Skip to main content
Log in

σ-1 Receptor Ligands

Potential in the Treatment of Neuropsychiatric Disorders

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

The σ receptor was originally proposed to be a subtype of the opioid receptor. However, it is now clear that σ receptors are unique non-opioid, non-phencyclidine brain proteins. Two types of σ receptor exist, the σ-1 receptor and the σ-2 receptor. σ-1 receptors have been cloned and their distribution, physiological functions and roles in signal transduction were recently characterised. Certain sex hormones in the brain (neurosteroids) are known to interact with σ-1 receptors. σ-1 receptors regulate glutamate NMDA receptor function and the release of neurotransmitters such as dopamine. They are thus proposed to be involved in learning and memory as well as in certain neuropsychiatric disorders.

Selective σ-1 receptor ligands have been suggested to represent a new class of therapeutic agents for neuropsychiatric disorders, although none have yet been introduced into therapeutic use. Early studies showed that psychotomimetic benzomorphans, as well as several antipsychotics, can bind to σ-1 receptors. As a result of these findings, σ-1 receptor ligands have been proposed as being of potential use in the treatment of schizophrenia. Nevertheless, the relationship of σ-1 receptors to the underlying pathogenesis of schizophrenia is still unclear. σ-1 receptor ligands have failed to improve acute psychotic symptoms of schizophrenia in clinical trials, but, interestingly, a few studies have shown an improvement in negative symptoms in schizophrenic patients.

A number of preclinical studies have shown that selective agonists of σ-1 receptors affect higher-ordered brain functions such as learning and memory, cognition and mood. These studies indicate that σ-1 receptor agonists may exert therapeutic effects in depression and senile dementia. Indeed, the σ-1 receptor agonist igmesine, has been shown to improve depression in a clinical trial. The most distinctive feature of the action of σ-1 receptor ligands is their ‘modulatory’ role. In behavioural studies of depression and memory, they exert beneficial effects only when brain functions are perturbed.

Given the recently accumulated preclinical and clinical data, it is time to reconstruct the concept of σ-1 receptors and the associated pathophysiological conditions that ligands of these receptors target. This would allow clinical trials to be performed more efficiently, and the results may confirm a long-speculated possibility that σ-1 receptor ligands represent a new class of therapeutic agents for neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Fig. 2

Similar content being viewed by others

References

  1. Martin WR, Eades CG, Thompson JA, et al. The effects ofmorphine and nalorphine-like drugs in the non-dependent andmorphine-dependent chronic spinal dog. J Pharmacol Exp Ther 1976; 197: 517–32

    PubMed  CAS  Google Scholar 

  2. Haertzen CA. Subjective effects of narcotic antagonists cyclazocine and nalorphine on the Addiction Research Center Inventory (ARCI). Psychopharmacologia 1970; 18: 366–77

    PubMed  CAS  Google Scholar 

  3. Brady KT, Balster RL, May EL. Stereoisomers of N-allylnormetazocine: phencyclidine-like behavioral effects in squirrel monkeys and rats. Science 1982; 215: 178–80

    PubMed  CAS  Google Scholar 

  4. Lahmeyer HW, Steingold RG. Pentazocine and tripelennamine: a drug abuse epidemic? Int J Addict 1980; 15: 1219–32

    PubMed  CAS  Google Scholar 

  5. Blazer DG, Haller L. Pentazocine psychosis: a case of persistent delusions. Dis Nerv Syst 1975; 36: 404–5

    PubMed  CAS  Google Scholar 

  6. Yost Jr MA, McKegney FP. Acute organic psychosis due to Talwin (pentazocine). Conn Med 1970; 34: 259–60

    PubMed  Google Scholar 

  7. Su TP. Evidence for sigma opioid receptor: binding of[3H]SKF-10047 to etorphine-inaccessible sites in guinea-pigbrain. J Pharmacol Exp Ther 1982; 223: 284–90

    PubMed  CAS  Google Scholar 

  8. Vaupel DB. Naltrexone fails to antagonize the sigma effects ofPCP and SKF 10,047 in the dog. Eur J Pharmacol 1983; 92:269–74

    PubMed  CAS  Google Scholar 

  9. Quirion R, Bowen WD, Itzhak Y, et al. A proposal for theclassification of sigma binding sites. Trends Pharmacol Sci 1992; 13: 85–6

