Skip to main content
Log in

Telithromycin

  • Adis Drug Profile
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

  • ▴ Telithromycin, the first member of the ketolide antibacterials, has good activity against community-acquired respiratory pathogens, including multiple-drug-resistant strains of Streptococcus pneumoniae.

  • ▴ Telithromycin 800mg once daily has been US FDA approved for the treatment of acute bacterial sinusitis (ABS; treatment duration 5 days), acute bacterial exacerbations of chronic bronchitis (AECB; 5 days) and mild-to-moderate community-acquired pneumonia (CAP; 7–10 days).

  • ▴ In patients with CAP, telithromycin was as effective as amoxicillin 1000mg three times daily for 10 days, clarithromycin 500mg twice daily for 10 days or trovafloxacin 200mg once daily for 7–10 days.

  • ▴ In patients with AECB, telithromycin was as effective as a 10-day regimen of amoxicillin/clavulanic acid 500/125mg three times daily, cefuroxime axetil 500mg twice daily or clarithromycin 500mg twice daily.

  • ▴ In patients with ABS, telithromycin was as effective as a 10-day course of amoxicillin/clavulanic acid 500/125mg three times daily or cefuroxime axetil 250mg twice daily.

  • ▴ Telithromycin was generally well tolerated and most adverse events were of mild-to-moderate severity and transitory. The most common adverse events with telithromycin were diarrhoea and nausea (10.8% and 7.9% of 2702 patients in clinical trials); these events occurred in 8.6% and 4.6% of 2139 comparator-treated patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Shain CS, Amsden GW. Telithromycin: the first of the ketolides. Ann Pharmacother 2002 Mar; 36(3): 452–64

    Article  PubMed  CAS  Google Scholar 

  2. Xiong Y-Q, Le TP. Telithromycin (HMR 3647): the first ketolide antibiotic. Drugs Today 2001; 37(9): 617–28

    PubMed  CAS  Google Scholar 

  3. Barman Balfour JA, Figgitt DP. Telithromycin. Drugs 2001; 61(6): 815–29; discussion 830-1

    Article  Google Scholar 

  4. Yassin HM, Dever LL. Telithromycin: a new ketolide antimicrobial for treatment of respiratory tract infections. Expert Opin Investig Drugs 2001 Feb; 10(2): 353–67

    Article  PubMed  CAS  Google Scholar 

  5. Aventis Pharmaceuticals Inc. Ketek™ (telithromycin) tablets: prescribing information [online]. Available from URL: http://www.aventis-us.com/USProducts.jsp [Accessed 2004 Apr 23]

  6. Douthwaite S, Champney WS. Structures of ketolides and macrolides determine their mode of interaction with the ribosomal target site. J Antimicrob Chemother 2001 Sep; 48 Suppl. T1: 1–8

    Article  Google Scholar 

  7. Douthwaite S, Hansen LH, Mauvais P. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA. Mol Microbiol 2000 Apr; 36(1): 183–93

    Article  PubMed  CAS  Google Scholar 

  8. Barry AL, Fuchs PC, Brown SD. Relative potency of telithromycin, azithromycin and erythromycin against recent clinical isolates of gram-positive cocci. Eur J Clin Microbiol Infect Dis 2001 Jul; 20(7): 494–7

    PubMed  CAS  Google Scholar 

  9. Pankuch GA, Visalli MA, Jacobs MR, et al. Susceptibilities of penicillin- and erythromycin-susceptible and -resistant pneumococci to HMR 3647 (RU 66647), a new ketolide, compared with susceptibilities to 17 other agents. Antimicrob Agents Chemother 1998 Mar; 42(3): 624–30

    PubMed  CAS  Google Scholar 

  10. Verhaegen J, Verbist L. In vitro activity of the new ketolide telithromycin and other antibiotics against Streptococcus pneumoniae in Belgium. Acta Clin Belg 2001; 56(6): 349–53

    PubMed  CAS  Google Scholar 

  11. Low DE, de Azavedo J, Weiss K, et al. Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in Canada during 2000. Antimicrob Agents Chemother 2002 May; 46(5): 1295–301

    Article  PubMed  CAS  Google Scholar 

  12. Shortridge VD, Zhong P, Cao Z, et al. Comparison of in vitro activities of ABT-773 and telithromycin against macrolide-susceptible and -resistant streptococci and staphylococci. Antimicrob Agents Chemother 2002 Mar 3; 46: 783–6

