Skip to main content

Advertisement

Log in

The Leucocytosis of Exercise

A Review and Model

Sports Medicine Aims and scope Submit manuscript

Summary

Exercise is known to induce an immediate leucocytosis, the magnitude of which is related, in most instances, to the intensity and duration of the work. On finishing exercise, however, the leucocyte count may change in any one of several different ways. The pattern of postexercise changes in the leucocyte count is determined mainly by the time which has elapsed since beginning exercise, rather than the work intensity or the total work done, if, for example, exercise has been intermittent. Consideration of firstly, the circumstances under which the plasma concentrations of catecholamines and cortisol have been found separately to correlate with the leucocyte count at the finish of exercise, and, secondly, the effects on the leucocyte count of exogenous administration of these substances has led us to develop a model which can satisfactorily account for all of the principal changes in the leucocyte count that have been noted during and after exercise. It is proposed that catecholamines produced during exercise act to increase the ratio of circulating to non-circulating leucocytes, while cortisol acts, by a mechanism which involves a time lag, to increase the total number of leucocytes in the vascular compartment. Examination of previously published reports shows that many contain results which support this model. Using the model as a basis, some predictions are made that can be tested experimentally, and some experiments are suggested which should help elucidate the mode of action of catecholamines and cortisol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahlborg B. Leucocytes in blood during prolonged physical exercise. Försvarsmedicin 3: 36–48, 1967a

    Google Scholar 

  • Ahlborg B. Circulatory and metabolic changes during prolonged exercise with special reference to the limitation of the individual capacity for prolonged exercise. Försvarsmedicin 3 (Suppl. 1 — Capacity for prolonged exercise): 16–31, 1967b

    Google Scholar 

  • Ahlborg B, Ahlborg G. Exercise leucocytosis with and without beta-adrenergic blockade. Acta Medica Scandinavica 187: 241–246, 1970

    Article  PubMed  CAS  Google Scholar 

  • Andersen KL. Leucocyte response to brief, severe exercise. Journal of Applied Physiology 7: 671–674, 1955

    PubMed  CAS  Google Scholar 

  • Arunlakshana O, Schild HO. Some quantitative uses of drug antagonists. British Journal of Pharmacology 14: 48–58, 1959

    CAS  Google Scholar 

  • Åstrand PO, Rodahl K. Textbook of work physiology, 3rd ed. McGraw-Hill, New York, 1986

    Google Scholar 

  • Athens JW, Haab OP, Raab SO, Mauer AM, Ashenbrucker H, et al. Leukokinetic studies IV. The total blood, circulating and marginal granulocyte pool and the granulocyte turnover rate in normal subjects. Journal of Clinical Investigation 40: 989–995, 1961b

    Article  PubMed  CAS  Google Scholar 

  • Athens JW, Raab SO, Haab OP, Mauer AM, Ashenbrucker H, et al. Leukokinetics studies III. The distribution of granulocytes in the blood of normal subjects. Journal of Clinical Investigation 40: 159–164, 1961a

    Article  PubMed  CAS  Google Scholar 

  • Atherton A, Born GVR. Quantitative investigations of the adhesiveness of circulating polymorphonuclear leukocytes to blood vessel walls. Journal of Physiology (Lond) 222: 447–474, 1972

    CAS  Google Scholar 

  • Axelrod J, Reisine TD. Stress hormones: their interaction and regulation. Science 224: 452–459, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ayers AB, Davies BN, Withrington PG. Responses of the isolated, perfused human spleen to sympathetic nerve stimulation, catecholamines and polypeptides. British Journal of Pharmacology 44: 17–30, 1972

    Article  PubMed  CAS  Google Scholar 

  • Beato M. Induction of transcription by steroid hormones. Biochimica et Biophysica Acta 910: 95–102, 1987

    Article  PubMed  CAS  Google Scholar 

  • Benhamou E, Nouchy A. 1931. Cited in Garrey WE, Brown WR. Variations in white blood cell counts. Physiological Reviews 15: 597–638, 1935

    Google Scholar 

  • Berk LS, Tan SA, Nieman DC, Eby NC. The suppressive effect of stress from acute exhaustive exercise on T lymphocyte helper/suppressor cell ratio in athletes and non-athletes. (Abstract.) Medicine and Science in Sport and Exercise 17: 492, 1985

    Google Scholar 

  • Bevan JA, Duckies S. Evidence for alpha-adrenergic receptors on intimai endothelium. Blood Vessels 12: 307–310, 1975

    PubMed  CAS  Google Scholar 

  • Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA. Identification of an inducible endothelial-leukocyte adhesion molecule. Proceedings of the National Academy of Science 84: 9238–9242, 1987

    Article  CAS  Google Scholar 

  • Bieger WP, Weiss M, Michel G, Weicker H. Exercise-induced monocytosis and modulation of monocyte function. International Journal of Sports Medicine 1: 30–36, 1980