    PubMed  CAS  Google Scholar 

  10. Largent BL, Gundlach AL, Snyder SH. Pharmacological andautoradiographic discrimination of sigma and phencyclidinereceptor binding sites in brain with (+)-[3H]SKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidineand [3H]1-[-(2-thienyl)cyclohexyl]iperidine. J Pharmacol Exp Ther 1986; 238: 739–48

    PubMed  CAS  Google Scholar 

  11. Tarn SW. (+)-[3H]SKF 10,047, (+)-[3H]ethylketocyclazocine, mu, kappa, delta and phencyclidine binding sites in guinea pig brain membranes. Eur J Pharmacol 1985; 109: 33–41

    Google Scholar 

  12. Gundlach AL, Largent BL, Snyder SH. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. J Neurosci 1986; 6: 1757–70

    PubMed  CAS  Google Scholar 

  13. Largent BL, Gundlach AL, Snyder SH. Sigma receptors on NCB-20 hybrid neurotumor cells labeled with (+)[3H]SKF 10,047 and (+)[3H]3-PPP. Eur J Pharmacol 1986; 124: 183–7

    PubMed  CAS  Google Scholar 

  14. Bowen WD, Hellewell SB, McGarry KA. Evidence for a multi-site model of the rat brain sigma receptor. Eur J Pharmacol 1989; 163: 309–18

    PubMed  CAS  Google Scholar 

  15. Hanner M, Moebius FF, Flandorfer A, et al. Purification, molecular cloning, and expression of the mammalian sigmal-binding site. Proc Natl Acad Sci U S A 1996; 93: 8072–7

    PubMed  CAS  Google Scholar 

  16. Seth P, Fei YJ, Li HW, et al. Cloning and functional characterization of a sigma receptor from rat brain. J Neurochem 1998; 70: 922–31

    PubMed  CAS  Google Scholar 

  17. Seth P, Leibach FH, Ganapathy V. Cloning and structural analysis of the cDNA and the gene encoding the murine type 1 sigma receptor. Biochem Biophys Res Commun 1997; 241: 535–40

    PubMed  CAS  Google Scholar 

  18. Kekuda R, Prasad PD, Fei YJ, et al. Cloning and functional expression of the human type 1 sigma receptor (hSigmaR1). Biochem Biophys Res Commun 1996; 229: 553–8

    PubMed  CAS  Google Scholar 

  19. de Costa BR, Bowen WD, Hellewell SB, et al. Synthesis and evaluation of optically pure [3H]-(+)-pentazocine, a highly potent and selective radioligand for sigma receptors. FEBS Lett 1989; 251: 53–8

    PubMed  Google Scholar 

  20. Narita N, Hashimoto K, Tomitaka S, et al. Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain. Eur J Pharmacol 1996; 307: 117–9

    PubMed  CAS  Google Scholar 

  21. Shirayama Y, Takahashi K, Nishikawa T. Uncompetitive inhibition of [3H]1,3-di-o-tolyl-guanidine-defined sigma binding sites by desipramine, propranolol and alprenolol in rat brain. Eur J Pharmacol 1997; 331: 319–23

    PubMed  CAS  Google Scholar 

  22. O’Dell LE, George FR, Ritz MC. Antidepressant drugs appear to enhance cocaine-induced toxicity. Exp Clin Psychopharmacol 2000; 8: 133–41

    PubMed  Google Scholar 

  23. Sanchez C, Meier E. Behavioral profiles of SSRIs in animal models of depression, anxiety and aggression: are they all alike? Psychopharmacology (Berl) 1997; 129: 197–205

    CAS  Google Scholar 

  24. Okuyama S, Nakazato A. NE-100: a novel sigma receptor antagonist. CNS Drug Rev 1996; 2: 226–37

    CAS  Google Scholar 

  25. Takahashi S, Sonehara K, Takagi K, et al. Pharmacological profile of MS-377, a novel antipsychotic agent with selective affinity for sigma receptors. Psychopharmacology (Berl) 1999; 145: 295–302

    CAS  Google Scholar 

  26. Pande AC, Geneve J, Scherrer B. Igmesine, a novel sigma ligand, has antidepressant properties. Congress of Collegium Internationale Neuro-Psychopharmacologicum; 1998 Jul 5–10; Glasgow, UK. 30S, SM 0505

  27. Borison RL, Diamond BI, Dren AT. Does sigma receptor antagonism predict clinical antipsychotic efficacy? Psychopharmacol Bull 1991; 27: 103–6