    Article  PubMed  CAS  Google Scholar 

  13. Jalava J, Kataja J, Seppälä H, et al. In vitro activities of the novel ketolide telithromycin (HMR 3647) against erythromycin-resistant Streptococcus species. Antimicrob Agents Chemother 2001 Mar; 45: 789–93

    Article  PubMed  CAS  Google Scholar 

  14. Johnson AP, Henwood CJ, Tysall L, et al. Activity of the ketolide telithromycin (HMR-3647) against erythromycin-susceptible and -resistant pneumococci isolated in the UK. Int J Antimicrob Agents 2001 Jul; 18(1): 73–6

    Article  PubMed  CAS  Google Scholar 

  15. Fuchs PC, Barry AL, Brown SD. In vitro activity of telithromycin against Streptococcus pneumoniae resistant to other antibiotics, including cefotaxime. J Antimicrob Chemother 2002 Feb; 49(2): 399–401

    Article  PubMed  CAS  Google Scholar 

  16. Davies TA, Kelly LM, Jacobs MR, et al. Antipneumococcal activity of telithromycin by agar dilution, microdilution, E test, and disk diffusion methodologies. J Clin Microbiol 2000 Apr; 38(4): 1444–8

    PubMed  CAS  Google Scholar 

  17. Weiss K, Guilbault C, Cortes L, et al. Genotypic characterization of macrolide-resistant strains of Streptococcus pneumoniae isolated in Quebec, Canada, and in vitro activity of ABT-773 and telithromycin. J Antimicrob Chemother 2002 Sep; 50: 403–6

    Article  PubMed  CAS  Google Scholar 

  18. Küçükbasmaci Ö, Gönüllü N, Aktaş Z, et al. itIn vitro activity of telithromycin compared with macrolides and fluoroquinolones against Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis. Int J Antimicrob Agents 2003 Nov; 22(5): 497–501

    Article  PubMed  Google Scholar 

  19. Goldstein EJC, Citron DM, Merriam CV, et al. In vitro activities of telithromycin and 10 oral agents against aerobic and anaerobic pathogens isolated from antral puncture specimens from patients with sinusitis. Antimicrob Agents Chemother 2003 Jun; 47(6): 1963–7

    Article  PubMed  CAS  Google Scholar 

  20. Buxbaum A, Forsthuber S, Graninger W, et al. Comparative activity of telithromycin against typical community-acquired respiratory pathogens. J Antimicrob Chemother 2003 Sep; 52(3): 371–4

    Article  PubMed  CAS  Google Scholar 

  21. Felmingham D, Reinert RR, Hirakata Y, et al. Increasing prevalence of antimicrobial resistance among isolates of Streptococcus pneumoniae from the PROTEKT surveillance study, and comparative in vitro activity of the ketolide, telithromycin. J Antimicrob Chemother 2002 Sep; 50 Suppl. S1: 25–37

    Article  Google Scholar 

  22. Hoban DJ, Wierzbowski AK, Nichol K, et al. Macrolide-resistant Streptococcus pneumoniae in Canada during 1998–1999: prevalence of mef(A) and erm(B) and susceptibilities to ketolides. Antimicrob Agents Chemother 2001; 45(7): 2147–50

    Article  PubMed  CAS  Google Scholar 

  23. Schmitz FJ, Schwarz S, Milatovic D, et al. In vitro activities of the ketolides ABT-773 and telithromycin and of three macrolides against genetically characterized isolates of Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenzae and Morazella catarrhalis. J Antimicrob Chemother 2002 Jul; 50: 145–8

    Article  PubMed  CAS  Google Scholar 

  24. Morosini M-I, Cantón R, Loza E, et al. In vitro activity of telithromycin against Spanish Streptococcus pneumoniae isolates with characterized macrolide resistance mechanisms. Antimicrob Agents Chemother 2001 Sep; 45: 2427–31

    Article  PubMed  CAS  Google Scholar 

  25. Nagai K, Appelbaum PC, Davies TA, et al. Susceptibilities to telithromycin and six other agents and prevalence of macrolide resistance due to L4 ribosomal protein mutation among 992 Pneumococci from 10 central and Eastern European countries. Antimicrob Agents Chemother 2002 Feb; 46(2): 371–7

