Skip to main content

Advertisement

Log in

Lymphocyte Responses to Maximal Exercise

A Physiological Perspective

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Exercise affects lymphocytes as reflected in total blood counts and the lymphocyte proliferative response. In addition, the production of immunoglobulins is impaired and during exercise the natural killer cell activity increases followed by suppression in the recovery period. Cardiopulmonary adjustments play a major role in lymphocyte response to physical activity. During intense exercise, the activated sympathetic nervous system increases blood flow to muscle as blood flow to splanchnic organs decreases. After exercise, sympathetic tone and blood pressure becomes reduced. The spleen contains lymphocytes and blood resides in gut vessels. A change in blood flow to these organs could affect the number of circulating lymphocytes. Reduced production of immunoglobulins results from suppressed B-cell function and, in response to exercise, mucosal immunity appears to decrease. Pulmonary hyperventilation and enhanced pressure in pulmonary vessels induce increased permeability of airway epithelium and stress failure of the alveolar-capillary membrane during intense exercise. A physiological perspective is of importance for evaluation of the exercise-induced change in lymphocyte function and, in turn, to post-exercise increased susceptibility to infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Larrabee RC. Leucytosis after violent exercise. J Med Res 1902; 7: 76–82

    PubMed  CAS  Google Scholar 

  2. Garrey WE, Bryan WR. Variations in white blood cell count. Physiol Rev 1935; 15: 597–638

    Google Scholar 

  3. Renold AE, Quigley TB, Kennard HE, et al. Reaction of the adrenal cortex to physical and emotinal stress in college oarsmen. N Engl J Med 1951; 20: 754–7

    Article  Google Scholar 

  4. Pedersen BK, Kappel M, Klokker M, et al. The immune system during exposure to extreme physiologic conditions. Int J Sports Med 1994; 15Suppl. 3: S116–21

    Article  PubMed  Google Scholar 

  5. Hoffman-Goetz L, Pedersen BK. Exercise and the immune system: a model of the stress response? Immunol Today 1994; 15: 382–7

    Article  PubMed  CAS  Google Scholar 

  6. Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 2000; 80: 1055–81

    PubMed  CAS  Google Scholar 

  7. Nieman DC, Pedersen BK. Exercise and immune function: recent developments. Sports Med 1999; 27: 73–80

    Article  PubMed  CAS  Google Scholar 

  8. Shepard RJ, Shek PN. Impact of physical activity and sport on the immune system. Rev Environ Health 1996; 11: 133–47

    PubMed  CAS  Google Scholar 

  9. Pedersen BK, Tvede N, Hansen FR, et al. Modulation of natural killer cell activity in peripheral blood by physical exercise. Scand J Immunol 1988; 27: 673–8

    Article  PubMed  CAS  Google Scholar 

  10. Pedersen BK, Tvede N, Klarlund K, et al. Indomethacin in vitro and in vivo abolishes post-exercise suppression of natural killer cell activity in peripheral blood. Int J Sports Med 1990; 11: 127–31

    Article  PubMed  CAS  Google Scholar 

  11. Peters EM, Bateman ED. Ultramarathon running and upper respiratory tract infections: an epidemiological survey. S Afr Med J 1983; 64: 582–4

    PubMed  CAS  Google Scholar 

  12. Nieman DC, Johanssen LM, Lee JW, et al. Infectious episodes in runners before and after the Los Angeles Marathon. J Sports Med Phys Fitness 1990; 30: 316–28

    PubMed  CAS  Google Scholar 

  13. Pedersen BK, Ullum H. NK cell response to physical activity: possible mechanisms of action. Med Sci Sports Exerc 1994; 26: 140–6

    Article  PubMed  CAS  Google Scholar 

  14. Cohen S, Tyrrell DA, Smith AP. Psychological stress and susceptibility to the common cold. N Engl J Med 1991; 325: 606–12

    Article  PubMed  CAS  Google Scholar 

  15. Weidner TG, Anderson BN, Kaminsky LA, et al. Effect of a rhinovirus-caused upper respiratory illness on pulmonary function test and exercise responses. Med Sci Sports Exerc 1997; 29: 604–9

    Article  PubMed  CAS  Google Scholar 

  16. Weidner TG, Cranston T, Schurr T, et al. The effect of exercise training on the severity and duration of a viral upper respiratory illness. Med Sci Sports Exerc 1998; 30: 1578–83

    Article  PubMed  CAS  Google Scholar 

  17. Landmann R. Beta-adrenergic receptors in human leukocyte subpopulations. Eur J Clin Invest 1992; 22Suppl. 1: 30–6

    PubMed  Google Scholar 

  18. Holmqvist N, Secher NH, Sander-Jensen K, et al. Sympathoadrenal and parasympathetic responses to exercise. J Sports Sci 1986; 4: 123–8

    Article  PubMed  CAS  Google Scholar 

  19. Hayes PM, Lucas JC, Shi X. Importance of post-exercise hypotension in plasma volume restoration. Acta Physiol Scand 2000; 169: 115–24