    PubMed  CAS  Google Scholar 

  28. Gewirtz GR, Gorman JM, Volavka J, et al. BMY 14802, a sigma receptor ligand for the treatment of schizophrenia. Neuropsychopharmacology 1994; 10: 37–40

    PubMed  CAS  Google Scholar 

  29. Frieboes RM, Murck H, Wiedemann K, et al. Open clinical trial on the sigma ligand panamesine in patients with schizophrenia. Psychopharmacology (Berl) 1997; 132: 82–8

    CAS  Google Scholar 

  30. Muller MJ, Grander G, Wetzel H, et al. Antipsychotic effects and tolerability of the sigma ligand EMD 57445 (panamesine) and its metabolites in acute schizophrenia: an open clinical trial. Psychiatry Res 1999; 89: 275–80

    PubMed  CAS  Google Scholar 

  31. Modell S, Naber D, Holzbach R. Efficacy and safety of an opiate sigma-receptor antagonist (SL 82.0715) in schizophrenic patients with negative symptoms: an open dose-range study. Pharmacopsychiatry 1996; 29: 63–6

    PubMed  CAS  Google Scholar 

  32. Su TP, London ED, Jaffe JH. Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science 1988; 240: 219–21

    PubMed  CAS  Google Scholar 

  33. Baulieu EE. Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 1998; 23: 963–87

    PubMed  CAS  Google Scholar 

  34. McCann DJ, Weissman AD, Su TP. Sigma-1 and sigma-2 sites in rat brain: comparison of regional, ontogenetic, and subcellular patterns. Synapse 1994; 17: 182–9

    PubMed  CAS  Google Scholar 

  35. Stoffel-Wagner B. Neurosteroid metabolism in the human brain. Eur J Endocrinol 2001; 145: 669–79

    PubMed  CAS  Google Scholar 

  36. Van Broekhoven F, Verkes RJ. Neurosteroids in depression: a review. Psychopharmacology (Berl) 2003; 165(2): 97–110

    Google Scholar 

  37. Uzunova V, Sheline Y, Davis JM, et al. Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci U S A 1998; 95: 3239–44

    PubMed  CAS  Google Scholar 

  38. Bergeron R, de Montigny C, Debonnel G. Potentiation of neuronal NMDA response induced by dehydroepiandrosterone and its suppression by progesterone: effects mediated via sigma receptors. J Neurosci 1996; 16: 1193–202

    PubMed  CAS  Google Scholar 

  39. Maurice T, Su TP, Privat A. Sigmal (σ1) receptor agonists and neurosteroids attenuate β25-35-amyloid peptide-induced amnesia in mice through a common mechanism. Neuroscience 1998; 83: 413–28

    PubMed  CAS  Google Scholar 

  40. Maurice T, Junien JL, Privat A. Dehydroepiandrosterone sulfate attenuates dizocilpine-induced learning impairment in mice via sigma 1-receptors. Behav Brain Res 1997; 83: 159–64

    PubMed  CAS  Google Scholar 

  41. Monnet FP, Mahe V, Robel P, et al. Neurosteroids, via sigma receptors, modulate the [3H]norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc Natl Acad Sci U S A 1995; 92: 3774–8

    PubMed  CAS  Google Scholar 

  42. Bouchard P, Quirion R. [3H]1,3-di(2-tolyl)guanidine and [3H](+)pentazocine binding sites in the rat brain: autoradiographic visualization of the putative sigmal and sigma2 receptor subtypes. Neuroscience 1997; 76: 467–77

    PubMed  CAS  Google Scholar 

  43. Wolfe Jr SA, Culp SG, De Souza EB. Sigma-receptors in endocrine organs: identification, characterization, and autoradiographic localization in rat pituitary, adrenal, testis, and ovary. Endocrinology 1989; 124: 1160–72

    PubMed  CAS  Google Scholar 

  44. Graybiel AM, Besson MJ, Weber E. Neuroleptic-sensitive binding sites in the nigrostriatal system: evidence for differential distribution of sigma sites in the substantia nigra, pars compacta of the cat. J Neurosci 1989; 9: 326–38

    PubMed  CAS  Google Scholar 

  45. McCann DJ, Su TP. Haloperidol-sensitive (+)[3H]SKF-10,047 binding sites (sigma sites) exhibit a unique distribution in rat brain subcellular fractions. Eur J Pharmacol 1990; 188: 211–8

    PubMed  CAS  Google Scholar 

  46. Inoue A, Sugita S, Shoji H, et al. Repeated haloperidol treatment decreases σ1 receptor binding but does not affect its mRNA levels in the guinea pig or rat brain. Eur J Pharmacol 2000; 401: 307–16

