Skip to main content
Log in

Clinical Pharmacokinetic Considerations in the Control of Oral Anticoagulant Therapy

Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Aspects of the pharmacokinetics of warfarin that are clinically relevant are reviewed here. Since warfarin is normally completely absorbed, resistance to treatment due to impaired absorption is unusual, even in severe short bowel syndrome. Warfarin is highly albumin-bound; thus, hypoalbuminaemic states result in an increased free fraction of the drug and a decreased half-life but, as might be expected, there is no evidence of altered response at steady-state. Warfarin is completely metabolised by the liver to hydroxywarfarins and warfarin alcohols, and although the latter have some biological activity they do not contribute significantly to the drug effect. No information is available concerning the metabolism of warfarin in chronic liver disease, but there is evidence of increased sensitivity due to impaired vitamin K-dependent clotting factor synthesis. Impaired renal function does not appear to alter the effect of warfarin. Lowered response to the drug may be secondary to poor compliance, kinetic resistance or pharmacodynamic resistance. These factors can be identified using algorithms based on population values for plasma warfarin concentrations and clearances at steady-state.

The pharmacokinetics and pharmacodynamics of warfarin indicate that several days’ overlap with heparin on initiation of warfarin, and gradual (rather than sudden) discontinuation of warfarin, might theoretically be necesssary. However, those studies which have been performed have indicated that a long overlap and gradual discontinuation are not associated with greater safety or efficacy of the drug.

Because of the long elimination half-life of warfarin and the short elimination half-life of vitamin K, many days’ treatment with Phytomenadione may be required after warfarin overdose. The elimination half-life and therefore the duration of therapy may be reduced by regular oral cholestyramine, although the means by which the latter enhances warfarin elimination is still unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aggeler PM, O’Reilly RA. Pharmacological basis of oral anticoagulant therapy. Thrombosis et Diathesis Haemorrhagica 21 (Suppl.): 227–256, 1966

    CAS  Google Scholar 

  • Alexander B, Meyers L, Kenny J, Goldstein R, Gurewich V, et al. Blood coagulation in pregnancy. Proconvertin and prothrombin and hypercoagulable state. New England Journal of Medicine 254: 358–363, 1956

    Article  PubMed  CAS  Google Scholar 

  • Andersen P, Godal HC. Predictable reduction in anticoagulant activity of warfarin by small amounts of vitamin K. Acta Medica Scandinavica 198: 269–270, 1975

    Article  PubMed  CAS  Google Scholar 

  • Andreasen P, Vesell E. Comparison of plasma levels of antipyrine, tolbutamide and warfarin after oral and intravenous administration. Clinical Pharmacology and Therapeutics 16: 1059–1065, 1974

    PubMed  CAS  Google Scholar 

  • Bachman K, Shapiro R. Protein binding of coumarin anticoagulants in disease states. Clinical Pharmacokinetics 2: 110–126, 1977

    Article  Google Scholar 

  • Banfield C, O’Reilly R, Chan E, Rowland M. Phenylbutazone-warfarin interaction in man: further stereochemical and metabolic considerations. British Journal of Clinical Pharmacology 16: 669–675, 1983

    Article  PubMed  CAS  Google Scholar 

  • Bentley DP, Backhouse G, Hutchings A, Haddon RL, Spragg B, et al. Investigation of patients with abnormal response to warfarin. British Journal of Clinical Pharmacology 22: 37–41, 1986

    Article  PubMed  CAS  Google Scholar 

  • Breckenridge AM, Orme M, Wesseling H, Lewis RJ, Gibbons R. Pharmacokinetics and pharmacodynamics of the enantiomers of warfarin in man. Clinical Pharmacology and Therapeutics 15: 424–430, 1974

    PubMed  CAS  Google Scholar 

  • Brodie BB. Of mice, microsomes and man. Pharmacologist 6: 12–26, 1964

    Google Scholar 

  • Brodie BB, Burns JJ, Weiner M. Metabolism of drugs in subjects with Laennec’s cirrhosis. Medicina Experimentalis 1: 290–292, 1959

    PubMed  CAS  Google Scholar 

  • Carter SA, McDevitt E, Gatje BW, Wright IS. Analysis of factors affecting the recurrence of thromboembolism off and on anticoagulant therapy. American Journal of Medicine 25: 43–51, 1958