    Article  Google Scholar 

  • Bierman JA, Kelly KH, Cordes FL, Byron RL, Polhemus BS, et al. The release of leucocytes and platelets from the pulmonary circulation by epinephrine. Blood 7: 683–692, 1952a

    PubMed  CAS  Google Scholar 

  • Bierman HR, Kelly KH, Cordes FL, Petraki NL, Kass H, et al. The influence of respiratory movements upon the circulating leucocytes. Blood 7: 533–544, 1952b

    PubMed  CAS  Google Scholar 

  • Bongers V, Bertrams J. The influence of common variables on T cell subset analysis by monoclonal antibodies. Journal of Immunological Methods 67: 243–253, 1984

    Article  PubMed  CAS  Google Scholar 

  • Boxer L, Allen J, Baehner R. Diminished polymorphonuclear leukocyte adherence: endothelial cells after stimulation of β-receptors by epinephrine. Journal of Clinical Investigation 66: 268–274, 1980

    Article  PubMed  CAS  Google Scholar 

  • Brodde O-E, Daul A, O’Hara N. β-Adrenoceptor changes in human lymphocytes, induced by exercise. Naunyn-Schmiedeberg’s Archives of Pharmacology 325: 190–192, 1984

    Article  PubMed  CAS  Google Scholar 

  • Bunt JC. Hormonal alterations due to exercise. Sports Medicine 3: 331–345, 1986

    Article  PubMed  CAS  Google Scholar 

  • Buonassisi V, Venter JC. Hormone and neurotransmitter receptors in an established vascular endothelial cell line. Proceedings of the National Academy of Sciences 73: 1612–1616, 1976

    Article  CAS  Google Scholar 

  • Busse WW, Anderson CL, Hanson PG, Folts JD. The effect of exercise on the granulocyte response to isoproterenol in the trained athlete and unconditioned individual. Journal of Allergy and Clinical Immunology 65: 358–364, 1980

    Article  PubMed  CAS  Google Scholar 

  • Butler J, O’Brien M, O’Malley K, Kelly JG. Relationship of β-adrenoceptor density to fitness in athletes. Nature (London) 298: 60–63, 1982

    Article  CAS  Google Scholar 

  • Canon J, Dinarello C. Interleukin-1 activity in human plasma. Federation Proceedings 43: 462, 1984

    Google Scholar 

  • Canon JG, Kluger MJ. Endogenous pyrogen activity in human plasma after exercise. Science 220: 617–619, 1983

    Article  Google Scholar 

  • Carstairs JR, Nimmo AJ, Barnes PJ. Autoradiographic localization of β-adrenoceptors in human lung. European Journal of Pharmacology 103: 189–190, 1984

    Article  PubMed  CAS  Google Scholar 

  • Crary B, Hauser SL, Borysenko M, Kutz I, Hoban C, et al. Epinephrine-induced changes in the distribution of lymphocyte subsets in the peripheral blood of humans. Journal of Immunology 131: 1178–1181, 1983

    CAS  Google Scholar 

  • Cruickshank JM, Prichard BNC. Beta-blockers in clinical practice, Churchill Livingstone, Edinburgh, 1987

    Google Scholar 

  • Cupps TR, Fauci AS. Corticosteroid-mediated immunoregulation in man. Immunological Reviews 65: 133–155, 1982

    Article  PubMed  CAS  Google Scholar 

  • Dale DC, Fauci AS, DuPont G, Wolf SM. Comparison of agents producing a neutrophilic response in man. Journal of Clinical Investigation 56: 808–813, 1975

    Article  PubMed  CAS  Google Scholar 

  • Davidson RJL, Robertson JD, Galea G, Maughan RJ. Hematological changes associated with marathon running. International Journal of Sports Medicine 8: 19–25, 1987

    Article  PubMed  CAS  Google Scholar 

  • Davidson RJL, Robertson JD, Maughan RJ. Haematological changes due to triathlon competition. British Journal of Sports Medicine 20: 159–161, 1986

    Article  PubMed  CAS  Google Scholar 

  • Davies AO, Lefkowitz RJ. Corticosteroid-induced differential regulation of β-adrenergic receptors in circulating human polymorphonuclear leucocytes and mononuclear leucocytes. Journal of Clinical Endocrinology and Metabolism 51: 599–605, 1980

    Article  PubMed  CAS  Google Scholar 

  • Davies BN, Withrington PG. The actions of drugs on the smooth muscle of the capsule and blood vessels of the spleen. Pharmacological Reviews 25: 373–413, 1973

    PubMed  CAS  Google Scholar 

  • Davies CTM, Few JD. Effects of exercise on adrenocortical function. Journal of Applied Physiology 35: 887–891, 1973