    Article  PubMed  CAS  Google Scholar 

  20. Rowell LB. Human cardiovascular control. Oxford: Oxford University Press, 1993

    Google Scholar 

  21. Pabst R. The spleen in lymphocyte migration. Immunol Today 1988; 9: 43–5

    Article  PubMed  CAS  Google Scholar 

  22. Asmussen E, Nielsen M. Studies on the regulation of respiration in heavy work. Acta Physiol Scand 1946; 12: 171–88

    Article  Google Scholar 

  23. Wagner PD, Gale GE, Moon RE, et al. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol 1986; 61: 260–70

    PubMed  CAS  Google Scholar 

  24. West JB. Invited review: pulmonary capillary stress failure. J Appl Physiol 2000; 89: 2483–9

    PubMed  CAS  Google Scholar 

  25. Pedersen BK. Influence of physical activity on the cellular immune system: mechanisms of action. Int J Sports Med 1991; 12Suppl. 1: S23–9

    Article  PubMed  Google Scholar 

  26. Pedersen BK, Toft AD. Effects of exercise on lymphocytes and cytokines. Br J Sports Med 2000; 34: 246–51

    Article  PubMed  CAS  Google Scholar 

  27. Nieman DC, Nehlsen-Cannarella SL, Donohue KM, et al. The effects of acute moderate exercise on leukocyte and lymphocyte subpopulations. Med Sci Sports Exerc 1991; 23: 578–85

    PubMed  CAS  Google Scholar 

  28. Deuster PA, Curiale AM, Cowan ML, et al. Exercise-induced changes in populations of peripheral blood mononuclear cells. Med Sci Sports Exerc 1988; 20: 276–80

    Article  PubMed  CAS  Google Scholar 

  29. Field CJ, Gougeon R, Marliss EB. Circulating mononuclear cell numbers and function during intense exercise and recovery. J Appl Physiol 1991; 71: 1089–97

    PubMed  CAS  Google Scholar 

  30. Nielsen HB, Secher NH, Kappel M, et al. Lymphocyte, NK and LAK cell responses to maximal exercise. Int J Sports Med 1996; 17: 60–5

    Article  PubMed  CAS  Google Scholar 

  31. Nielsen HB, Secher NH, Christensen NJ, et al. Lymphocytes and NK cell activity during repeated bouts of maximal exercise. Am J Physiol 1996; 271: R222–7

    PubMed  CAS  Google Scholar 

  32. Espersen GT, Elbaek A, Ernst E, et al. Effect of physical exercise on cytokines and lymphocyte subpopulations in human peripheral blood. APMIS 1990; 98: 395–400

    Article  PubMed  CAS  Google Scholar 

  33. Fry RW, Morton AR, Crawford GP, et al. Cell numbers and in vitro responses of leucocytes and lymphocyte subpopulations following maximal exercise and interval training sessions of different intensities. Eur J Appl Physiol Occup Physiol 1992; 64: 218–27

    Article  PubMed  CAS  Google Scholar 

  34. Gabriel H, Kullmer T, Schwarz L, et al. Circulating leucocyte subpopulations in sedentary subjects following graded maximal exercise with hypoxia. Eur J Appl Physiol Occup Physiol 1993; 67: 348–53

    Article  PubMed  CAS  Google Scholar 

  35. Baum M, Liesen H, Enneper J. Leucocytes, lymphocytes, activation parameters and cell adhesion molecules in middle-distance ranners under different training conditions. Int J Sports Med 1994; 15Suppl. 3: S122–6

    Article  PubMed  Google Scholar 

  36. Moyna NM, Acker GR, Weber KM, et al. The effects of incremental submaximal exercise on circulating leukocytes in physically active and sedentary males and females. Eur J Appl Physiol Occup Physiol 1996; 74: 211–8

    Article  PubMed  CAS  Google Scholar 

  37. Rohde T, MacLean DA, Richter EA, et al. Prolonged submaximal eccentric exercise is associated with increased levels of plasma IL-6. Am J Physiol 1997; 273: E85–91

    PubMed  CAS  Google Scholar 

  38. Pedersen BK, Nielsen HB. Acute exercise and the immune system. In: Pedersen BK, editor. Exercise immunology. Austin (TX): RG Landers Company, 1997: 5–27

    Google Scholar 

  39. Gabriel H, Schmitt B, Urhausen A, et al. Increased CD45RA+ CD45RO+ cells indicate activated T cells after endurance exercise. Med Sci Sports Exerc 1993; 25: 1352–7

    PubMed  CAS  Google Scholar 

  40. Nielsen HB, Secher NH, Kappel M, et al. N-acetylcysteine does not affect the lymphocyte proliferation and natural killer cell activity responses to exercise. Am J Physiol 1998; 275: R1227–31

    PubMed  CAS  Google Scholar 

  41. Nehlsen-Cannarella SL, Nieman DC, Jessen J, et al. The effects of acute moderate exercise on lymphocyte function and serum immunoglobulin levels. Int J Sports Med 1991; 12: 391–8