    Article  PubMed  CAS  Google Scholar 

  26. Hoban DJ, Zhanel GG, Karlowsky JA. In vitro activity of the novel ketolide HMR 3647 and comparative oral antibiotics against Canadian respiratory tract isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Diagn Microbiol Infect Dis 1999 Sep; 35(1): 37–44

    Article  PubMed  CAS  Google Scholar 

  27. Doern GV, Brown SD. Antimicrobial susceptibility among community-acquired respiratory tract pathogens in the USA: data from PROTEKT US 2000–01. J Infect 2004 Jan; 48(1): 56–65

    Article  PubMed  Google Scholar 

  28. Nicolau DP, Jenkins SG. Resistance phenotypes and multi-drug resistance among isolates of Streptococcus pneumoniae from the US during PROTEKT US Year 2 (2001–2002) [poster no. 203]. 41st Annual Meeting of the Infectious Diseases Society of America; 2003 Oct 9–12; San Diego

  29. Barry AL, Fuchs PC, Brown SD. In vitro activities of the ketolide HMR 3647 against recent gram-positive clinical isolates and Haemophilus influenzae. Antimicrob Agents Chemother 1998 Aug; 42(8): 2138–40

    PubMed  CAS  Google Scholar 

  30. Jones RN, Biedenbach DJ. Antimicrobial activity of RU-66647, a new ketolide. Diagn Microbiol Infect Dis 1997; 27(1–2): 7–12

    Article  PubMed  CAS  Google Scholar 

  31. Boswell FJ, Andrews JM, Ashby JP, et al. The in-vitro activity of HMR 3647, a new ketolide antimicrobial agent. J Antimicrob Chemother 1998 Dec; 42(6): 703–9

    Article  PubMed  CAS  Google Scholar 

  32. Biedenbach DJ, Barrett MS, Jones RN. Comparative antimicrobial activity and kill-curve investigations of novel ketolide antimicrobial agents (HMR 3004 and HMR 3647) tested against Haemophilus influenzae and Moraxella catarrhalis strains. Diagn Microbiol Infect Dis 1998 Jun; 31(2): 349–53

    Article  PubMed  CAS  Google Scholar 

  33. Rospide MF, Biedenbach DJ, Jones RN. Comparative antimicrobial activity of ABT-773, a novel ketolide, tested against drug-resistant Gram-positive cocci and Haemophilus influenzae. Int J Antimicrob Agents 2001 Jun; 17: 451–5

    Article  PubMed  CAS  Google Scholar 

  34. Wootton M, Bowker KE, Janowska A, et al. In-vitro activity of HMR 3647 against Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and β-haemolytic streptococci. J Antimicrob Chemother 1999 Oct; 44(4): 445–53

    Article  PubMed  CAS  Google Scholar 

  35. Piper KE, Rouse MS, Steckelberg JM, et al. Ketolide treatment of Haemophilus influenzae experimental pneumonia. Antimicrob Agents Chemother 1999 Mar; 43(3): 708–10

    PubMed  CAS  Google Scholar 

  36. Khair OA, Andrews JM, Honeybourne D, et al. Lung concentrations of telithromycin after oral dosing. J Antimicrob Chemother 2001 Jun; 47(6): 837–40

    Article  PubMed  CAS  Google Scholar 

  37. Kenny GE, Cartwright FD. Susceptibilities of Mycoplasma hominis, M. pneumoniae, and Ureaplasma urealyticum to GAR-936, dalfopristin, dirithromycin, evernimicin, gatifloxacin, linezolid, moxifloxacin, quinupristin-dalfopristin, and telithromycin compared to their susceptibilities to reference macrolides, tetracyclines, and quinolones. Antimicrob Agents Chemother 2001 Sep; 45: 2604–8

    Article  PubMed  CAS  Google Scholar 

  38. Bebear CM, Renaudin H, Bryskier A, et al. Comparative activities of telithromycin (HMR 3647), levofloxacin, and other antimicrobial agents against human mycoplasmas. Antimicrob Agents Chemother 2000 Jul; 44(7): 1980–2

    Article  PubMed  CAS  Google Scholar 

  39. Yamaguchi T, Hirakata Y, Izumikawa K, et al. In vitro activity of telithromycin (HMR3647), a new ketolide, against clinical isolates of Mycoplasma pneumoniae in Japan. Antimicrob Agents Chemother 2000 May; 44(5): 1381–2