    PubMed  CAS  Google Scholar 

  • Dearman J, Francis KT. Plasma levels of catecholamines, cortisol and β-endorphins in male athletes after running 26.2, 6 and 2 miles. Journal of Sports Medicine 23: 30–38, 1983

    CAS  Google Scholar 

  • De Lanne R, Barnes JR, Brouha L. Hematological changes during muscular activity and recovery. Journal of Applied Physiology 15: 31–36, 1960

    Google Scholar 

  • De Meirlier K, Naaktgeboren N, Van Steirteghem A, Gorus F, Olbrecht J, et al. Beta-endorphin and ACTH levels in peripheral blood during and after aerobic and anerobic exercise. European Journal of Applied Physiology 55: 5–8, 1986

    Article  Google Scholar 

  • Dickson DN, Wilkinson RL, Noakes TD. Effects of ultra-marathon training and racing on haematologic parameters and serum ferritin levels in well-trained athletes. International Journal of Sports Medicine 3: 111–117, 1982

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA. Interleukin-1. Reviews of Infectious Diseases 6: 51–95, 1984

    Article  PubMed  CAS  Google Scholar 

  • Dorner H, Heinold D, Hilmer W. Exercise-induced leucocytosis — its dependence on physical capability. International Journal of Sports Medicine 8: 152, 1987

    Google Scholar 

  • Douglas DJ, Hanson PJ. Upper respiratory infections in the conditioned athlete. Medicine and Science in Sports and Exercise 10: 55, 1978

    Google Scholar 

  • Dunér H, Pernow B. Histamine and leukocytes in blood during muscular work in man. Scandinavian Journal of Clinical and Laboratory Investigation 10: 394–396, 1958

    Article  PubMed  Google Scholar 

  • Duvall CP, Perry S. The use of 51-chromium in the study of leukocyte kinetics in chronic myelocytic leukemia. Journal of Laboratory and Clinical Medicine 71: 614–628, 1968

    PubMed  CAS  Google Scholar 

  • Edwards AJ, Bacon TH, Elms CA, Verardi R, Felder M, et al. Changes in the populations of lymphoid cells in human peripheral blood following physical exercise. Clinical and Experimental Immunology 58: 420–427, 1984

    PubMed  CAS  Google Scholar 

  • Edwards HT, Wood WB. A study of leucocytosis in exercise. Arbeitsphysiologie 6: 73–83, 1932

    Google Scholar 

  • Egoroff A, Die Veränderung des Blutbildes während der Muskelarbeit bei Gesunden. Zeitschrift für Klinische Medizin 100: 485–497, 1924

    Google Scholar 

  • Ekelund L-G, Holmgren A. Circulatory and respiratory adaptation during long-term non-steady state exercise in the sitting position. Acta Physiologica Scandinavica 62: 240–255, 1964

    Article  Google Scholar 

  • Eliasson K. Stress and catecholamines. Acta Medica Scandinavica 215: 197–204, 1984

    Article  PubMed  CAS  Google Scholar 

  • Eriksson B, Hedfors E. The effect of adrenaline, insulin and hydrocortisone on human peripheral blood lymphocytes studied by cell surface markers. Scandinavian Journal of Haematology 18: 121–128, 1977

    Article  PubMed  CAS  Google Scholar 

  • Ernström U, Sandberg G. Effects of adrenergic alpha- and beta-receptor stimulation on the release of lymphocytes and granulocytes from the spleen. Scandinavian Journal of Haematology 11:275–286, 1973

    Article  PubMed  Google Scholar 

  • Ernström U, Sandberg G. Adrenaline-induced release of lymphocytes and granulocytes from the spleen. Biomedicine 21: 293–296, 1974

    PubMed  Google Scholar 

  • Eskola J, Ruuskanen O, Soppi E, Viljanen MK, Järvinen M, et al. Effect of sport stress on lymphocyte transformation and antibody formation. Clinical and Experimental Immunology 32: 339–345, 1978

    PubMed  CAS  Google Scholar 

  • Farrell PA, Garthwaite TL, Gustafson AB. Plasma adrenocorticotropin and cortisol responses to submaximal and exhaustive exercise. Journal of Applied Physiology 55: 1441–1444, 1983

    PubMed  CAS  Google Scholar 

  • Farris EJ. The blood picture of athlètes as affected by intercollegiate sports. American Journal of Anatomy 72: 223–257, 1943

    Article  Google Scholar 

  • Fauci AS. Mechanisms of corticosteroid action on lymphocyte subpopulations. II. Differential effects of in vivo hydrocortisone, prednisone and dexamethasone on in vitro expression of lymphocyte function. Clinical Experimental Immunology 24: 54–62, 1976

    CAS  Google Scholar 

  • Fauci AS, Dale DC. The effect of hydrocortisone on the kinetics of normal human leucocytes. Blood 46: 235–243, 1975

