Skip to main content
Log in

Fast and Slow Bone Losers

Relevance to the Management of Osteoporosis

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Summary

A low bone mineral density (BMD) is presently regarded as the most important risk factor for the development of osteoporosis. BMD is a function of peak bone mass attained during growth and subsequent age-related bone loss. BMD can be measured accurately and precisely, although the rate of bone loss is more difficult to assess. When axial BMD was measured, the rate of bone loss was shown to increase by 2- to 4-fold at the menopause. Although this rate varies markedly between individuals, it is symmetrically distributed, which argues against the existence of a subpopulation of fast bone losers. Levels of biochemical markers of bone turnover (e.g. osteocalcin, bone specific alkaline phosphatase, deoxypyridinoline) also increase markedly at the menopause, and individuals with a high turnover tend to lose bone more rapidly. Moreover, since increased bone resorption also results in qualitative changes regardless of BMD, a high bone turnover constitutes an independent risk factor. Currently, large intra-individual variations (10 to 40%) in levels of biochemical markers and assay errors still limit our ability to correctly classify individual patients as fast or slow bone losers. The routine use of these markers as a screening tool to predict the risk of osteoporosis in individuals is of limited value, although their selective use in therapeutic decision-making is more promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Enisa Shevroja, Jean-Yves Reginster, … Nicholas C. Harvey

References

  1. Kleerekoper M, Avioli LV. Evaluation and treatment of postmenopausal osteoporosis. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Philadelphia: Lippincott-Raven, 1996: 264–71

    Google Scholar 

  2. Riggs BL, Melton III LJ. The prevention and treatment of osteoporosis. N Engl J Med 1992; 327: 620–7

    Article  PubMed  CAS  Google Scholar 

  3. Kanis JA. Osteoporosis and its consequences. In: Kanis JA, editor. Osteoporosis. London: Blackwell, 1997: 1–21

    Google Scholar 

  4. Christiansen G, Riis BJ, Redbro P. Prediction of rapid bone loss in post-menopausal women. Lancet 1987; I: 1105–8

    Article  Google Scholar 

  5. Kanis JA and the WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporosis Int 1994; 4: 368–81

    Article  CAS  Google Scholar 

  6. Armstrong AL, Osborne J, Coupland CAC, et al. Effects of hormone replacement therapy on muscle performance and balance in postmenopausal women. Clin Sci 1996; 91: 685–90

    PubMed  CAS  Google Scholar 

  7. Melton III LJ, Atkinson EJ, O’Fallon WM, et al. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 1993; 8: 1227–34

    Article  PubMed  Google Scholar 

  8. Parfitt AM, Mathews CHE, Villanueva AR, et al. Relationship between surface, volume and thickness of iliac trabecular bone in aging and in osteoporosis: implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 1983; 72: 1396–409

    Article  PubMed  CAS  Google Scholar 

  9. Recker RR. Architecture and vertebral fracture. Calcif Tissue Int 1993; 53 Suppl.: S139–42

    Article  PubMed  Google Scholar 

  10. Marcus R. The nature of osteoporosis. J Clin Endocrinol Metab 1996; 81: 1–5

    Article  PubMed  CAS  Google Scholar 

  11. Hui SL, Slemenda CW, Johnston Jr CC. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 1988; 81: 1804–9

    Article  PubMed  CAS  Google Scholar 

  12. Daniels ED, Pettifor JM, Schnitzler CM, et al. Differences in mineral homeostasis, volumetric bone mass and femoral neck axis length in black and white South African women. Osteoporos Int 1997; 7: 105–12

    Article  PubMed  CAS  Google Scholar 

  13. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996; 312: 1254–9

    Article  PubMed  CAS  Google Scholar 

  14. Blumsohn A, Eastell R. Age-related factors. In: Riggs BL, Melton III LJ, editors. Osteoporosis. Philadelphia: Lippincott Raven, 1995: 161–82

    Google Scholar 

  15. Mazess RB. Dual-energy X-ray absorptiometry for the management of bone disease. Phys Med Rehabil Clin N Am 1995; 6(3): 507–37

    Google Scholar 

  16. Nordin BEC. Bone mass, bone loss, bone density and fractures. Osteoporos Int 1993; 3Suppl. 1: S1–7

    Article  Google Scholar 

  17. Gardsell P, Johnell O, Nilsson BE. The predictive value of bone loss for fragility fractures in women: a longitudinal study over 15 years. Calcif Tissue Int 1991; 49: 90–4

    Article  PubMed  CAS  Google Scholar 

  18. Davis JW, Ross PK, Wasnich RD, et al. Comparison of cross-sectional and longitudinal measurements of aggregated changes in bone mineral content. J Bone Min Res 1989; 4: 351–7

    Article  CAS  Google Scholar 

  19. Genant HK, Cann CE, Ettinger B, et al. Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 1982; 97: 699–705

    PubMed  CAS  Google Scholar 

  20. Falch JA, Sandvik L. Perimenopausal appendicular bone loss: a 10-year prospective study. Bone 1990; 11: 425–8

    Article  PubMed  CAS  Google Scholar 

  21. Hansen MA, Overgaard K, Riis BJ, et al. Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12-year study. BMJ 1991; 303: 961–4

