Skip to main content
Log in

Haematocrit

Within-Subject and Seasonal Variation

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

This review was undertaken, concerning within-subject biological variation and seasonal variation of haematocrit in normal healthy adults and athletes, to find the limits for natural, intra-individual variation in haematocrit values. The terminology and calculations followed well defined theories, from the field of laboratory medicine, about biological variation.

Based on results from 12 studies of 638 normal healthy adults, and which used a sampling interval of 1 day to 1–2 months, the coefficient of within-subject biological variation of haematocrit is 3%. The normal within-subject biological variation (3%) and analytical variation (3%) may explain a relative change of approximately 12% (95% level) [e.g. a change from 0.42–0.47] between two successive haematocrit values, measured with a time interval between 1 day and 1–2 months, in a normal healthy adult.

Partly due to haemodilution in warm weather, haematocrit often has a seasonal variation in normal healthy adults; based on results from 18 studies of 24 793 participants, the population mean is approximately 3% lower in summer than winter. Population mean values that are 7% lower in summer than winter have been found in some studies, although no seasonal effect may also be seen, especially in temperate climates. If haematocrit values are sampled at yearly peak and trough time points, with intervals of up to 6 months, a 15% relative change (95% level) can be seen in a normal healthy adult; e.g. a change from 0.42–0.48.

Published values for haematocrit in athletes are scarce. It is known that the haematocrit value is influenced by training, especially in the first weeks before a new steady-state is reached. Theoretically, the biological variation in athletes could therefore be greater than in normal individuals. Based on two references addressing the biological variation of haematocrit in athletes, however, the above results are also valid for athletes. Further studies, both in the short term and throughout the seasons, are recommended about the natural variation of haematocrit in athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Union Cycliste Internationale. Medical examination procedure to determine the level of haematocrit. Aigle, Switzerland: Union Cycliste Internationale, 2000

    Google Scholar 

  2. Fraser CG, Harris EK. Generation and application of data on biological variation in clinical chemistry. Crit Rev Clin Lab Sci 1989; 27(5): 409–37

    Article  PubMed  CAS  Google Scholar 

  3. Statland BE, Winkel P. Effects of preanalytical factors on the intraindividual variation of analytes in the blood of healthy subjects: consideration of preparation of the subject and time of venipuncture. Crit Rev Clin Lab Sci 1977; 8(2): 105–44

    Article  CAS  Google Scholar 

  4. Solberg HE. Subject-based reference values. Scand J Clin Lab Invest Suppl 1995; 222: 7–10

    Article  PubMed  CAS  Google Scholar 

  5. Winkel P. Application of time series analysis in the clinical setting. Scand J Clin Lab Invest Suppl 1995; 222: 11–6

    Article  PubMed  CAS  Google Scholar 

  6. Narayanan S. The preanalytic phase: an important component of laboratory medicine. Am J Clin Pathol 2000; 113(3): 429–52

    Article  PubMed  CAS  Google Scholar 

  7. Rasmussen K, Moller J, Lyngbak M. Within-person variation of plasma homocysteine and effects of posture and tourniquet application. Clin Chem 1999; 45(10): 1850–5

    PubMed  CAS  Google Scholar 

  8. Leppänen EA, Gräsbeck R. Experimental basis of standardized specimen collection: effect of posture on blood picture. Eur J Haematol 1988; 40(3): 222–6

    Article  PubMed  Google Scholar 

  9. Ernst E, Matrai A. Pitfalls in blood sampling: influence of posture and venous occlusion time. Haematologica 1986; 71(3): 263–5

    PubMed  CAS  Google Scholar 

  10. Schmidt W, Biermann B, Winchenbach P, et al. How valid is the determination of hematocrit values to detect blood manipulations? Int J Sports Med 2000; 21(2): 133–8

    Article  PubMed  CAS  Google Scholar 

  11. Hütler M, Beneke R, Boning D. Determination of circulating hemoglobin mass and related quantities by using capillary blood. Med Sci Sports Exerc 2000; 32(5): 1024–7

    PubMed  Google Scholar 

  12. Fairbanks VF, Tefferi A. Normal ranges for packed cell volume and hemoglobin concentration in adults: relevance to ‘apparent polycythemia’. Eur J Haematol 2000; 65(5): 285–96