    PubMed  CAS  Google Scholar 

  47. Hayashi T, Maurice T, Su TP. Ca2+ signaling via σ1-receptors: novel regulatory mechanism affecting intracellular Ca2+ concentration. J Pharmacol Exp Ther 2000; 293: 788–98

    PubMed  CAS  Google Scholar 

  48. Hayashi T, Su TP. Intracellular and body distributions of sigma-1 receptors. Intramural Research Program, the National Institute on Drug Abuse, NIH. Bethesda, MD, 2002. (Data on file)

  49. Phan VL, Urani A, Romieu P, et al. Strain differences in σ1 receptor-mediated behaviours are related to neurosteroid levels. Eur J Neurosci 2002; 15: 1523–34

    PubMed  Google Scholar 

  50. Tsao LI, Su TP. Naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein partially purified from rat liver and rat brain membranes: an opioid/sigma receptor? Synapse 1997; 25: 117–24

    PubMed  CAS  Google Scholar 

  51. Ueda H, Inoue M, Yoshida A, et al. Metabotropic neurosteroid/sigma-receptor involved in stimulation of nociceptor endings of mice. J Pharmacol Exp Ther 2001; 298: 703–10

    PubMed  CAS  Google Scholar 

  52. Couture S, Debonnel G. Some of the effects of the selective sigma ligand (+)pentazocine are mediated via a naloxone-sensitive receptor. Synapse 2001; 39: 323–31

    PubMed  CAS  Google Scholar 

  53. Hayashi T, Su TP. Regulating ankyrin dynamics: roles of sigma-1 receptors. Proc Natl Acad Sci U S A 2001; 98: 491–6

    PubMed  CAS  Google Scholar 

  54. Hayashi T, Su TP. Sigma-1 receptors (sigma(1) binding site) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. J Pharmacol Exp Ther 2003; 306: 718–25

    PubMed  CAS  Google Scholar 

  55. Hayashi T, Su TP. Intracellular dynamics of sigma-1 receptors (sigma(1) binding sites) in NG108-15 cells. J Pharmaco Exp Ther 2003; 206: 726–33

    Google Scholar 

  56. Aydar E, Palmer CP, Klyachko VA, et al. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 2002; 34: 399–410

    PubMed  CAS  Google Scholar 

  57. Karasawa J, Yamamoto H, Yamamoto T, et al. MS-377, a selective sigma receptor ligand, indirectly blocks the action of PCP in the N-methyl-D-aspartate receptor ion-channel complex in primary cultured rat neuronal cells. Life Sci 2002; 70: 1631–42

    PubMed  CAS  Google Scholar 

  58. Hayashi T, Su TP, Kagaya A, et al. Neuroleptics with differential affinities at dopamine D2 receptors and sigma receptors affect differently the N-methyl-D-aspartate-induced increase in intracellular calcium concentration: involvement of protein kinase. Synapse 1999; 31: 20–8

    PubMed  CAS  Google Scholar 

  59. Hayashi T, Kagaya A, Takebayashi M, et al. Modulation by sigma ligands of intracellular free Ca++ mobilization by N-methyl-D-aspartate in primary culture of rat frontal cortical neurons. J Pharmacol Exp Ther 1995; 275: 207–14

    PubMed  CAS  Google Scholar 

  60. Yamamoto H, Yamamoto T, Sagi N, et al. Sigma ligands indirectly modulate the NMDA receptor-ion channel complex on intact neuronal cells via sigma 1 site. J Neurosci 1995; 15: 731–6

    PubMed  CAS  Google Scholar 

  61. Church J, Lodge D, Berry SC. Differential effects of dextrorphan and levorphanol on the excitation of rat spinal neurons by amino acids. Eur J Pharmacol 1985; 111: 185–90

    PubMed  CAS  Google Scholar 

  62. Klette KL, Lin Y, Clapp LE, et al. Neuroprotective sigma ligands attenuate NMDA and trans-ACPD-induced calcium signaling in rat primary neurons. Brain Res 1997; 756: 231–40

    PubMed  CAS  Google Scholar 

  63. Zhang H, Cuevas J. Sigma receptors inhibit high-voltage-activated calcium channels in rat sympathetic and parasympathetic neurons. J Neurophysiol 2002; 87: 2867–79