    Article  PubMed  CAS  Google Scholar 

  • Cheney K, Bonnin JW. Haemorrhage, platelet dysfunction and other coagulation defects in uraemia. British Journal of Haematology 8: 215–222, 1962

    Article  PubMed  CAS  Google Scholar 

  • Choonara I, Cholerton S, Haynes B, Breckenridge A, Park BK. Stereoselective interaction between R enantiomer of warfarin and Cimetidine. British Journal of Clinical Pharmacology 21: 271–277, 1986

    Article  PubMed  CAS  Google Scholar 

  • Coon WW, Willis III PW. Thromboembolic complications during anticoagulant therapy. Archives of Surgery 105: 209–212, 1972

    Article  PubMed  CAS  Google Scholar 

  • Corrigan Jr JJ. The effect of vitamin E on warfarin induced vitamin K deficiency. Annals of the New York Academy of Sciences 393: 361–368, 1982

    Article  PubMed  CAS  Google Scholar 

  • Davies DF, Shock NW. Age changes in glomerular filtration rate, effective renal plasma flow and the tubular excretory capacity in adult males. Journal of Clinical Investigation 29: 496–507, 1950

    Article  PubMed  CAS  Google Scholar 

  • Deykin D. Warfarin therapy. New England Journal of Medicine 283: 691–694, 801-803, 1970

    Article  PubMed  CAS  Google Scholar 

  • Douglas AS. Anticoagulant therapy, p. 394, FA Davies, Philadelphia, 1962

    Google Scholar 

  • Editorial. Heavy drinking accelerates drugs’ breakdown in liver. Journal of the American Medical Association 206: 1709, 1968

  • Fennerty A, Dolben J, Thomas P, et al. Flexible induction dose regimen for warfarin and prediction of maintenance dose. British Medical Journal 288: 1268–1270, 1984

    Article  PubMed  CAS  Google Scholar 

  • Fennerty AG, Renowden S, Scolding N, Bentley DP, Campbell IA, et al. Guidelines to control heparin treatment. British Medical Journal 292: 579–580, 1986

    Article  PubMed  CAS  Google Scholar 

  • Gallus A, Jackaman J, Tillett J, Mills W, Wytherley A. Safety and efficacy of warfarin started early after submassive venous thrombosis or pulmonary embolism. Lancet 2: 1293–1296, 1986

    Article  PubMed  CAS  Google Scholar 

  • Gallus AS, Lucas CR, Hirsch V. Coagulation studies in patients with acute infectious hepatitis. British Journal of Haematology 22: 761–771, 1972

    Article  PubMed  CAS  Google Scholar 

  • Ganeval D, Fischer AM, Barre J, Pertuiset N, Dautzenberg MD, Pharmacokinetics of warfarin in the nephrotic syndrome and effect on vitamin K-dependent clotting factors. Clinical Nephrology 25(2): 75–80, 1986

    PubMed  CAS  Google Scholar 

  • Hall JG. Warfarin and foetal abnormality. Lancet 1: 1127, 1976

    Article  Google Scholar 

  • Hignite C, Uetrecht J, Tschariz C, Azarnoff D. Kinetics of R and S warfarin enantiomers. Clinical Pharmacology and Therapeutics 28: 99–105, 1980

    Article  PubMed  CAS  Google Scholar 

  • Holford NHG. Clinical pharmacokinetics and pharmacodynamics of warfarin: understanding the dose-effect relationship. Clinical Pharmacokinetics 11: 483–504, 1986

    Article  PubMed  CAS  Google Scholar 

  • Jahnchen E, Meinertz HJ, Gifrich F, Kersting F, Groth U. Enhanced elimination of warfarin during treatment with cholestyramine. British Journal of Clinical Pharmacology 5: 437–440, 1978

    Article  PubMed  CAS  Google Scholar 

  • Kasper CK, Hoag MS, Aggeler PM, Stone S. Blood clotting factors in pregnancy: factor VIII concentrations in normal and AHF-deficient women. Obstetrics and Gynecology 24: 242–247, 1964

    PubMed  CAS  Google Scholar 

  • Kearns Jr PR, O’Reilly RA. Bioavailability of warfarin in a patient with severe short bowel syndrome. Journal of Parenteral and Enteral Nutrition 10(1): 100–101, 1986

    Article  PubMed  Google Scholar 

  • Kellett HA, Sawers JSA, Boulton FE, Cholerton S, Park BK, et al. Problems of anticoagulation with warfarin in hyperthyroidism. Quarterly Journal of Medicine. New Scries 58(225): 43–51, 1986