    Article  PubMed  CAS  Google Scholar 

  42. Rhind SG, Shek PN, Shinkai S, et al. Differential expression of interleukin-2 receptor alpha and beta chains in relation to natural killer cell subsets and aerobic fitness. Int J Sports Med 1994; 15: 311–8

    Article  PubMed  CAS  Google Scholar 

  43. Rhind SG, Shek PN, Shinkai S, et al. Effects of moderate endurance exercise and training on in vitro lymphocyte proliferation, interleukin-2 (IL-2) production, and IL-2 receptor expression. Eur J Appl Physiol Occup Physiol 1996; 74: 348–60

    Article  PubMed  CAS  Google Scholar 

  44. Ronsen O, Pedersen BK, Oritsland TR, et al. Leukocyte counts and lymphocyte responsiveness associated with repeated bouts of strenuous endurance exercise. J Appl Physiol 2001; 91: 425–34

    PubMed  CAS  Google Scholar 

  45. Staats R, Balkow S, Sorichter S, et al. Change in perforin-positive peripheral blood lymphocyte (PBL) subpopulations following exercise. Clin Exp Immunol 2000; 120: 434–9

    Article  PubMed  CAS  Google Scholar 

  46. Steensberg A, Morrow J, Toft D, et al. Prolonged exercise, lymphocyte apoptosis and F2-isoprostanes. Eur J Appl Physiol 2002; 87: 38–42

    Article  PubMed  CAS  Google Scholar 

  47. Hoffman-Goetz L, Simpson JR, Cipp N, et al. Lymphocyte subset responses to repeated submaximal exercise in men. J Appl Physiol 1990; 68: 1069–74

    PubMed  CAS  Google Scholar 

  48. Severs Y, Brenner I, Shek PN, et al. Effects of heat and intermittent exercise on leukocyte and sub-population cell counts. Eur J Appl Physiol 1996; 74: 234–45

    Article  CAS  Google Scholar 

  49. Brenner IK, Severs YD, Shek PN, et al. Impact of heat exposure and moderate, intermittent exercise on cytolytic cells. Eur J Appl Physiol 1996; 74: 162–71

    Article  CAS  Google Scholar 

  50. Brenner IK, Zamecnik J, Shek PN, et al. The impact of heat exposure and repeated exercise on circulating stress hormones. Eur J Appl Physiol 1997; 76: 445–54

    Article  CAS  Google Scholar 

  51. Nielsen HB, Bredmose P, Strømstad M, et al. Bicarbonate attenuates acidosis during maximal exercise in humans. J Appl Physiol 2002; 93: 724–31

    PubMed  Google Scholar 

  52. Janeway CA, Travers P. Immunobiology: the immune system in health and disease. Oxford: Blackwell Scientific Publications, Garland Publishing, 1994

    Google Scholar 

  53. Klein J. Immunology. Cambridge: Blackwell Scientific Publications, 1991

    Google Scholar 

  54. Nielsen HB, Pedersen BK. Lymphocyte proliferation in response to exercise. Eur J Appl Physiol Occup Physiol 1997; 75: 375–9

    Article  PubMed  CAS  Google Scholar 

  55. Rohde T, Ullum H, Rasmussen JP, et al. Effects of glutamine on the immune system: influence of muscular exercise and HIV infection. J Appl Physiol 1995; 79: 146–50

    PubMed  CAS  Google Scholar 

  56. Shinkai S, Shore S, Shek PN, et al. Acute exercise and immune function: relationship between lymphocyte activity and changes in subset counts. Int J Sports Med 1992; 13: 452–61

    Article  PubMed  CAS  Google Scholar 

  57. Smith J, Chi D, Salazar S, et al. Effect of moderate exercise on proliferative responses of peripheral blood mononuclear cells. J Sports Med Phys Fitness 1993; 33: 152–8

    PubMed  CAS  Google Scholar 

  58. Tvede N, Heilmann C, Halkjaer-Kristensen J, et al. Mechanisms of B-lymphocyte suppression induced by acute physical exercise. J Clin Lab Immunol 1989; 30: 169–73

    PubMed  CAS  Google Scholar 

  59. Tvede N, Kappel M, Halkjaer-Kristensen J, et al. The effect of light, moderate and severe bicycle exercise on lymphocyte subsets, natural and lymphokine activated killer cells, lymphocyte proliferative response and interleukin 2 production. Int J Sports Med 1993; 14: 275–82

    Article  PubMed  CAS  Google Scholar 

  60. Tvede N, Kappel M, Klarlund K, et al. Evidence that the effect of bicycle exercise on blood mononuclear cell proliferative responses and subsets is mediated by epinephrine. Int J Sports Med 1994; 15: 100–4

    Article  PubMed  CAS  Google Scholar 

  61. Verde TJ, Thomas SG, Moore RW, et al. Immune responses and increased training of the elite athlete. J Appl Physiol 1992; 73: 1494–9