    Article  PubMed  CAS  Google Scholar 

  22. Hui SL, Slemenda GW, Johnston Jr CC. The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1990; 1: 30–4

    Article  PubMed  CAS  Google Scholar 

  23. Keen RW, Nguyen T, Sobnack R, et al. Can biochemical markers predict bone loss at the hip and spine? A 4-year prospective study of 141 early postmenopausal women. Osteoporos Int 1996; 6: 399–406

    Article  PubMed  CAS  Google Scholar 

  24. Pouilles JM, Tremollieres F, Ribot C. Variability of vertebral and femoral postmenopausal bone loss: a longitudinal study. Osteoporos Int 1996; 6: 320–4

    Article  PubMed  CAS  Google Scholar 

  25. Dambacher MA, Neff M, Kissling R, et al. Highly precise peripheral quantitative computed tomography for the evaluation of bone density, loss of bone density and structures: consequences for prophylaxis and treatment. Drugs Aging 1998; 12Suppl. 1: 15–24

    Article  PubMed  Google Scholar 

  26. Calvo MS, Eyre DR, Gundberg CM. Molecular basis and clinical application of biological markers of bone turnover. Endocr Rev 1996; 17(4): 333–68

    PubMed  CAS  Google Scholar 

  27. Kanis JA. Biochemical markers in osteoporosis. Scand J Clin Lab Invest 1997; 57Suppl. 227: 6–11

    Google Scholar 

  28. Kleerekoper M. Biochemical markers of bone remodeling. Am J Med Sci 1996; 312: 270–7

    Article  PubMed  CAS  Google Scholar 

  29. Uebelhart D, Schlemmer A, Johansen JS, et al. Effect of menopause and hormone replacement therapy on the urinary excretion of pyridinium cross-links. J Clin Endocrinol Metab 1991; 72: 367–73

    Article  PubMed  CAS  Google Scholar 

  30. Garnero P, Shih WJ, Gineyts E, et al. Comparison of new biochemical markers of bone turnover in late postmenopausal osteoporotic women in response to alendronate treatment. J Clin Endocrinol Metab 1994; 79: 1693–700

    Article  PubMed  CAS  Google Scholar 

  31. Garnero P, Sornay-Rendu E, Chapuy MC, et al. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 1996; 11(3): 337–49

    Article  PubMed  CAS  Google Scholar 

  32. Lips P, Courpron P, Meunier PJ. Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Int 1978; 26: 13–7

    Article  CAS  Google Scholar 

  33. Adachi JD. The correlation of bone mineral density and biochemical markers to fracture risk. Calcif Tissue Int 1996; 59Suppl. 1: S16–19

    Article  CAS  Google Scholar 

  34. Ravn P, Rix M, Andreassen H, et al. High bone turnover is associated with low bone mass and spinal fracture in postmenopausal women. Calcif Tissue Int 1997; 60: 255–60

    Article  PubMed  CAS  Google Scholar 

  35. Melton III LJ, Khosla S, Atkinson EJ. Relationship of bone turnover to bone density and fractures. J Bone Miner Res 1997; 12: 1083–91

    Article  PubMed  Google Scholar 

  36. Jensen JE, Kollerup G, Sorensen HA, et al. Intraindividual variability in bone markers in the urine. Scand J Clin Lab Invest 1997; 57Suppl. 227: 29–34

    Google Scholar 

  37. Panteghini M, Pagani F. Biological variation in urinary excretion of pyridinium cross-links: recommendations for the optimum specimen. Ann Clin Biochem 1996; 33: 36–42

    PubMed  Google Scholar 

  38. Schlemmer A, Hassager C, Alexandersen P, et al. Circadian variation in bone resorption is not related to serum cortisol. Bone 1997; 21: 83–8

    Article  PubMed  CAS  Google Scholar 

  39. Eastell R, Blumsohn A. The value of biochemical markers of bone turnover in osteoporosis. J Rheumatol 1997; 24: 1215–7

    PubMed  CAS  Google Scholar 

  40. Dempster DW. Exploiting and bypassing the bone remodelling cycle to optimize the treatment of osteoporosis. J Bone Miner Res 1997; 12(8): 1152–4

    Article  PubMed  CAS  Google Scholar 

  41. Riggs BL, Melton CJ, O’Fallon WM. Drug therapy for vertebral fractures in osteoporosis: evidence that decreases in bone turnover and increases in bone mass both determine antifracture efficacy. Bone 1996; 18 (3 Suppl.): S197–201

    Article  Google Scholar 

  42. de Vernejoul M-C. Markers of bone remodelling in metabolic bone disease. Drugs Aging 1998; 12Suppl. 1: 9–14

    Article  PubMed  Google Scholar 

  43. Njeh CF, Boivin CM, Langton CM. The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int 1997; 7: 7–22

    Article  PubMed  CAS  Google Scholar 

  44. Cepollaro G, Gonnelli S, Pandrelli C, et al. The combined use of ultrasound and densitometry in the prediction of vertebral fracture. Br J Radiol 1997; 70: 691–6

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hough, S. Fast and Slow Bone Losers. Drugs and Aging 12 (Suppl 1), 1–7 (1998). https://doi.org/10.2165/00002512-199812001-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199812001-00001

Keywords

Navigation