    CAS  Google Scholar 

  • La Du Jr BN. Pharmacogenetics. Medical Clinics of North America 53: 839–855, 1969

    PubMed  Google Scholar 

  • Lefrere J, Guyon F, Horellou M, Conard J, Samama M. Selective malabsorption of anticoagulants. Journal of the American Medical Association 256(5): 595, 1986

    Article  PubMed  CAS  Google Scholar 

  • Lewis RJ, Trager WF. The metabolic fate of warfarin: studies on the metabolites in plasma. Annals of the New York Academy of Sciences 179: 205–212, 1971

    Article  PubMed  CAS  Google Scholar 

  • Lewis RJ, Trager WF, Chan KK, Breckenridge A, Orme M, et al. Warfarin — stereochemical aspects of its metabolism and the interaction with phenylbutazone. Journal of Clinical Investigation 53: 1607–1617, 1974

    Article  PubMed  CAS  Google Scholar 

  • Lewis RJ, Trager WF, Robinson AJ, Chan KK. Warfarin metabolites: the anticoagulant activity and pharmacology of warfarin alcohols. Journal of Laboratory and Clinical Medicine 81: 925–931, 1973

    PubMed  CAS  Google Scholar 

  • Lieberman LS, Lindner M. Effective termination of anticoagulation in coronary artery disease. Circulation 32 (Suppl. 2): II–138, 1965

    Google Scholar 

  • Link KP. The discovery of dicoumarol and its sequels. Circulation 19: 97–107, 1959

    Article  PubMed  CAS  Google Scholar 

  • Loeliger EA, Koller F. Behaviour of factor VII and prothrombin in late pregnancy and in the newborn. Acta Haematologica 7: 157–161, 1952

    Article  PubMed  CAS  Google Scholar 

  • Loeliger EA, van der Esch B, Mattern MJ, Hemkev HC. Biological disappearance rate of prothrombin, factors VII, IX and X from plasma in hypothyroidism, hyperthyroidism and during fever. Thrombosis et Diathesis Haemorrhagica 10: 267–277, 1964

    PubMed  CAS  Google Scholar 

  • Melander A. Influence of food on the bioavailability of drugs. Clinical Pharmacokinetics 3: 337–351, 1978

    Article  PubMed  CAS  Google Scholar 

  • Michaels L, Beamish RE. Relapses of thromboembolic disease after discontinued anticoagulant therapy. A comparison of the incidence after abrupt and after gradual termination of treatment. American Journal of Cardiology 20: 670–673, 1967

    Article  PubMed  CAS  Google Scholar 

  • Mitchell AA. Smoking and warfarin dosage. New England Journal of. Medicine 287: 1153–1154, 1972

    CAS  Google Scholar 

  • Mungall DR, Ludden TM, Marshall J, Hawkins DW, Talbert RL, et al. Population pharmacokinetics of racemic warfarin in adult patients. Journal of Pharmacokinetics and Biopharmaceutics 13(3): 213–227, 1985

    PubMed  CAS  Google Scholar 

  • O’Reilly RA. Vitamin K in hereditary resistance to oral anticoagulant drugs. American Journal of Physiology 221: 1327–1330, 1971a

    PubMed  Google Scholar 

  • O’Reilly RA. Interaction of several coumarin compounds with human and canine plasma albumin. Molecular Pharmacology 7: 209–218, 1971b

    PubMed  Google Scholar 

  • O’Reilly RA. The binding of sodium warfarin to plasma albumin and its displacement by phenylbutazone. Annals of the New York Academy of Sciences 226: 293–308, 1973

    Article  PubMed  Google Scholar 

  • O’Reilly RA. Stereoselective interaction of trimethoprim sulfamethoxazole and the separated enantiomorphs of racemic warfarin in man. New England Journal of Medicine 302: 33–35, 1980

    Article  PubMed  Google Scholar 

  • O’Reilly RA. Lack of effect of fortified wine ingested during fasting and anticoagulant therapy. Archives of Internal Medicine 141: 458, 1981

    Article  PubMed  Google Scholar 

  • O’Reilly RA, Aggeler PM. Studies on couramin anticoagulant drugs: initiation of warfarin therapy without a loading dose. Circulation 38: 169–177, 1968