    PubMed  CAS  Google Scholar 

  64. Takebayashi M, Hayashi T, Su TP. Nerve growth factor-induced neurite sprouting in PC12 cells involves sigma-1 receptors: implications for antidepressants. J Pharmacol Exp Ther 2002; 303: 1227–37

    PubMed  CAS  Google Scholar 

  65. Ishihara K, Sasa M. Modulation of neuronal activities in the central nervous system via sigma receptors. Nihon Shinkei Seishin Yakurigaku Zasshi 2002; 22: 23–30

    PubMed  CAS  Google Scholar 

  66. Monnet FP, Debonnel G, Junien JL, et al. N-methyl-D-aspartate-induced neuronal activation is selectively modulated by sigma receptors. Eur J Pharmacol 1990; 179: 441–5

    PubMed  CAS  Google Scholar 

  67. Bermack JE, Debonnel G. Modulation of serotonergic neurotransmission by short- and long-term treatments with sigma ligands. Br J Pharmacol 2001; 134: 691–9

    PubMed  CAS  Google Scholar 

  68. Minabe Y, Matsuno K, Ashby Jr CR. Acute and chronic administration of the selective sigma1 receptor agonist SA4503 significantly alters the activity of midbrain dopamine neurons in rats: an in vivo electrophysiological study. Synapse 1999; 33: 129–40

    PubMed  CAS  Google Scholar 

  69. Earley B, Burke M, Leonard BE, et al. Evidence for an anti-amnesic effect of JO 1784 in the rat: a potent and selective ligand for the sigma receptor. Brain Res 1991; 546: 282–6

    PubMed  CAS  Google Scholar 

  70. Maurice T, Su TP, Parish DW, et al. PRE-084, a sigma selective PCP derivative, attenuates MK-801-induced impairment of learning in mice. Pharmacol Biochem Behav 1994; 49: 859–69

    PubMed  CAS  Google Scholar 

  71. Maurice T, Su TP, Parish DW, et al. Prevention of nimodipine-induced impairment of learning by the selective sigma ligand PRE-084. J Neural Transm Gen Sect 1995; 102: 1–18

    PubMed  CAS  Google Scholar 

  72. Maurice T, Roman FJ, Su TP, et al. Beneficial effects of sigma agonists on the age-related learning impairment in the senescence-accelerated mouse (SAM). Brain Res 1996; 733: 219–30

    PubMed  CAS  Google Scholar 

  73. Reddy DS, Kaur G, Kulkarni SK. Sigma (σ1) receptor mediated anti-depressant-like effects of neurosteroids in the Porsolt forced swim test. Neuroreport 1998; 9: 3069–73

    PubMed  CAS  Google Scholar 

  74. Urani A, Roman FJ, Phan VL, et al. The antidepressant-like effect induced by σ1-receptor agonists and neuroactive steroids in mice submitted to the forced swimming test. J Pharmacol Exp Ther 2001; 298: 1269–79

    PubMed  CAS  Google Scholar 

  75. Panocka I, Perfumi M, Angeletti S, et al. Effects of Hypericumperforatum extract on ethanol intake, and on behavioral despair:a search for the neurochemical systems involved.Pharmacol Biochem Behav 2000; 66: 105–11

    PubMed  CAS  Google Scholar 

  76. Tottori K, Miwa T, Uwahodo Y, et al. Antidepressant-like responses to the combined sigma and 5-HT1A receptor agonist OPC-14523. Neuropharmacology 2001; 41: 976–88

    PubMed  CAS  Google Scholar 

  77. Yamada S, Uwahodo Y, Tottori K, et al. Role for sigma and 5-HT1A receptors in the forced swimming test supports the mechanism of action of OPC-14523 [abstract]. Abs Soc Neurosci 2000; 26: 2326

    Google Scholar 

  78. Kamei H, Noda Y, Kameyama T, et al. Role of (+)-SKF-10,047-sensitive sub-population of sigma 1 receptors in amelioration of conditioned fear stress in rats: association with mesolimbic dopaminergic systems. Eur J Pharmacol 1997; 319: 165–72

    PubMed  CAS  Google Scholar 

  79. Gue M, Yoneda M, Monnikes H, et al. Central neuropeptide Y and the sigma ligand, JO 1784, reverse corticotropin-releasing factor-induced inhibition of gastric acid secretion in rats. Br J Pharmacol 1992; 107: 642–7

    PubMed  CAS  Google Scholar 

  80. Gue M, Junien JL, Del Rio C, et al. Neuropeptide Y and sigma ligand (JO 1784) suppress stress-induced colonic motor disturbances in rats through sigma and cholecystokinin receptors. J Pharmacol Exp Ther 1992; 261: 850–5