    Article  PubMed  CAS  Google Scholar 

  13. Touitou Y, Touitou C, Bogdan A, et al. Differences between young and elderly subjects in seasonal and circadian variations of total plasma proteins and blood volume as reflected by hemoglobin, hematocrit, and erythrocyte counts. Clin Chem 1986; 32(5): 801–4

    PubMed  CAS  Google Scholar 

  14. Haus E, Lakatua DJ, Swoyer J, et al. Chronobiology in hematology and immunology. Am J Anat 1983; 168(4): 467–517

    Article  PubMed  CAS  Google Scholar 

  15. Pocock SJ, Ashby D, Shaper AG, et al. Diurnal variations in serum biochemical and haematological measurements. J Clin Pathol 1989; 42(2): 172–9

    Article  PubMed  CAS  Google Scholar 

  16. Fraser CG, Wilkinson SP, Neville RG, et al. Biologic variation of common hematologic laboratory quantities in the elderly. Am J Clin Pathol 1989; 92(4): 465–70

    PubMed  CAS  Google Scholar 

  17. Williams GZ, Widdowson GM, Penton J. Individual character of variation in time-series studies of healthy people: II, differences in values for clinical chemical analytes in serum among demographic groups, by age and sex. Clin Chem 1978; 24(2): 313–20

    PubMed  CAS  Google Scholar 

  18. Jones AR, Twedt D, Swaim W, et al. Diurnal change of blood count analytes in normal subjects. Am J Clin Pathol 1996; 106(6): 723–7

    PubMed  CAS  Google Scholar 

  19. Lammi-Keefe CJ, Lickteig ES, Ahluwalia N, et al. Day-to-day variation in iron status indexes is similar for most measures in elderly women with and without rheumatoid arthritis. J Am Diet Assoc 1996; 96(3): 247–51

    Article  PubMed  CAS  Google Scholar 

  20. Maes M, Scharpe S, Cooreman W, et al. Components of biological, including seasonal, variation in hematological measurements and plasma fibrinogen concentrations in normal humans. Experientia 1995; 51(2): 141–9

    Article  PubMed  CAS  Google Scholar 

  21. Ahluwalia N, Lammi-Keefe CJ, Haley NR, et al. Day-to-day variation in iron-status indexes in elderly women. Am J Clin Nutr 1993; 57(3): 414–9

    PubMed  CAS  Google Scholar 

  22. Dot D, Miro J, Fuentes-Arderiu X. Within-subject biological variation of hematological quantities and analytical goals. Arch Pathol Lab Med 1992; 116(8): 825–6

    PubMed  CAS  Google Scholar 

  23. Borel MJ, Smith SM, Derr J, et al. Day-to-day variation in iron-status indices in healthy men and women. Am J Clin Nutr 1991; 54(4): 729–35

    PubMed  CAS  Google Scholar 

  24. Looker AC, Sempos CT, Liu KA, et al. Within-person variance in biochemical indicators of iron status: effects on prevalence estimates. Am J Clin Nutr 1990; 52(3): 541–7

    PubMed  CAS  Google Scholar 

  25. Gallagher SK, Johnson LK, Milne DB. Short-term and long-term variability of indices related to nutritional status, I: Ca. Cu, Fe, Mg, and Zn. Clin Chem 1989; 35(3): 369–73

    PubMed  CAS  Google Scholar 

  26. Thompson SG, Martin JC, Meade TW. Sources of variability in coagulation factor assays. Thromb Haemost 1987; 58(4): 1073–7

    PubMed  CAS  Google Scholar 

  27. Costongs GM, Janson PC, Bas BM, et al. Short-term and long-term intra-individual variations and critical differences of haematological laboratory parameters. J Clin Chem Clin Biochem 1985; 23(2): 69–76

    PubMed  CAS  Google Scholar 

  28. Williams GZ. Individual-specific normal ranges and identification of trend changes in serum constituents. In: Yasaka T, editor. Progress in health monitoring (AMHTS). Proceedings of the International Conference on Automated Multiphasic Health Testing and Services; 1980 Oct 4; Tokyo. Amsterdam: Excerpta Medica, 1981: 21–34