    PubMed  CAS  Google Scholar 

  • Fehr J, Grossman H-C. Disparity between circulating and marginated neutrophils: evidence from studies on the granulocyte alkaline phosphatase, a marker of cell maturity. American Journal of Hematology 7: 369–379, 1979

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald GA, Robertson D, Freely J, Wood ASJ. β-Adrenoreceptors are down-regulated by upright posture and dynamic exercise in man. (Abstract.) Clinical Research 29: 564A, 1981

    Google Scholar 

  • Flower RJ. Macrocortin and the antiphospholipase proteins. Advances in Inflammation Research 8: 1–34, 1984

    CAS  Google Scholar 

  • Foster NK, Martyn JB, Rangno RE, Hogg JC, Pardy RL. Leukocytosis of exercise: role of cardiac output and catecholamines. Journal of Applied Physiology 61: 2218–2223, 1986

    PubMed  CAS  Google Scholar 

  • Fraser JN, Robertson D, Wood AJJ. Regulation of human leucocyte beta receptors by endogenous catecholamines: relationship of leucocyte beta receptor density to the cardiac sensitivity to isoproterenol. Journal of Clinical Investigation 67: 1777–1784, 1981

    Article  PubMed  CAS  Google Scholar 

  • Frayn KN, Little RA, Maycock PF, Stoner HB. The relationship of plasma catecholamines to acute metabolic and hormonal responses to injury in man. Circulatory Shock 16: 229–240, 1985

    PubMed  CAS  Google Scholar 

  • French EB, Steel CM, Aitchison WRC. Studies on adrenaline-induced leucocytosis in normal man. II. The effect of α- and β-adrenergic blocking agents. British Journal of Haematology 21: 423–428, 1971

    Article  PubMed  CAS  Google Scholar 

  • Gader AMA, Cash JD. The effect of adrenaline, noradrenaline, isoprenaline and salbutamol on the resting levels of white blood cells in man. Scandinavian Journal of Haematology 14: 5–10, 1975

    Article  PubMed  CAS  Google Scholar 

  • Galbo H. Endocrinology and metabolism in exercise. International Journal of Sports Medicine 2: 203–211, 1981

    Article  Google Scholar 

  • Galbo H. Hormonal and metabolic adaptation to exercise, Thieme and Stratton, New York, 1983

    Google Scholar 

  • Galun E, Burstein R, Assia E, Tur-Kaspa I, Rosenblum J, et al. Changes of white blood cell count during prolonged exercise. International Journal of Sports Medicine 8: 253–255, 1987

    Article  PubMed  CAS  Google Scholar 

  • Garrey WE, Bryan WR. Variations in white blood cell counts. Physiological Reviews 15: 597–638, 1935

    Google Scholar 

  • Gimenez M, Mohan-Kumar T, Humbert JC, De Talance N, Buisine J. Leukocyte, lymphocyte and platelet response to dynamic exercise. Duration or intensity effect? European Journal of Applied Physiology 55: 465–470, 1986

    Article  CAS  Google Scholar 

  • Gimenez M, Mohan-Kumar T, Humbert JC, De Talance N, Teboul M, et al. Training and leucocyte, lymphocyte and platelet response to dynamic exercise. Journal of Sports Medicine 27: 172–177, 1987

    CAS  Google Scholar 

  • Goldberg AF, Lepskaia MV. Les altérations des globules blancs au cours du travail physique et intellectuel. Journal de Physiologie et de Pathologie Générale XXIV: 715–724, 1926

    Google Scholar 

  • Green RL, Kaplan SS, Rabin BS, Stanitski CL, Zdziarski U. Immune function in marathon runners. Annals of Allergy 47: 73–75, 1981

    PubMed  CAS  Google Scholar 

  • Hanson PG, Flaherty DK. Immunological responses to training in conditioned runners. Clinical Science 60: 225–228, 1981

    PubMed  CAS  Google Scholar 

  • Hartmann E, Jokl E. Untersuchungen an Sportsleuten: veränderugen des morphologischen Blutbildes. Arbeitsphysiologie 2: 452–460, 1930

    Google Scholar 

  • Hedfors E, Biberfeld P, Wahren J. Mobilization to the blood of human non-T and K lymphocytes during prolonged exercise. Journal of Clinical and Laboratory Immunology 1: 159–162, 1978

    Google Scholar 

  • Hedfors E, Holm G, Ivansen M, Wahren J. Physiological variation of blood lymphocyte reactivity: T-cell subsets, immunoglobulin production, and mixed lymphocyte reactivity. Clinical Immunology and Immunopharmacology 27: 9–14, 1983

    Article  CAS  Google Scholar 

  • Hedfors E, Holm G, Ohnell B. Variations of blood lymphocytes during work studied by cell surface markers, DNA synthesis and cytotoxicity. Clinical Experimental Immunology 24: 328–335, 1976