    PubMed  CAS  Google Scholar 

  81. Takahashi S, Miwa T, Horikomi K. Involvement of sigma 1 receptors in methamphetamine-induced behavioral sensitization in rats. Neurosci Lett 2000; 289: 21–4

    PubMed  CAS  Google Scholar 

  82. Ujike H, Kuroda S, Otsuki S. Sigma receptor antagonists block the development of sensitization to cocaine. Eur J Pharmacol 1996; 296: 123–8

    PubMed  CAS  Google Scholar 

  83. Ujike H, Okumura K, Zushi Y, et al. Persistent supersensitivity of sigma receptors develops during repeated methamphetamine treatment. Eur J Pharmacol 1992; 211: 323–8

    PubMed  CAS  Google Scholar 

  84. Romieu P, Phan VL, Martin-Fardon R, et al. Involvement of the σ1 receptor in cocaine-induced conditioned place preference: possible dependence on dopamine uptake blockade. Neuropsychopharmacology 2002; 26: 444–55

    PubMed  CAS  Google Scholar 

  85. Matsumoto RR, Pouw B. Correlation between neuroleptic binding to sigma-1 and sigma-2 receptors and acute dystonic reactions. Eur J Pharmacol 2000; 401: 155–60

    PubMed  CAS  Google Scholar 

  86. McCracken KA, Bowen WD, de Costa BR, et al. Two novel sigma receptor ligands, BD1047 and LR172, attenuate cocaine-induced toxicity and locomotor activity. Eur J Pharmacol 1999; 370: 225–32

    PubMed  CAS  Google Scholar 

  87. Matsumoto RR, McCracken KA, Pouw B, et al. Involvement of sigma receptors in the behavioral effects of cocaine: evidence from novel ligands and antisense oligodeoxynucleotides. Neuropharmacology 2002; 42: 1043–55

    PubMed  CAS  Google Scholar 

  88. Matsumoto RR, McCracken KA, Pouw B, et al. N-alkyl substituted analogs of the sigma receptor ligand BD1008 and traditional sigma receptor ligands affect cocaine-induced convulsions and lethality in mice. Eur J Pharmacol 2001; 411: 261–73

    PubMed  CAS  Google Scholar 

  89. Chien CC, Pasternak GW. Selective antagonism of opioid analgesia by a sigma system. J Pharmacol Exp Ther 1994; 271: 1583–90

    PubMed  CAS  Google Scholar 

  90. King M, Pan YX, Mei J, et al. Enhanced kappa-opioid receptor-mediated analgesia by antisense targeting the sigmal receptor. Eur J Pharmacol 1997; 331: R5–6

    PubMed  CAS  Google Scholar 

  91. Mei J, Pasternak GW. Sigma1 receptor modulation of opioid analgesia in the mouse. J Pharmacol Exp Ther 2002; 300: 1070–4

    PubMed  CAS  Google Scholar 

  92. Nestler EJ, Barrot M, DiLeone R, et al. Neurobiology of depression. Neuron 2002; 34: 13–25

    PubMed  CAS  Google Scholar 

  93. Takahashi S, Horikomi K, Kato T. MS-377, a novel selective σ1 receptor ligand, reverses phencyclidine-induced release ofdopamine and serotonin in rat brain. Eur J Pharmacol 2001; 427: 211–9

    PubMed  CAS  Google Scholar 

  94. Ault DT, Werling LL. Phencyclidine and dizocilpine modulate dopamine release from rat nucleus accumbens via sigma receptors. Eur J Pharmacol 1999; 386: 145–53

    PubMed  CAS  Google Scholar 

  95. Nuwayhid SJ, Werling LL. Sigmal receptor agonist-mediated regulation of N-methyl-D-aspartate-stimulated [3H]dopamine release is dependent upon protein kinase C. J Pharmacol Exp Ther 2003; 304: 364–9

    PubMed  CAS  Google Scholar 

  96. Kobayashi T, Matsuno K, Nakata K, et al. Enhancement of acetylcholine release by SA4503, a novel sigma 1 receptor agonist, in the rat brain. J Pharmacol Exp Ther 1996; 279: 106–13

    PubMed  CAS  Google Scholar 

  97. Su TP, Hayashi T. Understanding the molecular mechanism of sigma-1 receptors: toward a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction. Curr Opin Med Chem 2003; 10: 2073–80