    PubMed  CAS  Google Scholar 

  62. MacNeil B, Hoffman-Goetz L, Kendall A, et al. Lymphocyte proliferation responses after exercise in men: fitness, intensity, and duration effects. J Appl Physiol 1991; 70: 179–85

    PubMed  CAS  Google Scholar 

  63. Hinton JR, Rowbottom DG, Keast D, et al. Acute intensive interval training and in vitro T-lymphocyte function. Int J Sports Med 1997; 18: 130–5

    Article  PubMed  CAS  Google Scholar 

  64. Green KJ, Rowbottom DG, Mackinnon LT. Exercise and T-lymphocyte function: a comparison of proliferation in PBMC and NK cell-depleted PBMC culture. J Appl Physiol 2002; 92: 2390–5

    PubMed  Google Scholar 

  65. Brahmi Z, Thomas JE, Park M, et al. The effect of acute exercise on natural killer-cell activity of trained and sedentary human subjects. J Clin Immunol 1985; 5: 321–8

    Article  PubMed  CAS  Google Scholar 

  66. Edwards AJ, Bacon TH, Elms CA, et al. Changes in the populations of lymphoid cells in human peripheral blood following physical exercise. Clin Exp Immunol 1984; 58: 420–7

    PubMed  CAS  Google Scholar 

  67. Shek PN, Sabiston BH, Buguet A, et al. Strenuous exercise and immunological changes: a multiple-time-point analysis of leukocyte subsets, CD4/CD8 ratio, immunoglobulin production and NK cell response. Int J Sports Med 1995; 16: 466–74

    Article  PubMed  CAS  Google Scholar 

  68. Ullum H, Palmo J, Halkjaer-Kristensen J, et al. The effect of acute exercise on lymphocyte subsets, natural killer cells, proliferative responses, and cytokines in HIV-seropositive persons. J Acquir Immune Defic Syndr 1994; 7: 1122–33

    PubMed  CAS  Google Scholar 

  69. Nieman DC, Miller AR, Henson DA, et al. Effects of high- vs moderate-intensity exercise on natural killer cell activity. Med Sci Sports Exerc 1993; 25: 1126–34

    PubMed  CAS  Google Scholar 

  70. Palmø J, Asp S, Daugaard JR, et al. Effect of eccentric exercise on natural killer cell activity. J Appl Physiol 1995; 78: 1442–6

    PubMed  Google Scholar 

  71. Nieman DC, Henson DA, Sampson CS, et al. The acute immune response to exhaustive resistance exercise. Int J Sports Med 1995; 16: 322–8

    Article  PubMed  CAS  Google Scholar 

  72. Pross HF, Baines MG, Rubin P, et al. Spontaneous human lymphocyte-mediated cytotoxicity against tumor target cells. IX: the quantitation of natural killer cell activity. J Clin Immunol 1981; 1: 51–63

    Article  PubMed  CAS  Google Scholar 

  73. Bryant J, Day R, Whiteside TL, et al. Calculation of lytic units for the expression of cell-mediated cytotoxicity. J Immunol Methods 1992; 146: 91–103

    Article  PubMed  CAS  Google Scholar 

  74. Nielsen HB, Secher NH, Kristensen JH, et al. Splenectomy impairs lymphocytosis during maximal exercise. Am J Physiol 1997; 272: R1847–52

    PubMed  CAS  Google Scholar 

  75. Kappel M, Tvede N, Galbo H, et al. Evidence that the effect of physical exercise on NK cell activity is mediated by epinephrine. J Appl Physiol 1991; 70: 2530–4

    PubMed  CAS  Google Scholar 

  76. Rhind SG, Gannon GA, Suzui M, et al. Indomethacin inhibits circulating PGE2 and reverses postexercise suppression of natural killer cell activity. Am J Physiol 1999; 276: R1496–505

    PubMed  CAS  Google Scholar 

  77. Braun WA, Flynn MG, Jacks DE, et al. Indomethacin does not influence natural cell-mediated cytotoxic response to endurance exercise. J Appl Physiol 1999; 87: 2237–43

    PubMed  CAS  Google Scholar 

  78. Nieman DC, Ahle JC, Henson DA, et al. Indomethacin does not alter natural killer cell response to 2.5h of running. J Appl Physiol 1995; 79: 748–55

    PubMed  CAS  Google Scholar 

  79. Hedfors E, Holm G, Ivansen M, et al. Physiological variation of blood lymphocyte reactivity: T-cell subsets, immunoglobulin production, and mixed-lymphocyte reactivity. Clin Immunol Immunopathol 1983; 27: 9–14

    Article  PubMed  CAS  Google Scholar 

  80. Boyum A, Wiik P, Gustavsson E, et al. The effect of strenuous exercise, calorie deficiency and sleep deprivation on white blood cells, plasma immunoglobulins and cytokines. Scand J Immunol 1996; 43: 228–35

    Article  PubMed  CAS  Google Scholar 

  81. Barriga C, Pedrera MI, Maynar M, et al. Effect of submaximal physical exercise performed by sedentary men and women on some parameters of the immune system. Rev Esp Fisiol 1993; 49: 79–85

