Skip to main content
Log in

Bioequivalence of Controlled-Release Calcium Antagonists

  • Review Article
  • Drug Delivery Systems
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

In this review, several deficiencies of publisged bioequivalence studies for controlled-release calcium antagonists have become apparent. As a consequence, some of the published conclusions based on such studies must be viewed with care.

A proper statistical analysis of bioequivalence is not frequently reported. A proper statistical analysis of the pharmacokinetic variables involves the calculation of 90% confidence intervals (CI) for the test : reference ratio of the means of the pharmacokinetic variables of the test and reference product. The CI must fall completely within the predetermined bioequivalence range (usually 0.8 to 1.25) for the products to be declared bioequivalent. Serious methodological errors, such as a conclusion of bioequivalence based on a lack of statistically significant difference between products, and conversely, a conclusion of bioequivalence because of a statistically significant difference, or because of a mere failure to show bioequivalence, are still made.

With calcium antagonists in particular, an assessment of the rate of absorption and of the maximum concentration is important, as those characteristics may have implications for the safety profile with this class of drugs. As a minimum, in single doses studies the maximum concentration (Cmax), and the time to the maximum concentration (tmax), and in multiple-dose studies the Cmax, and the peak-trough fluctuation (%PTF) must be considered. SOme bioequivalence studies of calcium antagonists are deficient in this respect.

To show bioequivalence for controlled-release formulations, multiple-dose studies are required but some published bioequivalence studies contain only single-dose assessments. Similarly, bioequivalence studies under fed conditions are rarely published, although food may have a significant effect on the absorption rate of these drugs. SOme calcium antagonists, such as verpamil, show stereoselective pharmacokinetics, so that enantiomers may have to be investigated.

Unfortunately, few of the published studies of controlled-release calcium antagonists satisfy all requirements. One would expect that data submitted to regulatory authorities for approval of generic formulations are more complete; published data are in many cases not satisfactory

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Zwieten PA, Pfaffendorf M. Similarities and differences between calcium antagonists: pharmacological aspects. J Hypertens 1993; 11Suppl. 1: S3–11

    Article  Google Scholar 

  2. Borcherding SM, Meeves SG, Klutman NE, et al. Calcium-channel antagonists for prevention of atherosclerosis. Ann Pharmacother 1993; 27: 61–7

    PubMed  CAS  Google Scholar 

  3. Rameis H. On the principles of pharmacokinetics and pharmacodynamics of calcium antagonists [in German]. WMW 1993; 19: 490–9

    Google Scholar 

  4. Psaty BM, Heckbert S. The risk of myocardial infarction associated with antihypertensive drug therapies. JAMA 1995; 274: 620–5

    Article  PubMed  CAS  Google Scholar 

  5. Furberg, CD, Psaty BM, Meyer JV. Nifedipine: dose-related increase in mortality in patients with coronary heart disease. Circulation 1995; 92: 1326–31

    Article  PubMed  CAS  Google Scholar 

  6. Dougall HT, McLay J. A comparative review of the adverse effects of calcium antagonists. Drug Saf 1996; 15: 91–106

    Article  PubMed  CAS  Google Scholar 

  7. Henahan S. Clash of opinions in calcium antagonist controversy. Inpharma 1995; 1018: 3–4

    Google Scholar 

  8. Opie LH, Messerli FH. Nifedipine and mortality: grave defects in the dossier. Circulation 1995; 92: 1068–73

    Article  PubMed  CAS  Google Scholar 

  9. Messerli FH. Case-control study, meta-analysis, and bouillabaisse: putting the calcium antagonist scare into context. Ann Intern Med 1995; 123: 888–9

    PubMed  CAS  Google Scholar 

  10. Wagenknecht LE, Furberg CD, Hammon JW, et al. Surgical bleeding: unexpected effects of a calcium antagonist. BMJ 1995; 310: 776–7

    Article  PubMed  CAS  Google Scholar 

  11. Skelly JP, Barr WH, Benet LZ, et al. Report of the workshop on controlled-release dosage forms: issues and controversies. Pharm Res 1987; 4: 75–7

    Article  Google Scholar 

  12. Skelly JP, Amidon GL, Barr WH, et al. In vitro and in vivo testing and correlation for oral controlled/modified-release dosage forms. Pharm Res 1990; 7: 975–82