    CAS  Google Scholar 

  98. Wheal HV, Chen Y, Mitchell J, et al. Molecular mechanisms that underlie structural and functional changes at the post-synapic membrane during synaptic plasticity. Prog Neurobiol 1998; 55: 611–40

    PubMed  CAS  Google Scholar 

  99. Su TP, Hayashi T. Cocaine affects the dynamics of cytoskeletal proteins via σ1 receptors. Trends Pharmacol Sci 2001; 22: 456–8

    PubMed  CAS  Google Scholar 

  100. Brown TH, Chapman PF, Kairiss EW, et al. Long-term synaptic potentiation. Science 1988; 242: 724–8

    PubMed  CAS  Google Scholar 

  101. Deutsch JA. The cholinergic synapse and the site of memory. Science 1971; 174: 788–94

    PubMed  CAS  Google Scholar 

  102. Matsuno K, Senda T, Matsunaga K, et al. Ameliorating effects of sigma receptor ligands on the impairment of passive avoidance tasks in mice: involvement in the central acetylcholinergic system. Eur J Pharmacol 1994; 261: 43–51

    PubMed  CAS  Google Scholar 

  103. Maurice T, Lockhart BP. Neuroprotective and anti-amnesic potentials of sigma (σ) receptor ligands. Prog Neuropsychopharmacol Biol Psychiatry 1997; 21: 69–102

    PubMed  CAS  Google Scholar 

  104. Urani A, Romieu P, Portales-Casamar E, et al. The antidepressant-like effect induced by the sigma(1) (sigma(1)) receptor agonist igmesine involves modulation of intracellular calcium mobilization. Psychopharmacology (Berl) 2002; 163: 26–35

    CAS  Google Scholar 

  105. Baulieu EE, Robel P, Schumacher M. Neurosteroids: beginning of the story. Int Rev Neurobiol 2001; 46: 1–32

    PubMed  CAS  Google Scholar 

  106. Schumacher M, Weill-Engerer S, Liere P, et al. Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog Neurobiol 2003; 71: 3–29

    PubMed  CAS  Google Scholar 

  107. Jansen KL, Faull RL, Storey P, et al. Loss of sigma binding sites in the CA1 area of the anterior hippocampus in Alzheimer’s disease correlates with CA1 pyramidal cell loss. Brain Res 1993; 623: 299–302

    PubMed  CAS  Google Scholar 

  108. Jacobs DM, Tang MX, Stern Y, et al. Cognitive function in nondemeted older women who took estrogen after menopause. Neurology 1998; 50: 368–73

    PubMed  CAS  Google Scholar 

  109. Phillips SM, Sherwin BB. Effects of estrogen on memory function in surgically menopausal women. Psychoneuroendocrinology 1992; 17: 485–95

    PubMed  CAS  Google Scholar 

  110. Morales AJ, Nolan JJ, Nelson JC, et al. Effects of replacement dose of dehydroepiandrosterone. J Clin Endocrinol Metab 1994; 78: 1360–7

    PubMed  CAS  Google Scholar 

  111. Maurice T, Urani A, Phan VL, et al. The interaction between neuroactive steroids and the sigmal receptor function: behavioral consequences and therapeutic opportunities. Brain Res Brain Res Rev 2001; 37: 116–32

    PubMed  CAS  Google Scholar 

  112. Raffa RB. Screen of receptor and uptake-site activity of hypericin component of St John’s wort reveals sigma receptor binding. Life Sci 1998; 62: PL265–70

    PubMed  CAS  Google Scholar 

  113. Bennett Jr DA, Phun L, Polk JF, et al. Neuropharmacology of St John’s Wort (hypericum). Ann Pharmacother 1998; 32: 1201–8

    PubMed  Google Scholar 

  114. Tamminga CA. Schizophrenia and glutamatergic transmission. Crit Rev Neurobiol 1998; 12: 21–36

    PubMed  CAS  Google Scholar 

  115. Matthews RT, McMillen BA, Sallis R, et al. Effects of BMY 14802, a potential antipsychotic drug, on rat brain dopaminergic function. J Pharmacol Exp Ther 1986; 239: 124–31

    PubMed  CAS  Google Scholar 

  116. Jentsch JD, Roth RH. The neuropsychopharmacology ofphencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1999; 20: 201–25

    PubMed  CAS  Google Scholar 

  117. Walker JM, Matsumoto RR, Bowen WD, et al. Evidence for a role of haloperidol-sensitive sigma-‘opiate’ receptors in the motor effects of antipsychotic drugs. Neurology 1988; 38: 961–5

