Skip to main content
Log in

Clinical Use of Ceftriaxone

A Pharmacokinetic-Pharmacodynamic Perspective on the Impact of Minimum Inhibitory Concentration and Serum Protein Binding

  • Review Articles
  • Pharmacokinetic-Pharmacodynamic Relationships
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Ceftriaxone is a third-generation cephalosporin that is used for a variety of infections such as meningitis, gonorrhoea and community-acquired pneumonia. The most important aspects of its pharmacokinetics include a long half-life, excellent tissue penetration and saturable (dose-dependent) serum protein binding of the drug. Apharmacodynamic analysis [total area under the concentration-time curve (AUC)/minimum inhibitory concentration (MIC)] was performed in several populations (healthy volunteers, children, the elderly, and patients with renal and hepatic impairment) against various bacterial species (Streptococcus pneumoniae, the Enterobacteriacieae, methicillin-susceptible Staphylococcus aureus, and Pseudomonas aeruginosa). AUC/MIC [area under the inhibitory time curve (AUIC)] was chosen as the pharmacodynamic parameter for this analysis since ceftriaxone is a time-dependent killer and high peak concentrations are not needed. In addition, there is a significant correlation between AUIC, time when concentration exceeds the MIC (t > MIC) and time to eradication. Total and free AUICs (assuming a free fraction = 10%) were calculated since it is highly protein bound. It was postulated that a free AUIC of at least 125 would be required to achieve efficacy. From our analysis of these various populations, we were able to conclude that the free AUIC values support the use of 1g daily in infections where MIC values are below 2 mg/L. In addition, consistent with its reported good activity against CSF organisms with MICs ≤1.0 mg/L and marginal activity against organisms with MICs ≥2.0 mg/L, we also recommend the target free AUIC values of at least 125 for patients with severe infections such as meningitis. Patients with mild infections may recover with values below 125 but they may remain at risk of the development of resistant organisms. Furthermore, it is essential to further validate these findings in patients who have received treatment, calculate AUICs and correlate these parameters with both clinical and microbiological outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rocephin (ceftriaxone sodium) product information. Nutley (NJ): Roche Laboratories Inc., 2000. Available from: URL: http://www.rocheusa.com/products/rocephin/pi.html [Acessed 2001 Aug 1]

  2. Brogden RN, Ward A. Ceftriaxone: a reappraisal of its antibacterial activity and pharmacokinetic properties, and an update on its therapeutic use with particular reference to once-daily administration. Drugs 1988; 35(6): 604–45

    Article  PubMed  CAS  Google Scholar 

  3. Yuk JH, Nightingale CH, Quintiliani R. Clinical pharmaco-kinetics of ceftriaxone. Clin Pharmacokinet 1989; 17(4): 223–35

    Article  PubMed  CAS  Google Scholar 

  4. Thornsberry C, Burton PH, Vanderhoof BH. Activity of penicillin and three third-generation cephalosporins against US isolates of Streptococcus pneumoniae: a 1995 surveillance study. Diagn Microbiol Infect Dis 1996; 25(2): 89–95

    Article  PubMed  CAS  Google Scholar 

  5. Scully BE, Fu KP, Neu HC. Pharmacokinetics of ceftriaxone after intravenous infusion and intramuscular injection. Am J Med 1984; 77(4C): 112–6

    PubMed  CAS  Google Scholar 

  6. Blumer J. Pharmacokinetics of ceftriaxone [discussion 52-4]. Hosp Pract (Off Ed) 1991; 26 Suppl. 5: 7–13

    Google Scholar 

  7. Patel IH, Chen S, Parsonnet M, et al. Pharmacokinetics of ceftriaxone in humans. Antimicrob Agents Chemother 1981; 20(5): 634–41

    Article  PubMed  CAS  Google Scholar 

  8. Stoeckel K. Pharmacokinetics of Rocephin, a highly active new cephalosporin with an exceptionally long biological half-life. Chemotherapy 1981; 27 Suppl. 1: 42–6

    Article  PubMed  CAS  Google Scholar 

  9. Van der Auwera P, Klastersky J. Study of the influence of protein binding on serum bactericidal titres and killing rates in volunteers receiving ceftazidime, cefotaxime and ceftriaxone. J Hosp Infect 1990; 15 Suppl. A: 23–34

    PubMed  Google Scholar 

  10. Leggett JE, Craig WA. Enhancing effect of serum ultrafiltrate on the activity of cephalosporins against gram-negative bacilli. Antimicrob Agents Chemother 1989; 33(1): 35–40

    Article  PubMed  CAS  Google Scholar 

  11. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men [quiz 11-2]. Clin Infect Dis 1998; 26(1): 1–10

    Article  PubMed  CAS  Google Scholar 

  12. Schentag JJ, Strenkoski-Nix LC, Nix DE, et al. Pharmacodynamic interactions of antibiotics alone and in combination. Clin Infect Dis 1998; 27(1): 40–6