    PubMed  CAS  Google Scholar 

  82. Eliakim A, Wolach B, Kodesh E, et al. Cellular and humoral immune response to exercise among gymnasts and untrained girls. Int J Sports Med 1997; 18: 208–12

    Article  PubMed  CAS  Google Scholar 

  83. Nehlsen-Cannarella SL, Nieman DC, Balk-Lamberton AJ, et al. The effects of moderate exercise training on immune response. Med Sci Sports Exerc 1991; 23: 64–70

    PubMed  CAS  Google Scholar 

  84. Tomasi TB, Trudeau FB, Czerwinski D, et al. Immune parameters in athletes before and after strenuous exercise. J Clin Immunol 1982; 2: 173–8

    Article  PubMed  CAS  Google Scholar 

  85. Mackinnon LT, Chick TW, van As A, et al. The effect of exercise on secretory and natural immunity. Adv Exp Med Biol 1987; 216A: 869–76

    Article  PubMed  CAS  Google Scholar 

  86. Gleeson M, McDonald WA, Cripps AW, et al. The effect on immunity of long-term intensive training in elite swimmers. Clin Exp Immunol 1995; 102: 210–6

    Article  PubMed  CAS  Google Scholar 

  87. Nehlsen-Cannarella SL, Nieman DC, Fagoaga OR, et al. Saliva immunoglobulins in elite women rowers. Eur J Appl Physiol 2000; 81: 222–8

    Article  PubMed  CAS  Google Scholar 

  88. Klentrou P, Cieslak T, MacNeil M, et al. Effect of moderate exercise on salivary immunoglobulin A and infection risk in humans. Eur J Appl Physiol 2002; 87: 153–8

    Article  PubMed  CAS  Google Scholar 

  89. Gleeson M. Mucosal immunity and respiratory illness in elite athletes. Int J Sports Med 2000; 21Suppl. 1: S33–43

    Article  PubMed  CAS  Google Scholar 

  90. Venkatraman JT, Leddy J, Pendergast D. Dietary fats and immune status in athletes: clinical implications. Med Sci Sports Exerc 2000; 32: S389–95

    Article  PubMed  CAS  Google Scholar 

  91. Richter EA, Kiens B, Raben A, et al. Immune parameters in male atheletes after a lacto-ovo vegetarian diet and a mixed Western diet. Med Sci Sports Exerc 1991; 23: 517–21

    PubMed  CAS  Google Scholar 

  92. Bishop NC, Blannin AK, Robson PJ, et al. The effects of carbohydrate supplementation on immune responses to a soccer-specific exercise protocol. J Sports Sci 1999; 17: 787–96

    Article  PubMed  CAS  Google Scholar 

  93. Henson DA, Nieman DC, Blodgett AD, et al. Influence of exercise mode and carbohydrate on the immune response to prolonged exercise. Int J Sport Nutr 1999; 9: 213–28

    PubMed  CAS  Google Scholar 

  94. Koch AJ, Potteiger JA, Chan MA, et al. Minimal influence of carbohydrate ingestion on the immune response following acute resistance exercise. Int J Sport Nutr Exerc Metab 2001; 11: 149–61

    PubMed  CAS  Google Scholar 

  95. Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, et al. Immune response to two hours of rowing in elite female rowers. Int J Sports Med 1999; 20: 476–81

    Article  PubMed  CAS  Google Scholar 

  96. Bassit RA, Sawada LA, Bacurau RF, et al. The effect of BCAA supplementation upon the immune response of triathletes. Med Sci Sports Exerc 2000; 32: 1214–9

    Article  PubMed  CAS  Google Scholar 

  97. Rohde T, Asp S, MacLean DA, et al. Competitive sustained exercise in humans, lymphokine activated killer cell activity, and glutamine: an intervention study. Eur J Appl Physiol Occup Physiol 1998; 78: 448–53

    Article  PubMed  CAS  Google Scholar 

  98. Krzywkowski K, Petersen EW, Ostrowski K, et al. Effect of glutamine supplementation on exercise-induced changes in lymphocyte function. Am J Physiol Cell Physiol 2001; 281: C1259–65

    PubMed  CAS  Google Scholar 

  99. Hiscock N, Pedersen BK. Exercise-induced immunodepression: plasma glutamine is not the link. J Appl Physiol 2002; 93: 813–22

    PubMed  CAS  Google Scholar 

  100. Sastre J, Asensi M, Gasco E, et al. Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration. Am J Physiol 1992; 263: R992–5

    PubMed  CAS  Google Scholar 

  101. Sen CK, Rankinen T, Vaisanen S, et al. Oxidative stress after human exercise: effect of N-acetylcysteine supplementation. J Appl Physiol 1994; 76: 2570–7

    PubMed  CAS  Google Scholar 

  102. Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983; 52: 711–60

    Article  PubMed  CAS  Google Scholar 

  103. Fidelius RK, Ginouves P, Lawrence D, et al. Modulation of intracellular glutathione concentration alters lymphocyte activation and proliferation. Exp Cell Res 1987; 170: 269–75