    PubMed  CAS  Google Scholar 

  118. Sharkey J, Glen KA, Wolfe S, et al. Cocaine binding at sigma receptors. Eur J Pharmacol 1988; 149: 171–4

    PubMed  CAS  Google Scholar 

  119. Shibuya H, Mori H, Toru M. Sigma receptors in schizophrenic cerebral cortices. Neurochem Res 1992; 17: 983–90

    PubMed  CAS  Google Scholar 

  120. Helmeste DM, Tang SW, Bunney Jr WE, et al. Decrease in sigma but no increase in striatal dopamine D4 sites in schizophrenic brains. Eur J Pharmacol 1996; 314: R3–5

    PubMed  CAS  Google Scholar 

  121. Ohmori O, Shinkai T, Suzuki T, et al. Polymorphisms of the σ1 receptor gene in schizophrenia: an association study. Am J Med Genet 2000; 96: 118–22

    PubMed  CAS  Google Scholar 

  122. Ishiguro H, Ohtsuki T, Tora M, et al. Association between polymorphisms in the type 1 sigma receptor gene and schizophrenia. Neurosci Lett 1998; 257: 45–8

    PubMed  CAS  Google Scholar 

  123. Schwarcz G, Halaris A, Dren A, et al. Open label evaluation of the novel antipsychotic compound BW234U in chronic schizophrenics. Drug Dev Res 1985; 5: 387–93

    Google Scholar 

  124. Guy W, Manov G, Wilson WH, et al. Psychotropic actions of BW234U in the treatment of inpatient schizophrenics: a dose range study. Drag Dev Res 1983, 52

  125. Garreau M, Giroux C, L’Heritier C, et al. Pilot studies on the effect of SL 82.0715 in psychotic syndromes. Clin Neuropharmacol 1992; 15 Suppl. 1: 699A-700A

    Google Scholar 

  126. Grander G, Muller MJ, Andreas J, et al. Occupancy of striatal D2-like dopamine receptors after treatment with the sigma ligand EMD 57445, a putative atypical antipsychotic. Psychopharmacology (Berl) 1999; 146: 81–6

    Google Scholar 

  127. Akiyama K, Kanzaki A, Tsuchida K, et al. Methamphetamine-induced behavioral sensitization and its implications for relapse of schizophrenia. Schizophr Res 1994; 12: 251–7

    PubMed  CAS  Google Scholar 

  128. Girdler SS, Straneva PA, Light KC, et al. Allopregnanolone levels and reactivity to mental stress in premenstrual dysphoric disorder. Biol Psychiatry 2001; 49: 788–97

    PubMed  CAS  Google Scholar 

  129. Strous RD, Spivak B, Yoran-Hegesh R, et al. Analysis of neurosteroid levels in attention deficit hyperactivity disorder. Int J Neuropsychopharmacol 2001; 4: 259–64

    PubMed  CAS  Google Scholar 

  130. Osran H, Reist C, Chen CC, et al. Adrenal androgens and cortisol in major depression. Am J Psychiatry 1993; 150: 806–9

    PubMed  CAS  Google Scholar 

  131. Browne ES, Wright BE, Porter JR, et al. Dehydroepiandrosterone: antiglucocorticoid action in mice. Am J Med Sci 1992; 303: 366–71

    PubMed  CAS  Google Scholar 

  132. Wolkowitz OM, Reus VI, Roberts E, et al. Dehydroepiandrosterone (DHEA) treatment of depression. Biol Psychiatry 1997; 41: 311–8

    PubMed  CAS  Google Scholar 

  133. Kolb B, Gorny G, Li Y, et al. Amphetamine or cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens. Proc Natl Acad Sci U S A 2003; 100: 10523–8

    PubMed  CAS  Google Scholar 

  134. Robinson TE, Gomy G, Mitton E, et al. Cocaine self-administration alters the morphology of dentrites and dentric spines in the nucleus accumbens and neocortex. Synapse 2001; 39: 257–66

    PubMed  CAS  Google Scholar 

  135. Manji HK, Drevets WC, Charney DS. The cellular neurobiology of depression. Nat Med 2001; 7: 541-7

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, USA. The authors have no financial interest that may confound the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, T., Su, TP. σ-1 Receptor Ligands. CNS Drugs 18, 269–284 (2004). https://doi.org/10.2165/00023210-200418050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200418050-00001

Keywords

Navigation