    CAS  Google Scholar 

  • Hemler ME. Adhesive protein receptors on haemopoietic cells. Immunology Today 9: 109–113, 1988

    Article  PubMed  CAS  Google Scholar 

  • Hetherington SV, Quie PG. Human polymorphonuclear leukocytes of the bone marrow, circulation and marginated pool: function and granule protein content. American Journal of Hematology 20: 235–246, 1985

    Article  PubMed  CAS  Google Scholar 

  • Hirsen DJ, Malham LM. Effect of exercise on cytotoxic lymphocytes. (Abstract.) Federation Proceedings 42: 438, 1983

    Google Scholar 

  • Hoff F. Klinische Probleme der vegetativen Regulation und der Neuralpathologie. Deutsche Medizinische Wochenschrift 77: 65–69, 112-115, 1952

    Article  PubMed  CAS  Google Scholar 

  • Hyyppa MT, Aunola S, Kunsela V. Psychoendocrine responses to bicycle exercise in healthy men in good physical condition. International Journal of Sports Medicine 7: 89–93, 1986

    Article  PubMed  CAS  Google Scholar 

  • Isaacs R, Gordon B. The effect of exercise on the distribution of corpuscles in the blood stream. American Journal of Physiology 71: 106–111, 1924

    Google Scholar 

  • Jokl E. Blutuntersuchungen an Sportsleuten. Arbeitsphysiologie 4: 379–389, 1931

    Google Scholar 

  • Jokl E. The immunological status of athletes. Journal of Sports Medicine 14: 165–167, 1974

    CAS  Google Scholar 

  • Joyce RA, Boggs DR, Hasiba V, Strodes CH. Marginal neutrophil pool size in normal subjects and neutropenic patients as measured by epinephrine infusion. Journal of Laboratory and Clinical Medicine 88: 614–620, 1976

    PubMed  CAS  Google Scholar 

  • Kanonchoff AD, Cavanaugh DJ, Mehl VL, Bartels RL, Penn GM. Changes in lymphocyte subpopulations during acute exercise. (Abstract.) Medicine and Science in Sport and Exercise 16: 175, 1984

    Google Scholar 

  • Karpova JI, Mokhova EN, Volkov NI. The effect of mitochondrial energetics inhibitors on spontaneous rosette formation of lymphocytes from athletes. Journal of Sports Medicine 27: 165–171, 1987

    CAS  Google Scholar 

  • Karpovich PV. The effect of basketball, wrestling and swimming upon the white blood corpuscles. Research Quarterly 6: 42–48, 1935

    Google Scholar 

  • Keast D, Cameron K, Morton AR. Exercise and the immune response. Sports Medicine 5: 248–267, 1988

    Article  PubMed  CAS  Google Scholar 

  • Kennon BP, Shipp ME, Hetherington DC. A study of the white blood cell picture in six young men. American Journal of Physiology 118: 690–696, 1937

    Google Scholar 

  • Khan MM, Easoni P, Silverman ED, Engelman EG, Melmon KL. β-Adrenergic receptors on human suppressor, helper and cytotoxic lymphocytes. Biochemical Pharmacology 35: 1137–1142, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kindermann W, Schnabel A, Schmitt WM, Biro G, Cassens J, et al. Catecholamines, growth hormone, cortisol, insulin and sex hormones in anaerobic and aerobic exercise. European Journal of Applied Physiology 49: 389–399, 1982

    Article  CAS  Google Scholar 

  • Kraemer RR, Brown BS. Alterations in plasma-volume-corrected blood components of marathon runners and concomitant relationships to performance. European Journal of Applied Physiology 55: 579–584, 1986

    Article  CAS  Google Scholar 

  • Krawietz W, Klein EM, Unterberg C, Ackenheil M. Physical activity decreases the number of β-adrenergic receptors on human lymphocytes. Klinische Wochenschrift 63: 73–78, 1985

    Article  PubMed  CAS  Google Scholar 

  • Landmann RMA, Burgisser E, Wesp M, Buhler FR. β-Adrenergic receptors are different in subpopulations of human circulating lymphocytes. Journal of Receptor Research 4: 37–50, 1984a

    PubMed  CAS  Google Scholar 

  • Landmann RMA, Müller FB, Perini CH, Wesp M, Erne P, et al. Changes of immunoregulatory cells induced by psychological and physical stress: relationship to plasma catecholamines. Clinical and Experimental Immunology 58: 127–135, 1984b

    PubMed  CAS  Google Scholar 

  • Larrabee RC, Tileston W, Emerson WRP. The blood. Boston Medical and Surgical Journal 148: 199–201, 1903

    Article  Google Scholar 

  • Lavender JP, Goldman JM, Arnot RN, Thakur ML. Kinetics of indium-III labelled lymphocytes in normal subjects and patients with Hodgkin’s disease. British Medical Journal 2: 797–799, 1977