    Article  PubMed  CAS  Google Scholar 

  40. Miyashita N, Fukano H, Niki Y, et al. In vitro activity of telithromycin, a new ketolide, against Chlamydia pneumoniae. J Antimicrob Chemother 2001; 48: 403–5

    Article  PubMed  CAS  Google Scholar 

  41. Roblin PM, Hammerschlag MR. In vitro activity of a new ketolide antibiotic, HMR 3647, against Chlamydia pneumoniae. Antimicrob Agents Chemother 1998 Jun; 42(6): 1515–6

    PubMed  CAS  Google Scholar 

  42. Odenholt I, Löwdin E, Cars O. Pharmacodynamics of telithromycin in vitro against respiratory tract pathogens. Antimicrob Agents Chemother 2001 Jan; 45(1): 23–9

    Article  PubMed  CAS  Google Scholar 

  43. Boswell FJ, Andrews JM, Wise R. Pharmacodynamic properties of HMR 3647, a novel ketolide, on respiratory pathogens, enterococci and Bacteroides fragilis demonstrated by studies of time-kill kinetics and postantibiotic effect. J Antimicrob Chemother 1998 Feb; 41(2): 149–53

    Article  PubMed  CAS  Google Scholar 

  44. Munckhof WJ, Borlace G, Turnidge JD. Postantibiotic suppression of growth of erythromycin A-susceptible and -resistant gram-positive bacteria by the ketolides telithromycin (HMR 3647) and HMR 3004. Antimicrob Agents Chemother 2000 Jun; 44(6): 1749–53

    Article  PubMed  CAS  Google Scholar 

  45. Dubois J, St-Pierre C. Postantibiotic effect (PAE) and bactericidal activity of HMR 3647 and other antimicrobial agents against respiratory pathogens [abstract no. 1242]. 39th Inter-science Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco, 257

  46. Zhanel GG, Walters M, Noreddin A, et al. The ketolides: a critical review. Drugs 2002; 62(12): 1771–804

    Article  PubMed  CAS  Google Scholar 

  47. Bonnefoy A, Girard AM, Agouridas C, et al. Ketolides lack inducibility properties of MLSb resistance phenotype. J Antimicrob Chemother 1997 Jul; 40(1): 85–90

    Article  PubMed  CAS  Google Scholar 

  48. Ubukata K, Iwata S, Sunakawa K. In vitro activities of new ketolide, telithromycin, and eight other macrolide antibiotics against Streptococcus pneumoniae having mefA and ermB genes that mediate macrolide resistance. J Infect Chemother 2003 Sep; 9(3): 221–6

    Article  PubMed  CAS  Google Scholar 

  49. Farrell DJ, Felmingham D. Activities of telithromycin against 13,874 Streptococcus pneumoniae isolates collected between 1999 and 2003. Antimicrob Agents Chemother 2004 May; 48(5): 1882–4

    Article  PubMed  CAS  Google Scholar 

  50. Farrell DJ, Jenkins SG. Distribution across the USA of macrolide resistance and macrolide resistance mechanisms among Streptococcus pneumoniae isolates collected from patients with respiratory tract infections: PROTEKT US 2001–2002. J Antimicrob Chemother. In press

  51. Davies TA, Dewasse BE, Jacobs MR, et al. In vitro development of resistance to telithromycin (HMR 3647), four macrolides, clindamycin, and pristinamycin in Streptococcus pneumoniae. Antimicrob Agents Chemother 2000 Feb; 44(2): 414–7

    Article  PubMed  CAS  Google Scholar 

  52. Denis A, Bretin F, Fromentin C, et al. β-keto-ester chemistry and ketolides: synthesis and antibacterial activity of 2-halogeno, 2-methyl and 2,3 enol-ether ketolides. Bioorg Med Chem Lett 2000 Sep; 10(17): 2019–22

    Article  PubMed  CAS  Google Scholar 

  53. Perret C, Lenfant B, Weinling E, et al. Pharmacokinetics and absolute oral bioavailability of an 800-mg oral dose of telithromycin in healthy young and elderly volunteers. Chemotherapy 2002; 48: 217–23

    Article  PubMed  CAS  Google Scholar 

  54. Bhargava V, Lenfant B, Perret C, et al. Lack of effect of food on the bioavailability of a new ketolide antibacterial, telithromycin. Scand J Infect Dis 2002; 34: 823–6