    Article  Google Scholar 

  104. Aidoo A, Lyn-Cook LE, Morris SM, et al. Comparative study of intracellular glutathione content in rat lymphocyte cultures treated with 2-mercaptoethanol and interleukin-2. Cell Biol Toxicol 1991; 7: 215–27

    PubMed  CAS  Google Scholar 

  105. Stagnaro R, Pierri I, Piovano P, et al. Thiol containing antioxidant drugs and the human immune system. Bull Eur Physiopathol Respir 1987; 23: 303–7

    PubMed  CAS  Google Scholar 

  106. Ohmori H, Yamamoto I. Mechanism of augmentation of the antibody response in vitro by 2-mercaptoethanol in murine lymphocytes: I. 2-Mercaptoethanol-induced stimulation of the uptake of cystine, an essential amino acid. J Exp Med 1982; 155: 1277–90

    Article  PubMed  CAS  Google Scholar 

  107. Hamilos DL, Zelarney P, Mascali JJ. Lymphocyte proliferation in glutathione-depleted lymphocytes: direct relationship between glutathione availability and the proliferative response. Immunopharmacology 1989; 18: 223–35

    Article  PubMed  CAS  Google Scholar 

  108. Aruoma OI, Halliwell B, Hoey BM, et al. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, Superoxide, and hypochlorous acid. Free Radie Biol Med 1989; 6: 593–7

    Article  CAS  Google Scholar 

  109. Huupponen MR, Makinen LH, Hyvonen PM, et al. The effect of N-acetylcysteine on exercise-induced priming of human neutrophils: a chemiluminescence study. Int J Sports Med 1995; 16: 399–403

    Article  PubMed  CAS  Google Scholar 

  110. Nielsen HB, Kharazmi A, Bolbjerg ML, et al. N-acetylcysteine attenuates oxidative burst by neutrophils in response to ergometer rowing with no effect on pulmonary gas exchange. Int J Sports Med 2001; 22: 256–60

    Article  PubMed  CAS  Google Scholar 

  111. Malorni W, D’Ambrosio A, Rainaldi G, et al. Thiol supplier N-acetylcysteine enhances conjugate formation between natural killer cells and K562 or U937 targets but increases the lytic function only against the latter. Immunol Lett 1994; 43: 209–14

    Article  PubMed  CAS  Google Scholar 

  112. Petersen EW, Ostrowski K, Ibfelt T, et al. Effect of vitamin supplementation on cytokine response and on muscle damage after strenuous exercise. Am J Physiol Cell Physiol 2001; 280: C1570–5

    PubMed  CAS  Google Scholar 

  113. Niess AM, Sommer M, Schneider M, et al. Physical exercise-induced expression of inducible nitric oxide synthase and heme oxygenase-1 in human leukocytes: effects of RRR-alpha-tocopherol supplementation. Antioxid Redox Signal 2000; 2: 113–26

    Article  PubMed  CAS  Google Scholar 

  114. Vassilakopoulos T, Karatza MH, Katsaounou P, et al. Antioxidants attenuate the plasma cytokine response to exercise in humans. J Appl Physiol 2003; 94: 1025–32

    PubMed  CAS  Google Scholar 

  115. Nielsen HB, Boushel R, Madsen P, et al. Cerebral desaturation reversed by O2 supplementation during exercise. Am J Physiol 1999; 277: H1045–52

    PubMed  CAS  Google Scholar 

  116. Kjaer M, Secher NH. Neural influence on cardiovascular and endocrine responses to static exercise in humans. Sports Med 1992; 13(5): 303–19

    Article  PubMed  CAS  Google Scholar 

  117. Van Tits LJ, Michel MC, Grosse-Wilde H, et al. Catecholamines increase lymphocyte beta 2-adrenergic receptors via a beta 2-adrenergic, spleen-dependent process. Am J Physiol 1990; 258: E191–202

    PubMed  Google Scholar 

  118. Søndergaard SR, Essen MV, Schjerling P, et al. Proliferation and telomere length in acutely mobilized blood mononuclear cells in HIV infected patients. Clin Exp Immunol 2002; 127: 499–506

    Article  PubMed  Google Scholar 

  119. Klokker M, Secher NH, Madsen P, et al. Adrenergic beta 1- and beta 1 + 2-receptor blockade suppress the natural killer cell response to head-up tilt in humans. J Appl Physiol 1997; 83: 1492–8

    PubMed  CAS  Google Scholar 

  120. Ahlborg B, Ahlborg G. Exercise leukocytosis with and without beta-adrenergic blockade. Acta Med Scand 1970; 187: 241–6

    Article  PubMed  CAS  Google Scholar 

  121. Foster NK, Martyn JB, Rangno RE, et al. Leukocytosis of exercise: role of cardiac output and catecholamines. J Appl Physiol 1986; 61: 2218–23

