzheimer’s disease. Metab Brain Dis 1996 Mar; 11(1): 89–94

    Article  PubMed  CAS  Google Scholar 

  143. Bryan J, Calvaresi E, Hughes D. Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr 2002 Jun; 132(6): 1345–56

    PubMed  CAS  Google Scholar 

  144. Sommer BR, Hoff AL, Costa M, et al. Folic acid supplementation in dementia: a preliminary report. Proceedings of the 1 lth Annual Meeting of the American Association for Geriatric Psychiatry; 1998 Mar 8–11; San Diego (CA)

  145. Barnes DE, Yaffe K, Satariano WA, et al. A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. J Am Geriatr Soc 2003 Apr; 51(4): 459–65

    Article  PubMed  Google Scholar 

  146. Lytle ME, Vander Bilt J, Pandav RS, et al. Exercise level and cognitive decline: the MoVIES project. Alzheimer Dis Assoc Disord 2004 Apr–Jun; 18(2): 57–64

    Article  PubMed  Google Scholar 

  147. Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil 2004 Oct; 85(10): 1694–704

    Article  PubMed  Google Scholar 

  148. Olazaran J, Muniz R, Reisberg B, et al. Benefits of cognitive-motor intervention in MCI and mild to moderate Alzheimer disease. Neurology 2004; 63(12): 2348–53

    Article  PubMed  CAS  Google Scholar 

  149. Wilson RS, Bennett DA, Bienias JL, et al. Cognitive activity and cognitive decline in a biracial community population. Neurology 2003 Sep 23; 61(6): 812–6

    Article  PubMed  CAS  Google Scholar 

  150. Verghese J, Lipton RB, Katz MJ, et al. Leisure activities and the risk of dementia in the elderly. N Engl J Med 2003 Jun 19; 348(25): 2508–16

    Article  PubMed  Google Scholar 

  151. Chapman SB, Weiner MF, Rackley A, et al. Effects of cognitive-communication stimulation for Alzheimer’s disease patients treated with donepezil. J Speech Lang Hear Res 2004 Oct; 47(5): 1149–63

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work is supported by AG05138, AG10483 and AG15922. Dr Mary Sano has been a consultant to the following companies, which are involved in drug development for Alzheimer’s disease: Aventis, Bayer, Forest, GlaxoSmithKline, Janssen, Ortho-McNeil, Novartis, Pfizer, Bristol-Meyers Squibb, Takeda, Voyager Pharmaceuticals, Medication and Neurochem. These consultancies have been in reference to clinical trial design. Dr Hillel Grossman has been a consultant for the following companies, which are involved in drug development for Alzheimer’s disease: Forest Industries and Dainippon America. These consultancies have been in reference to clinical trial design and clinical application. Additionally, Dr Grossman has received research funding from Eisai Pharmaceuticals, Humanetics and Elan. Kathleen van Dyk has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Sano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sano, M., Grossman, H. & Van Dyk, K. Preventing Alzheimer’s Disease. CNS Drugs 22, 887–902 (2008). https://doi.org/10.2165/00023210-200822110-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200822110-00001

Keywords

Navigation