    Article  PubMed  CAS  Google Scholar 

  55. Lippert C, Leese PT, Sultan E. Effect of gastric pH on the bioavailability of telithromycin (HMR 3647) [abstract no. P1269]. Clin Microbiol Infect 2001; 7 Suppl. 1: 267

    Google Scholar 

  56. Namour F, Wessels DH, Pascual MH, et al. Pharmacokinetics of the new ketolide telithromycin (HMR 3647) administered in ascending single and multiple doses. Antimicrob Agents Chemother 2001 Jan; 45(1): 170–5

    Article  PubMed  CAS  Google Scholar 

  57. Kadota J-I, Ishimatsu Y, Iwashita T, et al. Intrapulmonary pharmacokinetics of telithromycin, a new ketolide, in healthy Japanese volunteers. Antimicrob Agents Chemother 2002 Mar 3; 46(3): 917–21

    Article  Google Scholar 

  58. Muller-Serieys C, Soler P, Cantalloube C, et al. Bronchopulmonary disposition of the ketolide telithromycin (HMR 3647). Antimicrob Agents Chemother 2001 Nov; 45(11): 3104–8

    Article  PubMed  CAS  Google Scholar 

  59. Muller-Serieys C, Andrews J, Vacheron F, et al. Tissue kinetics of telithromycin, the first ketolide antibacterial. J Antimicrob Chemother 2004 Feb; 53(2): 149–57

    Article  PubMed  CAS  Google Scholar 

  60. Miyamoto N, Murakami S, Yajin K, et al. Pharmacokinetic and clinical studies of a new ketolide antimicrobial, telithromycin (HMR 3647) in otorhinolaryngology [abstract no. 2144 plus poster]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17–20; Toronto, 32

  61. Namour F, Sultan E, Pascual MH, et al. Penetration of telithromycin (HMR 3647), a new ketolide antimicrobial, into inflammatory blister fluid following oral administration. J Antimicrob Chemother 2002 Jun; 49: 1035–8

    Article  PubMed  CAS  Google Scholar 

  62. Gia HP, Roeder V, Namour F, et al. HMR 3647 achieves high and sustained concentrations in white blood cells in man [abstract no. P79]. J Antimicrob Chemother 1999; 44 Suppl. A: 57–8

    Article  Google Scholar 

  63. Miossec-Bartoli C, Pilatre L, Peyron P, et al. The new ketolide HMR3647 accumulates in the azurophil granules of human polymorphonuclear cells. Antimicrob Agents Chemother 1999 Oct; 43(10): 2457–62

    PubMed  CAS  Google Scholar 

  64. Mandell GL, Coleman E. Uptake, transport, and delivery of antimicrobial agents by human polymorphonuclear neutrophils. Antimicrob Agents Chemother 2001 Jun; 45(6): 1794–8

    Article  PubMed  CAS  Google Scholar 

  65. Data on file, Aventis Pharma, 2003

  66. Sultan E, Lenfant B, Wable C, et al. Pharmacokinetic profile of HMR 3647 800 mg once-daily in elderly volunteers [abstract no. P66]. J Antimicrob Chemother 1999; 44 Suppl. A: 54

    Google Scholar 

  67. Cantalloube C, Bhargava V, Sultan E, et al. Pharmacokinetics of the ketolide telithromycin after single and repeated doses in patients with hepatic impairment. Int J Antimicrob Agents 2003 Aug; 22(2): 112–21

    Article  PubMed  CAS  Google Scholar 

  68. Shi J, Montay G, Chapel S, et al. Pharmacokinetics and safety of the ketolide telithromycin in patients with renal impairment. J Clin Pharmacol 2004; 44: 234–44

    Article  PubMed  CAS  Google Scholar 

  69. Montay G, Shi J, Leroy B, et al. Effects of telithromycin on the pharmacokinetics of digoxin in healthy men [abstract no. A-1834]. 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy; 2002 Sep 27–30; San Diego, 28

  70. Scholtz HE, Sultan E, Wessels D, et al. HMR 3647, a new ketolide antimicrobial, does not affect the reliability of low-dose, triphasic oral contraceptives [abstract no. 10]. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco, 3

  71. Lippert C, Leese PT, Sultan E. Telithromycin (HMR 3647) does not interact with the CYP2D6 substrate paroxetine [abstract no. P1268]. Clin Microbiol Infect 2001; 7 Suppl. 1: 267