    Article  PubMed  Google Scholar 

  • O’Reilly RA, Aggeler PM, Hoag MS, Leong L. Studies on the coumarin anticoagulant drugs: assay of warfarin and its biological application. Thrombosis et Diathesis Haemorrhagica 8: 89–95, 1962

    Google Scholar 

  • O’Reilly RA, Aggeler PM, Hoag MS, Leong LS, Kropatkin ML. Hereditary transmission of exceptional resistance to coumarin anticoagulant drugs: the first reported kindred. New England Journal of Medicine 271: 809–815, 1964

    Article  PubMed  Google Scholar 

  • O’Reilly RA, Aggeler PM, Leong LS. Studies on the coumarin anticoagulant drugs: the pharmacodynamics of warfarin in man. Journal of Clinical Investigation 42: 1542–1551, 1963

    Article  PubMed  Google Scholar 

  • O’Reilly RA, Rytand DA. ‘Resistance’ to warfarin due to unrecognised vitamin K supplementation. New England Journal of Medicine 303(3): 160–161, 1980

    PubMed  Google Scholar 

  • Orme ML, Lewis PJ, de Swiet M, Serlin MJ, Sibeon R, et al. May mothers given warfarin breast-feed their infants? British Medical Journal 1: 1564–1565, 1977

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan EF. Duration of anticoagulant therapy in venous thromboembolism. Medical Journal of Australia 2: 1104–1107, 1972

    PubMed  Google Scholar 

  • Pechet L, Alexander B. Increased clotting factors in pregnancy. New England Journal of Medicine 265: 1093–1097, 1961

    Article  PubMed  CAS  Google Scholar 

  • Piroli RJ, Passananti GT, Shively CA, Vesell ES. Antipyrine and warfarin disposition in a patient with idiopathic hypoalbuminaemia. Clinical Pharmacology and Therapeutics 30(6): 810–816, 1981

    Article  PubMed  CAS  Google Scholar 

  • Plass ED, Matthew CW. Plasma protein fractions in normal pregnancy, labour, and Puerperium. American Journal of Obstetrics and Gynecology 12: 346–358, 1926

    Google Scholar 

  • Poller L, Thomson J. Evidence for ‘rebound’ hypercoagulability after stopping anticoagulants. Lancet 2: 62–64, 1964

    Article  PubMed  CAS  Google Scholar 

  • Poller L, Thomson JM. Reduction of ‘rebound’ hypercoagulability by gradual withdrawal (‘tailing off’) of oral anticoagulants. British Medical Journal: 1475–1476, 1965

    Google Scholar 

  • Qureshi GD, Reinders TP, Swint JJ, et al. Acquired warfarin resistance and weight-reducing diet. Archives of Internal Medicine 141: 507–509, 1981

    Article  PubMed  CAS  Google Scholar 

  • Ratnoff OD, Holland TR. Coagulation components in normal and abnormal pregnancies. Annals of the New York Academy of Sciences 75: 626–633, 1959

    Article  PubMed  CAS  Google Scholar 

  • Reidler G. Einfluss des Alkohols auf die antikoagulantien Therapie. Thrombosis et Diathesis Haemorrhagica 16: 613, 1966

    Google Scholar 

  • Renowden S, Westmoreland D, White JP, Routledge PA. Oral cholestyramine increases elimination of warfarin after overdose. British Medical Journal 291: 513–515, 1985

    Article  PubMed  CAS  Google Scholar 

  • Robinson DS, Benjamin DM, McCormack JJ. Interaction of warfarin and non systemic gastrointestinal drugs. Clinical-Pharmacology and Therapeutics 12: 492–495, 1971

    Google Scholar 

  • Routledge PA, Bell SM, Davies DM, Cavanagh JS, Rawlins MD. Predicting patients’ warfarin requirements. Lancet 2: 854–855, 1977

    Article  PubMed  CAS  Google Scholar 

  • Routledge PA, Chapman DH, Davies DM, Rawlins MD. Pharmacokinetics and pharmacodynamics of warfarin at steady state. British Journal of Clinical Pharmacology 8: 243–247, 1979a

    Article  PubMed  CAS  Google Scholar 

  • Routledge PA, Chapman PH, Davies DM, Rawlins MD. Factors affecting warfarin requirements — a prospective population study. European Journal of Clinical Pharmacology 15: 319–322, 1979b

    Article  PubMed  CAS  Google Scholar 

  • Schaffner F. The structural basis of altered hepatic function in viral hepatitis. American Journal of Medicine 49: 658–668, 1970