    Article  Google Scholar 

  13. Oral extended (controlled) release dosage forms. In vivo bioequivalence and in vitro dissolution testing. Rockville, MD: Division of Bioequivalence, Office of Generic Drugs, Food and Drug Administration, 1993

  14. Statistical procedures for bioequivalence studies using a standard two-treatment crossover design. Rockville, MD: Division of Bioequivalence, Office of Generic Drugs, Food and Drug Administration, 1992

  15. Investigation of bioavailability and bioequivalence. In: The rules governing medicinal products in the European Community. Vol. III; Addendum No 2. Luxemburg: Office for Official Publications of the European Communities, 1992: 149–68

  16. Argenti D, Huang M-Y, Heald D, et al. Comparative pharmacokinetics and bioavailability of Dilacor XR and Cardizem CD in healthy volunteers. Am J Ther 1995; 2: 20–30

    Article  PubMed  Google Scholar 

  17. Lippert CL, Arumugham T, Bhargava VO, et al. The relative bioavailability of two marketed controlled-release diltiazem dosage forms at steady-state in healthy volunteers. Biopharm Drug Dispos 1996; 17: 43–53

    Article  PubMed  CAS  Google Scholar 

  18. Guimont S, Landriault H, Klischer K, et al. Comparative pharmacokinetics and pharmacodynamics of two marketed bid formulations of diltiazem in healthy volunteers. Biopharm Drug Dispos 1993; 14: 767–78

    Article  PubMed  CAS  Google Scholar 

  19. Smith MS, Verghese CP, Shand DG, et al. Pharmacokinetic and pharmacodynamic effects of diltiazem. Am J Cardiol 1983; 51: 1369–74

    Article  PubMed  CAS  Google Scholar 

  20. Hermann PH, Rodger SD, Remones G, et al. Pharmacokinetics of diltiazem after intravenous and oral administration. Eur J Clin Pharmacol 1983; 24: 349–52

    Article  PubMed  CAS  Google Scholar 

  21. Kolle EU, Ochs HR, Vollmer K-O. Pharmacokinetic model of diltiazem. Arzneimittel Forschung 1983; 33: 972–7

    PubMed  CAS  Google Scholar 

  22. Caille G, Boucher S, Spenard J, et al. Diltiazem pharmacokinetics in elderly volunteers after single and multiple doses. Eur J Drug Metab Pharmacokinet 1991; 16: 75–80

    Article  CAS  Google Scholar 

  23. Rubio M, Masana MI, Garcilazo E, et al. Bioequivalence of two pharmaceutical forms of diltiazem. Biopharm Drug Dispos 1990; 11: 77–83

    Article  PubMed  CAS  Google Scholar 

  24. Schall R, Müller FO, Hundt HKL, et al. Relative bioavailability of four controlled-release nifedipine products. Biopharm Drug Dispos 1994; 15: 493–503

    Article  PubMed  CAS  Google Scholar 

  25. Tröger U, Martens J, Meyer FP, et al. Study on the bioequivalence of an oral nifedipine formulation and a sustained release reference preparation after single dose and repeated doses. Arzneimittel Forschung 1995; 45: 1266–70

    PubMed  Google Scholar 

  26. Seth P, Seth PL. An in-vivo bioequivalence study of a new nifedipine extended release dosage form, ‘Opticaps’. Drug Dev Industrial Pharm 1994; 20: 1605–12

    Article  CAS  Google Scholar 

  27. Meyer FP, Banditt P. Investigation into the bioequivalence of two nifedipine controlled-release formulations after single application and in steady-state [in German]. Arzneimittel Forschung 1993; 43: 646–50

    PubMed  CAS  Google Scholar 

  28. Meyer FP, Banditt P. Zum Nachweis der Bioäquivalenz von zwei Nifedipin-Formulierungen. Z Klin Med 1991; 46: 1141–4

    Google Scholar 

  29. Hermann R. Bioequivalence of a nifedipine extended release formulation compared to a standard formulation [in German]. Arzneimittel Forschung 1996; 46: 28–34

    Google Scholar 

  30. Waldman SA, Morganroth J. Effects of food on the bioequivalence of different verapamil sustained-release formulations. J Clin Pharmacol 1995; 35: 163–9