    Google Scholar 

  72. Shi J, Montay G, Leroy B, et al. Effects of ketoconazole and itraconazole on the pharmacokinetics of telithromycin, a new ketolide antibiotic [abstract no. A-1833]. 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy; 2002 Sep 27–30; San Diego, 28

  73. Hagberg L, Torres A, van Rensburg D, et al. Efficacy and tolerability of once-daily telithromycin compared with high-dose amoxicillin for treatment of community-acquired pneumonia. Infection 2002 Dec; 30(6): 378–86

    Article  PubMed  CAS  Google Scholar 

  74. Dunbar LM, Hassman J, Tellier G. Efficacy and tolerability of once-daily oral teilthromycin compared with clarithromycin for the treatment of community-acquired pneumonia in adults. Clin Ther 2004; 26(1): 48–62

    Article  CAS  Google Scholar 

  75. Tellier G, Isakov T, Petermann W, et al. Efficacy and safety of telithromycin (800 mg once daily) for 5 or 7 days vs clarithromycin (500 mg twice daily) for 10 days in the treatmentof patients with community-acquired pneumonia [abstract no. L-373 plus poster]. 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy; 2002 Sep 27–30; San Diego, 346

  76. Pullman J, Champlin J, Vrooman PS. Efficacy and tolerability of once-daily oral therapy with telithromycin compared with trovafloxacin for the treatment of community-acquired pneumonia in adults. Int J Clin Pract 2003 Jun; 57(5): 377–84

    PubMed  CAS  Google Scholar 

  77. van Rensburg DJ, Matthews PA, Bruno L. Efficacy and safety of telithromycin in community-acquired pneumonia. Curr Med Res Opin 2002; 18(7): 397–400

    Article  PubMed  Google Scholar 

  78. Fogarty C, Patel TC, Galbraith H, et al. Efficacy of the first ketolide antibacterial, telithromycin, in the treatment of community-acquired pneumonia caused by Streptococcus pneumoniae [abstract no. L-857]. 41st Interscience Conference on Antimicrobial Agents and Chemotherapy; 2001 Sep 22–25; Chicago, 449

  79. Carbon C, Moola S, Velancsics I, et al. Telithromycin 800 mg once daily for seven to ten days is an effective and well-tolerated treatment for community-acquired pneumonia. Clin Microbiol Infect 2003 Jul; 9(7): 691–703

    Article  PubMed  CAS  Google Scholar 

  80. Aubier M, Aldons PM, Leak A, et al. Telithromycin is as effective as amoxicillin/clavulanate in acute exacerbations of chronic bronchitis. Respir Med 2002 Nov; 96(11): 862–71

    Article  PubMed  CAS  Google Scholar 

  81. Zervos MJ, Heyder AM, Leroy B. Oral telithromycin 800 mg once daily for 5 days versus cefuroxime axetil 500 mg twice daily for 10 days in adults with acute exacerbations of chronic bronchitis. J Int Med Res 2003; 31: 157–69

    PubMed  CAS  Google Scholar 

  82. Mandell L, Chang J, Oster G, et al. Comparisons of healthcare utilization in patients with acute exacerbations of chronic bronchitis (AECB) receiving telithromycin (TEL) versus clarithromycin (CLA) in a randomized, double-blind, multicenter clinical trial [abstract no. L-1595 plus poster]. 43rd Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 2003 Sep 14–17; Chicago, 428

  83. Roos K, Brunswig-Pitschner C, Kostrica R, et al. Efficacy and tolerability of once-daily therapy with telithromycin for 5 or 10 days for the treatment of acute maxillary sinusitis. Chemotherapy 2002 May; 48(2): 100–8

    Article  PubMed  CAS  Google Scholar 

  84. Luterman M, Tellier G, Lasko B, et al. Efficacy and tolerability of telithromycin for 5 or 10 days vs amoxicillin/clavulanic acid for 10 days in acute maxillary sinusitis. Ear Nose Throat J 2003 Aug; 82(8): 576–80, 82–4, 586 passim

    PubMed  Google Scholar 

  85. Buchanan PP, Stephens TA, Leroy B. A comparison of the efficacy of telithromycin versus cefuroxime axetil in the treatment of acute bacterial maxillary sinusitis. Am J Rhinol 2003; 17(6): 369–77

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keri Wellington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wellington, K., Noble, S. Telithromycin. Drugs 64, 1683–1694 (2004). https://doi.org/10.2165/00003495-200464150-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200464150-00006

Keywords

Navigation