    Article  PubMed  CAS  Google Scholar 

  • Lehman M, Kent J, Huber G, Da Prada M. Plasma catecholamines in trained and untrained volunteers during graduated exercise. International Journal of Sports Medicine 2: 143–147, 1981

    Article  Google Scholar 

  • Levi FA, Canon C, Tonitous Y, Sulon J, Mechkouri M, et al. Orcadian rhythms in circulating T lymphocyte subtypes and plasma testosterone, total and free cortisol in five healthy men. Clinical and Experimental Immunology 71: 329–335, 1988

    PubMed  CAS  Google Scholar 

  • Lundberg JM, Hökfelt T. Multiple co-existence of peptides and classical transmitters in peripheral autonomic and sensory neurones — functional and pharmacological implications. Progress in Brain Research 68: 241–261, 1986

    Article  PubMed  CAS  Google Scholar 

  • MacGregor RJ, Macarak E, Kafalides NA. Comparative adherence of granulocytes in endothelial monolayers and nylon fibres. Journal of Clinical Investigation 61: 697–702, 1978

    Article  PubMed  CAS  Google Scholar 

  • Mackinnon LT, Thomasi TB. Immunology of exercise. Annals of Sports Medicine 3: 1–4, 1986

    Article  Google Scholar 

  • Martin BA, Wright JL, Thomassen H, Hogg JC. Effect of pulmonary blood flow on the exchange between the circulating and marginating pool of polymorphonuclear leucocytes in dog lungs. Journal of Clinical Investigation 69: 1277–1285, 1982

    Article  PubMed  CAS  Google Scholar 

  • Martin HE. Physiological leucocytosis: the variation in the leucocyte count during rest and exercise, and after the hypodermic injection of adrenaline. Journal of Physiology 75: 113–129, 1932

    PubMed  CAS  Google Scholar 

  • Masuhara M, Kami K, Umobayasi K, Tatsumi N. Influences of exercise on leucocyte count and size. Journal of Sports Medicine 27: 285–290, 1987

    CAS  Google Scholar 

  • McCarthy DA, Perry JD, Melsom RD, Dale MM. Leucocytosis induced by exercise. British Medical Journal 295: 636, 1987

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D. The molecular control of normal and leukaemic granulocytes and macrophages. Proceedings of the Royal Society London B 230: 389–423, 1987

    Article  CAS  Google Scholar 

  • Meyer MH, Pella G. The effect of hard laboratory exercise on the total and differential leucocyte count of young women. Research Quarterly 18: 271–278, 1947

    PubMed  CAS  Google Scholar 

  • Michael ST. Adaptation to brief stress: blood levels of leucocytes and adrenal function in epilepsy, electrically induced convulsion and after injection of epinephrine: review and interpretation. Journal of Biology Medicine 22: 71–92, 1949

    CAS  Google Scholar 

  • Moorthy AV, Zimmerman SW. Human leucocyte response to an endurance race: human leucocyte response to an endurance race. European Journal of Applied Physiology 38: 271–276, 1978

    Article  CAS  Google Scholar 

  • Motulsky HJ, Insel PA. Adrenergic receptors in man: direct identification, physiologic regulation and clinical alterations. New England Journal of Medicine 307: 18–29, 1982

    Article  PubMed  CAS  Google Scholar 

  • Muir AL, Cruz M, Martin BA. Leukocyte kinetics in the human lung: role of exercise and catecholamines. Journal of Applied Physiology 57: 711–719, 1984

    PubMed  CAS  Google Scholar 

  • Nash HL. Can exercise make us immune to disease? Physician and Sportsmedicine 14: 250–253, 1986

    Google Scholar 

  • Odink J, Van der Beck EJ, Van den Berg H, Bogaards JJP, Thissen JTNM. Effect of work load on free and sulfate-conjugated plasma catecholamines, prolactin and cortisol. International Journal of Sports Medicine 7: 352–357, 1986

    Article  PubMed  CAS  Google Scholar 

  • Patek AJ, Daland GA. The effect of adrenaline injection on the blood of patients with and without spleens. American Journal of Medical Science 190: 14–22, 1935

    Article  CAS  Google Scholar 

  • Perenscenschi G, Zakouth V, Spires Z, Aviram A. Leucocyte mobilisation by epinephrine and hydrocortisone in patients with chronic renal failure. Experientia 3: 1529–1530, 1977

    Article  Google Scholar 

  • Peter HH. Immunsystem und Infektanfälligkeit. Deutsche Zeitschrift für Sportmedicin 11: 348–355, 1986

    Google Scholar 

  • Peters AM, Saverymuttu SH, Bell RN, Lavender JP. Quantification of the distribution of the marginating granulocyte pool in man. Scandinavian Journal of Haematology 34: 111–120, 1985b