    Google Scholar 

  29. Statland BE, Winkel P, Harris SC, et al. Evaluation of biologic sources of variation of leukocyte counts and other hematologic quantities using very precise automated analyzers. Am J Clin Pathol 1978; 69(1): 48–54

    PubMed  CAS  Google Scholar 

  30. Josephson B, Dahlberg G. Variations in the cell-content and chemical composition of the human blood due to age, sex and season. Scand J Clin Lab Invest 1952; 4: 216–36

    Article  PubMed  CAS  Google Scholar 

  31. Crawford JM, Lau YR, Bull B. Calibration of hematology analyzers: role of the microhematocrit. Arch Pathol Lab Med 1987; 111(4): 324–7

    PubMed  CAS  Google Scholar 

  32. Beckmann-Coulter. Coulter Ac-T diff analyser ‘Reference‘ [internal manual]. Fullerton (CA): 1997; 4237422–A

  33. Paterakis GS, Laoutaris NP, Alexia SV, et al. The effect of red cell shape on the measurement of red cell volume: a proposed method for the comparative assessment of this effect among various haematology analysers. Clin Lab Haematol 1994; 16(3): 235–45

    Article  PubMed  CAS  Google Scholar 

  34. Fraser CG. Analytical goals for haematology tests. Eur J Haematol Suppl 1990; 53: 2–5

    PubMed  CAS  Google Scholar 

  35. Harris EK. Statistical principles underlying analytic goal-setting in clinical chemistry. Am J Clin Pathol 1979; 72 (2 Suppl.): 374–82

    PubMed  CAS  Google Scholar 

  36. Minihane AM, Fairweather-Tait SJ. Effect of calcium supplementation on daily nonheme-iron absorption and long-term iron status. Am J Clin Nutr 1998; 68(1): 96–102

    PubMed  CAS  Google Scholar 

  37. Fröhlich M, Sund M, Russ S, et al. Seasonal variations of rheological and hemostatic parameters and acute-phase reactants in young, healthy subjects. Arterioscler Thromb Vasc Biol 1997; 17(11): 2692–7

    Article  PubMed  Google Scholar 

  38. Kristal-Boneh E, Froom P, Harari G, et al. Seasonal differences in blood cell parameters and the association with cigarette smoking. Clin Lab Haematol 1997; 19(3): 177–81

    Article  PubMed  CAS  Google Scholar 

  39. Otto C, Donner MG, Schwandt P, et al. Seasonal variations of hemorheological and lipid parameters in middle-aged healthy subjects. Clin Chim Acta 1996; 256(1): 87–94

    Article  PubMed  CAS  Google Scholar 

  40. Kristal-Boneh E, Froom P, Harari G, et al. Seasonal changes in red blood cell parameters. Br J Haematol 1993; 85(3): 603–7

    Article  PubMed  CAS  Google Scholar 

  41. Stout RW, Crawford V. Seasonal variations in fibrinogen concentrations among elderly people. Lancet 1991; 338(8758): 9–13

    Article  PubMed  CAS  Google Scholar 

  42. Lau P, Hansen M, Sererat M. Influence of climate on donor deferrals. Transfusion 1988; 28(6): 559–62

    Article  PubMed  CAS  Google Scholar 

  43. Kolar J, Bhatnagar SK, Hudak A, et al. The effect of a hot dry climate on the haemorrheology of healthy males and patients with acute myocardial infarction. J Trop Med Hyg 1988; 91(2): 77–82

    PubMed  CAS  Google Scholar 

  44. Lee CJ, Lawler GS, Panemangalore M. Nutritional status of middle-aged and elderly females in Kentucky in two seasons: Part 2, hematological parameters. J Am Coll Nutr 1987; 6(3): 217–22

    PubMed  CAS  Google Scholar 

  45. Björnsson OJ, Davidsson D, Filippusson H, et al. Distribution of haematological, serum and urine values in a general population of middle-aged men: the Reykjavik Study. Scand J Soc Med Suppl 1984; 32: 1–12

    PubMed  Google Scholar 

  46. Shapiro Y, Hubbard RW, Kimbrough CM, et al. Physiological and hematologic responses to summer and winter dry-heat acclimation. J Appl Physiol 1981; 50(4): 792–8