    PubMed  CAS  Google Scholar 

  31. Kozloski GD, de Vito JM, Johnson JB, et al. Bioequivalence of verapamil hydrochloride extended-release pellet filled capsules when opened and sprinkled on food and when swallowed intact. Clin Pharm 1992; 11: 539–42

    PubMed  CAS  Google Scholar 

  32. Devane JG, Kavanagh M, Kelly JG. Dose proportionality and steady-state bioequivalence of verapamil sustained-release pellet-filled capsules. Cur Ther Res 1991; 50: 720–30

    CAS  Google Scholar 

  33. Rietbrock N, Fischer A, Menke G. Bioequivalence of generic drugs and substitution. Slow release verapamil [in German]. Z Kardiol 1987; 76: 621–25

    PubMed  CAS  Google Scholar 

  34. Rietbrock N. Stellungnahme zum vorangegangenen Leserbrief von M Gierend, I Pelzer, J Schmidt [letter]. Z Kardiol 1988; 77: 72–4

    Google Scholar 

  35. Gierend M, Pelzer I, Schmidt J. Sachliche Richtigstellung zu ‘Bioäquivalenz von Generika und Substitution: Beispiel retardiertes Verapamil’ [letter]. Z Kardiol 1988; 77: 69–71

    PubMed  CAS  Google Scholar 

  36. Baarsma IP, Floris WW, Salm K, et al. Vergleich zweier Formulierungen mit retardiertem Verapamil. Med Welt 1987; 38: 1176–82

    Google Scholar 

  37. Morganroth J, Waldman SA. Improved sensitivity in detecting drug-induced alterations in the PR-interval when measured by a single cardiologist compared to automated computer analysis. Am J Cardiol 1993; 72: 834–6

    Article  PubMed  CAS  Google Scholar 

  38. Holmes DG, Kutz K. Bioequivalence of a slow-release and a non-retard formulation of isradipine. Am J Hypertens 1993; 6 Suppl.: 70S–3S

    PubMed  CAS  Google Scholar 

  39. Steinijans VW, Hauschke D. Update on the statistical analysis of bioequivalence studies. Int J Clin Pharmacol Ther Toxicol 1990; 28: 105–10

    PubMed  CAS  Google Scholar 

  40. Endrenyi L, Fritsch S, Yan W. Cmax/AUC is a clearer measure than Cmax for absorption rates in investigations of bioequivalence. Int J Clin Pharmacol Ther Toxicol 1991; 29: 394–9

    PubMed  CAS  Google Scholar 

  41. Schall R, Luus HG. Comparison of absorption rates in bioequivalence studies of immediate release drug formulations. Int J Clin Pharm Ther Toxicol 1992; 30: 153–9

    CAS  Google Scholar 

  42. Schall R, Luus HG, Steinijans VW, et al. Choice of characteristics and their bioequivalence ranges for the comparison of absorption rates of immediate-release drug formulations. Int J Clin Pharm Ther 1994; 32: 323–8

    CAS  Google Scholar 

  43. Sauter R, Steinijans VW, Diletti E, et al. Presentation of results from bioequivalence studies. Int J Clin Pharmacol Toxicol 1992; 30 Suppl.: S7–S30

    Google Scholar 

  44. Sahajwalla CG, Longstreth J, Karim A, et al. Bioavailability-bioequivalence of Calan SR, Verapamil CR and Calan-IR based on R-, S- and R,S-verapamil [abstract]. J Clin Pharm 1992; 32: 961–2

    Google Scholar 

  45. Jamali F. Stereochemistry and bioequivalence. J Clin Pharmacol 1992; 32: 930–4

    PubMed  CAS  Google Scholar 

  46. Nerurkar SG, Dighe SV, Williams RL. Bioequivalence of race-mic drugs. J Clin Pharm 1992; 32: 935–43

    CAS  Google Scholar 

  47. Tokuma Y, Noguchi H. Stereoselective pharmacokinetics of dihydropyridine calcium antagonists. J Chromatogr A 1995; 695: 181–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Schall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schall, R., Müller, F.R., Müller, F.O. et al. Bioequivalence of Controlled-Release Calcium Antagonists. Clin. Pharmacokinet. 32, 75–89 (1997). https://doi.org/10.2165/00003088-199732010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199732010-00004

Keywords

Navigation