    Article  PubMed  CAS  Google Scholar 

  13. Schentag JJ, Swanson DJ, Smith IL. Dual individualization: antibiotic dosage calculation from the integration of in-vitro pharmacodynamics and in-vivo pharmacokinetics. J Antimicrob Chemother 1985; 15 Suppl. A: 47–57

    Article  PubMed  CAS  Google Scholar 

  14. Hyatt JM, McKinnon PS, Zimmer GS, et al. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome: focus on antibacterial agents. Clin Pharmacokinet 1995; 28(2): 143–60

    Article  PubMed  CAS  Google Scholar 

  15. Highet VS, Forrest A, Ballow CH, et al. Antibiotic dosing issues in lower respiratory tract infection: population-derived area under inhibitory curve is predictive of efficacy. J Antimicrob Chemother 1999; 43 Suppl. A: 55–63

    Article  PubMed  CAS  Google Scholar 

  16. Craig WA. Choosing an antibiotic on the basis of pharmacodynamics [discussion 11-2]. Ear Nose Throat J 1998; 77 (6 Suppl.): 7–11

    PubMed  CAS  Google Scholar 

  17. Pollock AA, Tee PE, Patel IH, et al. Pharmacokinetic characteristics of intravenous ceftriaxone in normal adults. Anti-microb Agents Chemother 1982; 22(5): 816–23

    Article  CAS  Google Scholar 

  18. Holazo AA, Patel IH, Weinfeld RE, et al. Ceftriaxone pharma-cokinetics following multiple intramuscular dosing. Eur J Clin Pharmacol 1986; 30(1): 109–12

    Article  PubMed  CAS  Google Scholar 

  19. Patel IH, Kaplan SA. Pharmacokinetic profile of ceftriaxone in man. Am J Med 1984; 77(4C): 17–25

    PubMed  CAS  Google Scholar 

  20. Fraschini F, Braga PC, Scarpazza G, et al. Human pharmacoki-netics and distribution in various tissues of ceftriaxone. Chemotherapy 1986; 32(3): 192–9

    Article  PubMed  CAS  Google Scholar 

  21. Patel IH, Miller K, Weinfeld R, et al. Multiple intravenous dose pharmacokinetics of ceftriaxone in man. Chemotherapy 1981; 27 Suppl. 1: 47–56

    Article  PubMed  CAS  Google Scholar 

  22. Schaad UB, Stoeckel K. Single-dose pharmacokinetics of ceftriaxone in infants and young children. Antimicrob Agents Chemother 1982; 21(2): 248–53

    Article  PubMed  CAS  Google Scholar 

  23. Luderer JR, Patel IH, Durkin J, et al. Age and ceftriaxone kinetics. Clin Pharmacol Ther 1984; 35(1): 19–25

    Article  PubMed  CAS  Google Scholar 

  24. Patel IH, Sugihara JG, Weinfeld RE, et al. Ceftriaxone pharmacokinetics in patients with various degrees of renal impairment. Antimicrob Agents Chemother 1984; 25(4): 438–42

    Article  PubMed  CAS  Google Scholar 

  25. Stoeckel K, Koup JR. Pharmacokinetics of ceftriaxone in patients with renal and liver insufficiency and correlations with a physiologic nonlinear protein binding model. Am J Med 1984; 77(4C): 26–32

    PubMed  CAS  Google Scholar 

  26. Schentag JJ, Nix DE, Adelman MH. Mathematical examination of dual individualization principles (I): relationships between AUC above MIC and area under the inhibitory curve for cefmenoxime, ciprofloxacin, and tobramycin. DICP 1991; 25(10): 1050–7

    PubMed  CAS  Google Scholar 

  27. Schentag JJ, Nix DE, Forrest A, et al. AUIC: the universal parameter within the constraint of a reasonable dosing interval [editorial; comment]. Ann Pharmacother 1996; 30(9): 1029–31

    PubMed  CAS  Google Scholar 

  28. Reitberg DP, Cumbo TJ, Smith IL, et al. Effect of protein binding on cefmenoxime steady-state kinetics in critical patients. Clin Pharmacol Ther 1984; 35(1): 64–73

    Article  PubMed  CAS  Google Scholar 

  29. Thomas JK, Forrest A, Bhavnani SM, et al. Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Anti-microb Agents Chemother 1998; 42(3): 521–7

    CAS  Google Scholar 

  30. Hayton WL, Stoeckel K. Age-associated changes in ceftriaxone pharmacokinetics. Clin Pharmacokinet 1986; 11(1): 76–86

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, T.R., Schentag, J.J. Clinical Use of Ceftriaxone. Clin Pharmacokinet 40, 685–694 (2001). https://doi.org/10.2165/00003088-200140090-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200140090-00004

Keywords

Navigation