    PubMed  CAS  Google Scholar 

  122. Clifford PS, Hanel B, Secher NH. Arterial blood pressure response to rowing. Med Sci Sports Exerc 1994; 26: 715–9

    Article  PubMed  CAS  Google Scholar 

  123. Bjurstedt H, Rosenhamer G, Balldin U, et al. Orthostatic reactions during recovery from exhaustive exercise of short duration. Acta Physiol Scand 1983; 119: 25–31

    Article  PubMed  CAS  Google Scholar 

  124. Perko MJ, Nielsen HB, Skak C, et al. Mesenteric, coeliac and splanchnic blood flow in humans during exercise. J Appl Physiol 1993; 74: 1024–6

    Google Scholar 

  125. Barcroft J, Stephens JG. Observations upon the size of the spleen. J Appl Physiol 1927; 64: 1–22

    CAS  Google Scholar 

  126. Hurford WE, Hong SK, Park YS, et al. Splenic contraction during breath-hold diving in the Korean ama. J Appl Physiol 1990; 69: 932–6

    PubMed  CAS  Google Scholar 

  127. Laub M, Hvid-Jacobsen K, Hovind P, et al. Spleen emptying and venous hematocrit in humans during exercise. J Appl Physiol 1993; 74: 1024–6

    PubMed  CAS  Google Scholar 

  128. Felten SY, Felten DL, Bellinger DL, et al. Noradrenergic sympathetic innervation of lymphoid organs. Prog Allergy 1988; 43: 14–36

    PubMed  CAS  Google Scholar 

  129. Pinkus GS, Warhol MJ, O’Connor EM, et al. Immunohistochemical localization of smooth muscle myosin in human spleen, lymph node, and other lymphoid tissues: unique staining patterns in splenic white pulp and sinuses, lymphoid follicles, and certain vasculature, with ultrastructural correlations. Am J Pathol 1986; 123: 440–53

    PubMed  CAS  Google Scholar 

  130. Steel CM, French EB, Aitchison WR. Studies on adrenaline-induced leucocytosis in normal man: I. The role of the spleen and of the thoracic duct. Br J Haematol 1971; 21: 413–21

    Article  PubMed  CAS  Google Scholar 

  131. Baum M, Geitner T, Liesen H. The role of the spleen in the leucocytosis of exercise: consequences for physiology and pathophysiology. Int J Sports Med 1996; 17: 604–7

    Article  PubMed  CAS  Google Scholar 

  132. Iversen PO, Arvesen BL, Benestad HB. No mandatory role for the spleen in the exercise-induced leucocytosis in man. Clin Sci (Colch) 1994; 86: 505–10

    CAS  Google Scholar 

  133. Bruunsgaard H, Jensen MS, Schjerling P, et al. Exercise induces recruitment of lymphocytes with an activated phenotype and short telomeres in young and elderly humans. Life Sci 1999; 65: 2623–33

    Article  PubMed  CAS  Google Scholar 

  134. Steensberg A, Toft AD, Bruunsgaard H, et al. Strenuous exercise decreases the percentage of type 1 T cells in the circulation. J Appl Physiol 2001; 91: 1708–12

    PubMed  CAS  Google Scholar 

  135. Febbraio MA, Steensberg A, Keller C, et al. Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J Physiol. Epub 2003 Apr 17

  136. Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J 2002; 16: 1335–47

    Article  PubMed  CAS  Google Scholar 

  137. Greenway CV, Bass L. Derecruitment in cat liver: extension of undistributed parallel tube model to effects of low hepatic blood flow on ethanol uptake. Can J Physiol Pharmacol 1989; 67: 1225–31

    Article  PubMed  CAS  Google Scholar 

  138. Nielsen HB, Clemmesen JO, Skak C, et al. Attenuated hepato-splanchnic uptake of lactate during intense exercise in humans. J Appl Physiol 2002; 92: 1677–83

    PubMed  CAS  Google Scholar 

  139. Nielsen HB, Svendsen LB, Jensen TH, et al. Exercise-induced gastric mucosal acidosis. Med Sci Sports Exerc 1995; 27: 1003–6

    Article  PubMed  CAS  Google Scholar 

  140. Bosenberg AT, Brock-Utne JG, Gaffin SL, et al. Strenuous exercise causes systemic endotoxemia. J Appl Physiol 1988; 65: 106–8

    PubMed  CAS  Google Scholar 

  141. Nielsen HB, Hanel B, Loft S, et al. Restricted pulmonary diffusion capacity is not an ARDS-like injury. J Sports Sci 1995; 13: 109–13

    Article  PubMed  CAS  Google Scholar 

  142. Wakabayashi G, Cannon JG, Gelfand JA, et al. Altered inter-leukin-1 and tumor necrosis factor production and secretion during pyrogenic tolerance to LPS in rabbits. Am J Physiol 1994; 267: R329–36

    PubMed  CAS  Google Scholar 

  143. Nielsen HB, Madsen P, Svendsen LB, et al. The influence of PaO2, pH and SaO2 on maximal oxygen uptake. Acta Physiol Scand 1998; 164: 89–7

