Skip to main content
Log in

Clinical Pharmacokinetics of Mibefradil

  • Review Articles
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Mibefradil, a tetralol derivative, is a new long-acting calcium antagonist used for the treatment of patients with hypertension and chronic stable angina pectoris. The drug is virtually completely metabolised, with less than 3% of an oral dose excreted unchanged in urine. Its metabolism occurs via parallel pathways, which fall into 2 broad categories: esterase-catalysed hydrolysis (producing the major plasma metabolite) and cytochrome P450 (CYP) 3A4-mediated oxidation.

Plasma protein binding is greater than 99.5%, predominantly to α1-acid glycoprotein. Oral multiple dose administration of mibefradil 50 or 100mg once daily is associated with inhibition of the CYP3A4 pathway of metabolism, increasing the half-life and bioavailability of the parent compound. The intensity of the inhibition of CYP similarly results in numerous clinically relevant drug interactions which ultimately motivated the voluntary withdrawal of mibefradil from the market.

With multiple oral doses of 50 to 100mg once daily, the time to maximum plasma concentration was approximately 2.4 hours, absolute bioavailability was around 80%, clearance was 5.7 to 7.5 L/h, oral terminal exponential volume of distribution was 180L, and terminal exponential half-life was 22 hours (ranging between 17 and 25 hours). A NONMEM sparse data analysis indicated that apparent clearance is not affected by race, gender, age or bodyweight. Renal function does not affect the pharmacokinetics of mibefradil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishra S, Hermsmeyer K. Selective inhibition of T-type Ca2+ channels by Ro 40-5967. Circ Res 1994; 75: 144–8.

    Article  PubMed  CAS  Google Scholar 

  2. Osterrieder W, Hoick M. In vitro pharmacologic profile of Ro 40-5967, a novel Ca2+ channel blocker with potent vasodilator but weak inotropic action. J Cardiovasc Pharmacol 1989; 13: 754–9.

    PubMed  CAS  Google Scholar 

  3. Clozel J-P. Pharmacology of the new calcium antagonist mibefradil. J Cardiovasc Pharmacol 1996; 27 Suppl. A: S17–21.

    Google Scholar 

  4. Zhou Z, Lipsius S. T-type calcium current in latent pacemaker cells isolated from cat right atrium. J Mol Cell Cardiol 1994; 26: 1211–9.

    Article  PubMed  CAS  Google Scholar 

  5. van der Vring J, Bernink P, van der Wall E, et al. Evaluating the safety of mibefradil, a selective T-type calcium antagonist, in patients with chronic congestive heart failure. ClinTher 1996; 18: 1191–206.

    Google Scholar 

  6. Rousseau M, Hayashida W, van Eyll C, et al. Hemodynamic and cardiac effects of the selective T-type and L-type calcium channel blocker, mibefradil, in patients with varying degrees of left ventricular systolic dysfunction. J Am Coll Cardiol 1996; 28: 972–9.

    Article  PubMed  CAS  Google Scholar 

  7. Rosenquist M, Brembilla-Perrot B, Meinertz T, et al. The acute effects of intravenously administered mibefradil on the electrophysiologic characteristics of the human heart. Eur J Clin Pharmacol 1997; 52: 7–12.

    Article  PubMed  CAS  Google Scholar 

  8. Skerjanec A, Tarn Y. High-performance liquid chromatographic analysis of mibefradil in dog plasma and urine. J Chromatogr 1995; 669: 377–82.

    Article  CAS  Google Scholar 

  9. Welker HA. Single and multiple dose mibefradil pharmacokinetics in normal and hypertensive subjects. J Pharm Pharmacol 1998; 50: 983–7.

    Article  PubMed  CAS  Google Scholar 

  10. Data on file, F. Hoffmann-LaRoche Ltd.

  11. Lam F, Hung C, Perrier D. Estimation of variance for harmonic mean half-lives. J Pharm Sci 1985; 74: 229–31.

    Article  PubMed  CAS  Google Scholar 

  12. Rowland M. Influence of route of administration on drug availability. J Pharm Sci 1972; 61: 70–4.

    Article  PubMed  CAS  Google Scholar 

  13. Snyder W, Cook M, Nasset E, et al. Report of the Task Group on Reference Man. Oxford: Pergamon Press, 1975.

    Google Scholar 

  14. Greenway C, Stark R. Hepatic vascular bed. Physiol Rev 1971; 51: 23–65.

    PubMed  CAS  Google Scholar 

  15. Wilkinson G, Shand D. A physiological approach to hepatic drug clearance. Clin Pharmacol Ther 1975; 18: 377–90.

    PubMed  CAS  Google Scholar 

  16. Wilkinson G. Clearance approaches in pharmacology. Pharmacol Rev 1987; 39: 1–47.

    PubMed  CAS  Google Scholar 

  17. Wagner J. Method of estimating relative absorption of a drug in a series of clinical studies in which blood levels are measured after single and/or multiple doses. J Pharm Sci 1967; 56: 652–3.

    Article  PubMed  CAS  Google Scholar 

  18. Salvia A. Introduction to statistics. Philadelphia: Saunders College Publishing, 1990.

    Google Scholar 

  19. Welker HA, Weidekamm E, Houwing N, et al. Pharmacokinetics and pharmacodynamics of mibefradil in hypertensive patients with varying degrees of renal insufficiency. Pharmacology 1998; 56: 297–307.

    Article  PubMed  CAS  Google Scholar 

  20. Welker HA, Banken L. Mibefradil pharmacokinetic and pharmacodynamic population analysis. Int J Clin Pharm Res 1998; 18: 63–71.