    Article  PubMed  CAS  Google Scholar 

  • Peters AM, Saverymuttu SH, Keshavarzian A, Bell RN, Lavender JP. Splenic pooling of granulocytes. Clinical Science 68: 283–289, 1985a

    PubMed  CAS  Google Scholar 

  • Plass R, Kokot K, Schaeffer RM, Teschner M, Gilgi H, et al. Auswirkung von Mittel — und Lang — streckenlauf auf polymorphkernige Leukozyten. Deutsche Zeitschrift für Sportmedicin 38: 168–172, 1987

    Google Scholar 

  • Plaut M. Lymphocyte hormone receptors. Annual Review of Immunology 5: 621–669, 1987

    Article  PubMed  CAS  Google Scholar 

  • Plotsky PM. Facilitation of immunoreactive corticotropin-releasing factor secretion into the hypophyseal-portal circulation after activation or central norepinephrine injection. Endocrinology 121: 924–930, 1987

    Article  PubMed  CAS  Google Scholar 

  • Priest JB, Oei TO, Moorhead WR. Exercise-induced changes in common laboratory tests. American Journal of Clinical Pathology 77: 285–289, 1982

    PubMed  CAS  Google Scholar 

  • Roberts JA. Viral illnesses and sports performance. Sports Medicine 3: 296–303, 1986

    Article  Google Scholar 

  • Robertson AJ, Ramesar KCRB, Potts RC, Gibbs JH, Browning MCK. The effect of strenuous physical exercise on circulating blood lymphocytes in serum cortisol levels. Journal of Clinical and Laboratory Immunology 5: 53–57, 1981

    PubMed  CAS  Google Scholar 

  • Rocker L, Franz IW. Effect of chronic β-adrenergic blockade on exercise-induced leukocytosis. Klinische Wochenschrift 64: 270–273, 1986

    Article  PubMed  CAS  Google Scholar 

  • Rogers C, Goodman C, Mitchell D, Haltingh J. The response of runners to arduous triathlon competition. European Journal of Applied Physiology 55: 405–409, 1986

    Article  CAS  Google Scholar 

  • Rohde CP, Wachholder K. Weisses Blutbild und Muskelarbeit. Arbeitsphysiologie 15: 165–174, 1953

    PubMed  CAS  Google Scholar 

  • Samuels AJ. Primary and secondary leucocyte changes following intramuscular injection of epinephrine hydrochloride. Journal of Clinical Investigation 30: 941–947, 1951

    Article  PubMed  CAS  Google Scholar 

  • Samuels AJ, Hecht HH, Tyler F, Carlisle R. Leucocyte changes following intramuscular injection of adrenaline congeners, with adrenergic blocking agents. American Journal of Medicine 8: 533–534, 1950

    Article  PubMed  CAS  Google Scholar 

  • Saverymuttu SH, Peters AM, Danpure HJ, Reavy HJ, Osman S, et al. Lung transit of 111In-labelled granulocytes: relationship to labelling techniques. Scandinavian Journal of Haematology 30: 151–160, 1983

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer RM, Kokot K, Heidland A, Plass R. Jogger’s leucocytes. New England Journal of Medicine 316: 223–224, 1987

    Google Scholar 

  • Schenk M. 1920. Cited in Garrey WE, Brown WR. Variations in white blood cell counts. Physiological Reviews 15: 597–638, 1935

    Google Scholar 

  • Schneider EC, Havens LC. Changes in the blood after muscular activity and during training. American Journal of Physiology 36: 239–259, 1915

    CAS  Google Scholar 

  • Simon HB. The immunology of exercise: a brief review. Journal of the American Medical Association 252: 2735–2738, 1984

    Article  PubMed  CAS  Google Scholar 

  • Simon HB. Exercise and infection. Physician and Sportsmedicine 15: 135–141, 1987

    Google Scholar 

  • Snow DH, Ricketts SW, Mason DK. Haematological responses to racing and training exercise in thoroughbred horses, with particular reference to the leucocyte response. Equine Veterinary Journal 15: 149–154, 1983

    Article  PubMed  CAS  Google Scholar 

  • Snyder D, Unanue ER. Corticosteroids inhibit murine macrophage: Ia expression and interleukin I production. Journal of Immunology 129: 1803–1807, 1982

    CAS  Google Scholar 

  • Soppi E, Varjo P, Eskola J, Laitinen LA. Effect of strenuous physical stress on circulating lymphocyte number and function before and after training. Journal of Clinical and Laboratory Immunology 8: 43–46, 1982

    PubMed  CAS  Google Scholar 

  • Steel CM, Evans J, Smith MA. Physiological variation in circulating B cell: T cell in man. Nature (London) 247: 387–388, 1974

    Article  CAS  Google Scholar 

  • Steel CM, French EB, Aitchison WRC. Studies on adrenaline-induced leucocytosis in normal man. I. The role of the spleeen and of the thoracic duct. British Journal of Haematology 21: 413–421, 1971