    PubMed  CAS  Google Scholar 

  47. Koono N. Reciprocal changes in serum concentrations of triiodothyronine and reverse triiodothyronine between summer and winter in normal adult men. Endocrinol Jpn 1980; 27(4): 471–6

    Article  PubMed  CAS  Google Scholar 

  48. Röcker L, Feddersen HM, Hoffmeister H, et al. Seasonal variation of blood components important for diagnosis. Klin Wochenschr 1980; 58(15): 769–78

    Article  PubMed  Google Scholar 

  49. Bartelik S. Seasonal indices of hematological studies in blood donors. Wiad Lek 1979; 32(5): 305–7

    PubMed  CAS  Google Scholar 

  50. Kuroshima A, Doi K, Ohno T. Seasonal variation of plasma glucagon concentrations in men. Jpn J Physiol 1979; 29(6): 661–8

    Article  PubMed  CAS  Google Scholar 

  51. Morimoto T, Shikaki K, Inoue T, et al. Seasonal variation of water and electrolyte in serum with respect to homeostasis. Jpn J Physiol 1969; 19: 801–13

    Article  PubMed  CAS  Google Scholar 

  52. Sanders C. Some erythrocyte parameters on a cross section of U.K.A.E.A. employees. Lab Pract 1965; 14: 1390–6

    PubMed  CAS  Google Scholar 

  53. Watanabe G. Climatic effect on the packed red-cell volume. Br J Haematol 1958; 4: 108–12

    Article  PubMed  CAS  Google Scholar 

  54. Yoshimura H. Seasonal changes in human body fluids. Jpn J Physiol 1958; 8: 165–79

    Article  PubMed  CAS  Google Scholar 

  55. Pearce EA. The Hutchinson world weather guide. 4th ed. Oxford: Helicon, 2000

    Google Scholar 

  56. Forbes WH, Dill DB, Hall FG. The effect of climate upon the volumes of blood and of tissue fluid in man. Am J Physiol 1940; 130: 739–46

    Google Scholar 

  57. Sawka MN, Convertino VA, Eichner ER, et al. Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc 2000; 32(2): 332–48

    Article  PubMed  CAS  Google Scholar 

  58. Morimoto T, Shiraki K, Asayama M. Seasonal difference in responses of body fluids to heat stress. Jpn J Physiol 1974; 24(3): 249–62

    Article  PubMed  CAS  Google Scholar 

  59. Boiko ER, Bashkanov AS, Maklakova GN, et al. Human peripheral blood parameters under conditions of low temperature of far north. Hum Physiol 2001; 27(1): 127–8

    Article  Google Scholar 

  60. Sjöstrand T. Volume and distribution of blood and their significance in regulating the circulation. Physiol Rev 1953; 33: 202–28

    PubMed  Google Scholar 

  61. Schumacher YO, Grathwohl D, Barturen JM, et al. Haemoglobin, haematocrit and red blood cell indices in elite cyclists: are the control values for blood testing valid? Int J Sports Med 2000; 21(5): 380–5

    Article  PubMed  CAS  Google Scholar 

  62. Dugué B, Leppänen EA, Zhou HP. Preanalytical factors and standardized specimen collection: influence of psychological stress. Scand J Clin Lab Invest 1992; 52(1): 43–50

    Article  PubMed  Google Scholar 

  63. Cazzola M. A global strategy for prevention and detection of blood doping with erythropoietin and related drugs. Haematologica 2000; 85(6): 561–3

    PubMed  CAS  Google Scholar 

  64. Motta A, Agape V, Bonini PA, et al. Biological variability valuation of any hematology parameters in professional athletes [abstract]. Abstracts of the 14th European Congress of Clinical Chemistry and Laboratory Medicine, 5th Czech National Congress of Clinical Biochemistry; 2001 May 26–31; Prague. Clin Chem Lab Med 2001; 39 Suppl.: S280

    Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poul Thirup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirup, P. Haematocrit. Sports Med 33, 231–243 (2003). https://doi.org/10.2165/00007256-200333030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200333030-00005

Keywords

Navigation