    Article  PubMed  CAS  Google Scholar 

  • Sellers E, Koch-Weser J. Interaction of warfarin stereoisomers with human albumin. Pharmacology Research Communications 7: 331–336, 1975

    Article  CAS  Google Scholar 

  • Serlin MJ, Breckenridge AM. Drug interactions with warfarin. Drugs 25: 610–620, 1983

    Article  PubMed  CAS  Google Scholar 

  • Sharland DE. Effect of cessation of anticoagulant therapy on the course of ischaemic heart disease. British Medical Journal 2: 292, 1966

    Article  Google Scholar 

  • Shepherd AMM, Hewick DS, Moreland TA, Stevenson IH. Age as a determinant of sensitivity to warfarin. British Journal of Clinical Pharmacology 4: 315–320, 1977

    Article  PubMed  CAS  Google Scholar 

  • Sherlock S, Barber KM, Bell JL, Watt PJ. Anticoagulants and the liver. In Pickering GW (Ed.) Symposium on anticoagulant therapy, p. 14–36, Harvey and Blythe Ltd., London, 1961

    Google Scholar 

  • Sjoholm I, Kober A, Odar-Cederlof I, Borga O. Protein binding of drugs in uraemic and normal serum: the role of endogenous binding inhibitors. Biochemical Pharmacology 25: 1205–1213, 1976

    Article  PubMed  CAS  Google Scholar 

  • Slattery JT, Levy G, Jain A, McMahon FG. Effect of naproxen on the kinetics of elimination and anticoagulant activity of a single dose of warfarin. Clinical Pharmacology and Therapeutics 25: 51–60, 1979

    PubMed  CAS  Google Scholar 

  • Spaet TH. Clinical implications of acquired blood coagulation abnormalities. Blood 23: 839–842, 1964

    PubMed  CAS  Google Scholar 

  • Stirling Y, Howarth DJ, Stockley R, Bland R, Towler CM, et al. Comparison of the bioavailability and anticoagulant activities of two warfarin formulations. British Journal of Haematology 51: 37–45, 1982

    Article  PubMed  CAS  Google Scholar 

  • Thomas P, Fennerty A, Backhouse G, Bentley DP, Campbell IA, et al. Monitoring oral anticoagulants during heparin therapy. British Medical Journal 288: 191, 1984

    Article  PubMed  CAS  Google Scholar 

  • Toon S, Hopkins KJ, Garstang FM, Digret B, Rowland M. The warfarin-cimetidine interaction: stereochemical considerations. British Journal of Clinical Pharmacology 21: 245–246, 1986

    Article  PubMed  CAS  Google Scholar 

  • Unger PM, Weiner M, Shapiro S. Vitamin K tolerance test. American Journal of Clinical Pathology 18: 835–851, 1948

    PubMed  CAS  Google Scholar 

  • Uotila L, Suttie JW. Inhibition of vitamin K-dependent carboxylase in vitro by cefamandole and its structured analogues. Journal of Infectious Diseases 148: 571, 1983

    Article  PubMed  CAS  Google Scholar 

  • Van Clere RB. Letting go of the bear’s tail. Experience with discontinuation of long-term anticoagulation therapy. Journal of the American Medical Association 196(13): 140–142, 1966

    Google Scholar 

  • Vesell ES, Page JG. Genetic control of dicoumarol levels in man. Journal of Clinical Investigation 47: 2657–2663, 1968

    Article  PubMed  CAS  Google Scholar 

  • Wagner J. Dosage regimen calculations. In Fundamentals of Clinical Pharmacokinetics, p. 129–172, Drug Intelligence, Hamilton, Ill, 1975

    Google Scholar 

  • Watson AJM, Pegg M, Green JRB. Enteral feeds may antagonise warfarin. British Medical Journal 288: 557, 1984

    Article  PubMed  CAS  Google Scholar 

  • Williams R, Schary W, Blaschke T, Meffin P, Melmon K, et al. Influence of viral hepatitis on disposition and pharmacological effect of warfarin. Clinical Pharmacology and Therapeutics 20: 90–97, 1976

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shetty, H.G.M., Fennerty, A.G. & Routledge, P.A. Clinical Pharmacokinetic Considerations in the Control of Oral Anticoagulant Therapy. Clin-Pharmacokinet 16, 238–253 (1989). https://doi.org/10.2165/00003088-198916040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198916040-00003

Keywords

Navigation