    Article  PubMed  CAS  Google Scholar 

  • Stoner HB, Frayn KN, Barton RN, Threlfall CJ, Little RA. The relationships between plasma substrates and hormones and the severity of injury in 227 recently injured patients. Clinical Science 56: 563–573, 1979

    PubMed  CAS  Google Scholar 

  • Szafarczyk A, Malaval F, Laurent A, Gilbaud R, Assenmacher I. Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology 121: 883–892, 1987

    Article  PubMed  CAS  Google Scholar 

  • Targan S, Britvan L, Dorey F. Activation of human NKCC by moderate exercise: increased frequency of NK cells with enhanced capability of effector-target lytic interactions. Clinical and Experimental Immunology 45: 352–360, 1981

    PubMed  CAS  Google Scholar 

  • Thommasen HV, Martin BA, Wiggs BR, Quiroga M, Baile EM, et al. Effect of pulmonary blood flow on leukocyte uptake and release by dog lung. Journal of Applied Physiology 56: 966–974, 1984

    PubMed  CAS  Google Scholar 

  • Thompson J, Van Furth R. The effect of glucocorticosteroids on the kinetics of mononuclear phagocytes. Journal of Experimental Medicine 131: 429–442, 1970

    Article  PubMed  CAS  Google Scholar 

  • Thomson SP, McMahon LJ, Nugent CA. Endogenous cortisol: a regulator of the number of lymphocytes in peripheral blood. Clinical Immunology and Immunopathology 17: 506–514, 1980

    Article  PubMed  CAS  Google Scholar 

  • Toghill PJ, Pritchard BNC. A study of the action of adrenaline on the splenic red cell pool. Clinical Science 26: 203–212, 1964

    PubMed  CAS  Google Scholar 

  • Tomasi TB, Trudeau FB, Czerwinski D, Erridge S. Immune parameters in athletes before and after strenuous exercise. Journal of Clinical Immunology 2: 173–178, 1982

    Article  PubMed  CAS  Google Scholar 

  • Tuttle WW. The effect of exercises of graded intensity on the leucocyte count. Research Quarterly (Suppl.) 6: 37–45, 1915

    Google Scholar 

  • Uelinger A, Buhlman A. Das Verhalten des Blutvolumens während Kurzfristiger Körperlicher Arbeit. Cardiologia 38: 357–370, 1961

    Article  Google Scholar 

  • Vanhelder WP, Radonski MW, Goode RC, Casey K. Hormonal and metabolic response to three types of exercise of equal duration and external work output. European Journal of Applied Physiology 54: 337–342, 1985

    Article  CAS  Google Scholar 

  • Weber H. A quantitative study of eosinopenia and other stress indices. Journal of Sports Medicine 1: 12–23, 1971

    Google Scholar 

  • Weicker H. Sympathoadrenergic regulation. International Journal of Sports Medicine 7: 16–26, 1986

    Article  PubMed  CAS  Google Scholar 

  • Weiner N. Norepinephrine, epinephrine and the sympathetic amines, In Goodman & Gilman (Eds) The pharmacological basis of therapeutics, pp. 145–180, MacMillan, New York, 1987

    Google Scholar 

  • Wells CL, Stern JR, Hecht LH. Haematological changes following a marathon race in male and female runners. European Journal of Applied Physiology 48: 41–49, 1982

    Article  CAS  Google Scholar 

  • White C, Surg B, Ling TH. The effect of administration of epinephrine on the leucocyte counts of normal subjects. Blood 5: 723–731, 1950

    PubMed  CAS  Google Scholar 

  • Wilkerson JE, Kolka MA, Stephenson LA. Exercise-induced leucocytosis during a competitive marathon. Medicine and Science in Sports and Exercise 11: 99, 1979

    Google Scholar 

  • Williams RS, Eden RS, Moll ME, Lester RM, Wallage AG. Autonomic mechanisms of training bradycardia: β-adrenergic receptors in humans. Journal of Applied Physiology 51: 1232–1237, 1981

    PubMed  CAS  Google Scholar 

  • Yakovlev NN, Viru AA. Adrenergic regulation of adaptation to muscular activity. International Journal of Sports Medicine 6: 255–265, 1985

    Article  PubMed  CAS  Google Scholar 

  • Yu DTY, Clements PJ. Human lymphocyte subpopulations effect of epinephrine. Clinical and Experimental Immunology 25: 472–479, 1976

    PubMed  CAS  Google Scholar 

  • Yu DTY, Clements PJ, Pearson CM. Effects of corticosteroids on exercise-induced lymphocytosis. Clinical and Experimental Immunology 28: 326–331, 1977

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, D.A., Dale, M.M. The Leucocytosis of Exercise. Sports Med 6, 333–363 (1988). https://doi.org/10.2165/00007256-198806060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-198806060-00002

Keywords

Navigation