    CAS  Google Scholar 

  21. Powell J, Donn K. Histamine H2-antagonist drug interactions in perspective: mechanistic concepts and clinical implications. Am JMed 1984; 77 Suppl. 5B: 57–84.

    CAS  Google Scholar 

  22. Sedman A. Cimetidine-drug interactions. Am J Med 1984; 76: 109–14.

    Article  PubMed  CAS  Google Scholar 

  23. Davies MJ. Pathology of the conducting system. In: Caird FL, Dalle JLC, Kennedy RD, editors. Cardiology in old age. New York: Plenum Publishing Corporation, 1976: 57–9.

    Chapter  Google Scholar 

  24. Wei JY. Use of calcium entry blockers in elderly patients: special considerations. Circulation 1989; 80 Suppl. IV: IV171–IV177.

    PubMed  CAS  Google Scholar 

  25. Grace AA, Camm AJ. Quinidine. N Engl J Med 1998; 338: 35–45.

    Article  PubMed  CAS  Google Scholar 

  26. Spoendlin M, Peters J, Welker H, et al. Pharmacokinetic interaction between oral cyclosporin and mibefradil in stabilised post-renal-transplant patients. Nephrol Dial Transplant 1998; 13: 1787–91.

    Article  PubMed  CAS  Google Scholar 

  27. Giordano N, Senesi M, Mattie G, et al. Polymyositis associated with simvastatin. Lancet 1997; 349: 1600–1.

    Article  PubMed  CAS  Google Scholar 

  28. Jacobson RH, Wang P, Glueck CT. Myositis and rhabdomyolysis associated with concurrent use of simvastatin and nefazodone. JAMA 1997; 277: 296–7.

    Article  PubMed  CAS  Google Scholar 

  29. Schalke B, Schmidt B, Toyka K, et al. Pravastain-associated inflammatory myopathy. N Engl J Med 1992; 327: 649–50.

    PubMed  CAS  Google Scholar 

  30. Wang RW, Kari PH, Lu AYH, et al. Biotransformation of cytochrome P450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes. Arch Biochem Biophys 1991; 290: 355–61.

    Article  PubMed  CAS  Google Scholar 

  31. Kobrin I, Charlon V, Lindberg E, et al. Mibefradil: a new Tchannel selective calcium antagonist. Drugs Today 1997; 33: 523–42.

    CAS  Google Scholar 

  32. Kelly J, O’Malley K. Clinical pharmacokinetics of calcium antagonists: an update. Clin Pharmacokinet 1992; 22: 416–33.

    Article  PubMed  CAS  Google Scholar 

  33. Kleinbloesem C, van Brummelen P, van de Linde J, et al. Nifedipine: kinetics and dynamics in healthy subjects. Clin Pharmacol Ther 1984; 35: 742–9.

    Article  PubMed  CAS  Google Scholar 

  34. Regardh C, Edgar B, Olsson R, et al. Pharmacokinetics of felodipine in patients with liver disease. Eur J Clin Pharmacol 1989; 36: 473–9.

    Article  PubMed  CAS  Google Scholar 

  35. van Harten J, van Brummelen P, Wilson J, et al. Nisoldipine: kinetics and effects on blood pressure and heart rate in patients with liver cirrhosis after intravenous and oral administration. Eur J Clin Pharmacol 1988; 34: 387–94.

    Article  PubMed  Google Scholar 

  36. Kurosawa S, Kurosawa N, Owada E, et al. Pharmacokinetics of diltiazem in patients with liver cirrhosis. Int J Pharmacol Res 1990; 10: 311–8.

    CAS  Google Scholar 

  37. Finucci G, Padrini R, Piovan D, et al. Verapamil pharmacokinetics and liver function in patients with cirrhosis. Int J Clin Pharmacol Res 1988; 8: 123–6.

    PubMed  CAS  Google Scholar 

  38. Tarn YK. Individual variation in first-pass metabolism. Clin Pharmacokinet 1993; 25: 300–28.

    Article  Google Scholar 

  39. Woodhouse K, Wynne HA. Age-related changes in hepatic function: implications for drug therapy. Drugs Aging 1992; 2: 243–55.

    Article  PubMed  CAS  Google Scholar 

  40. Wilson K. Sex-related differences in drug disposition in man. Clin Pharmacokinet 1984; 9: 189–202.

    Article  PubMed  CAS  Google Scholar 

  41. McLean A, Morgan DJ. Clinical pharmacokinetics in patients with liver disease. Clin Pharmacokinet 1991; 21: 42–69.

    Article  PubMed  CAS  Google Scholar 

  42. Barbarash RA, Bauman JL, Fischer JH, et al. The effect of enzyme induction on verapamil pharmacokinetics: verapamilrifampicin interaction. Drug Intell Clin Pharm 1987; 21: 11A.

    Google Scholar 

  43. Somogyi A, Muirhead M. Pharmacokinetic interactions of cimetidine 1987. Clin Pharmacokinet 1987; 12: 321–66.

    Article  PubMed  CAS  Google Scholar 

  44. Bailey DG, Spence JD, Munoz C, Arnold JM. Interaction of citrus juices with felodipine and nifedipine. Lancet 1991; 337: 268–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst A. Welker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welker, H.A., Wiltshire, H. & Bullingham, R. Clinical Pharmacokinetics of Mibefradil. Clin Pharmacokinet 35, 405–423 (1998). https://doi.org/10.2165/00003088-199835060-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199835060-00001

Keywords

Navigation