    Article  PubMed  CAS  Google Scholar 

  144. Jensen K, Johansen L, Secher NH. Influence of body mass on maximal oxygen uptake: effect of sample size. Eur J Appl Physiol 2001; 84: 201–5

    Article  PubMed  CAS  Google Scholar 

  145. Mota S, Casan P, Drobnic F, et al. Expiratory flow limitation during exercise in competition cyclists. J Appl Physiol 1999; 86: 611–6

    PubMed  CAS  Google Scholar 

  146. Hanel B. Pulmonary function after exercise with special emphasis on diffusion capacity. Dan Med Bull 2000; 47: 196–217

    PubMed  CAS  Google Scholar 

  147. Lorino AM, Paul M, Cocea L, et al. Vitamin E does not prevent exercise-induced increase in pulmonary clearance. J Appl Physiol 1994; 77: 2219–23

    PubMed  CAS  Google Scholar 

  148. Schaffartzik W, Poole DC, Derion T, et al. VA/Q distribution during heavy exercise and recovery in humans: implications for pulmonary edema. J Appl Physiol 1992; 72: 1657–67

    Article  PubMed  CAS  Google Scholar 

  149. Coates G, O’Brodovich H, Jefferies AL, et al. Effects of exercise on lung lymph flow in sheep and goats during normoxia and hypoxia. J Clin Invest 1984; 74: 133–41

    Article  PubMed  CAS  Google Scholar 

  150. Caillaud C, Serre-Cousine O, Anselme F, et al. Computerized tomography and pulmonary diffusing capacity in highly trained athletes after performing a triathlon. J Appl Physiol 1995; 79: 1226–32

    PubMed  CAS  Google Scholar 

  151. Sheel AW, Coutts KD, Potts JE, et al. The time course of pulmonary diffusing capacity for carbon monoxide following short duration high intensity exercise. Respir Physiol 1998; 111: 271–81

    Article  PubMed  CAS  Google Scholar 

  152. Hanel B, Teunissen I, Rabol A, et al. Restricted postexercise pulmonary diffusion capacity and central blood volume depletion. J Appl Physiol 1997; 83: 11–7

    PubMed  CAS  Google Scholar 

  153. Dempsey JA, Hanson PG, Henderson KS. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol 1984; 355: 161–75

    PubMed  CAS  Google Scholar 

  154. Anselme F, Caillaud C, Couret I, et al. Histamine and exercise-induced hypoxemia in highly trained athletes. J Appl Physiol 1994; 76: 127–32

    PubMed  CAS  Google Scholar 

  155. Prefaut C, Anselme-Poujol F, Caillaud C. Inhibition of histamine release by nedocromil sodium reduces exercise-induced hypoxemia in master athletes. Med Sci Sports Exerc 1997; 29: 10–6

    PubMed  CAS  Google Scholar 

  156. White MV, Kaliner MA. Histamine. In: Barnes PJ, Rodger IW, Thomson NC, editors. Asthma: basic mechanisms and clinical management. London: Academic Press, 1988: 231–57

    Google Scholar 

  157. Åstrand PO, Rodahl K. Textbook of work physiology: physiological bases of exercise. Singapore: McGraw-Hill Co., 1986

    Google Scholar 

  158. Fellmann N. Hormonal and plasma volume alterations following endurance exercise: a brief review. Sports Med 1992; 13: 37–49

    Article  PubMed  CAS  Google Scholar 

  159. Nielsen HB, De Palo EF, Meneghetti M, et al. Circulating immunoreactive proANP1-30 and proANP31-67 responses to acute exercise. Regul Pept 2001; 99: 203–7

    Article  PubMed  CAS  Google Scholar 

  160. Sawka MN, Convertino VA, Eichner ER, et al. Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc 2000; 32: 332–48

    Article  PubMed  CAS  Google Scholar 

  161. Roberts D, Smith DJ. Erythropoietin concentration and arterial haemoglobin saturation with supramaximal exercise. J Sports Sci 1999; 17: 485–93

    Article  PubMed  CAS  Google Scholar 

  162. Oscai LB, Williams BT, Hertig BA. Effect of exercise on blood volume. J Appl Physiol 1968; 24: 622–4

    PubMed  CAS  Google Scholar 

  163. Pedersen BK, Tvede N, Christensen LD, et al. Natural killer cell activity in peripheral blood of highly trained and untrained persons. Int J Sports Med 1989; 10: 129–31

    Article  PubMed  CAS  Google Scholar 

  164. Nieman DC, Brendle D, Henson DA, et al. Immune function in athletes versus nonathletes. Int J Sports Med 1995; 16: 329–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Danish National Research Foundation (grant #504-14), the Danish Medical Research Council, the ‘Team Denmark’ Foundation, Niels og Desiree Ydes Fond, and the Danish Heart Foundation. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Bay Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, H.B. Lymphocyte Responses to Maximal Exercise. Sports Med 33, 853–867 (2003). https://doi.org/10.2165/00007256-200333110-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200333110-00005

Keywords

Navigation