Skip to main content
Log in

Advances in Understanding Drug-Induced Neuropathies

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Many commonly used medications have neurotoxic adverse effects; the most common of these is peripheral neuropathy. Neuropathy can be a dose-limiting adverse effect for many medications used in life-threatening conditions, such as malignancy and HIV-related disease. Epidemiological evidence supports previous case reports of HMG-CoA reductase inhibitors (or ‘statins’) causing an axonal sensorimotor neuropathy or a purely small-fibre neuropathy in some patients. The neuropathy improves when the medication is withdrawn. Despite the association between HMG-CoA reductase inhibitors and neuropathy, the risk is low compared with the significant vascular protective benefits. Oxaliplatin, a new platinum chemotherapy agent designed to have fewer adverse effects than other such agents, has been shown to cause a transient initial dysaesthesia in addition to an axonal polyneuropathy. Thalidomide, an old therapy currently being utilised for new therapeutic indications (e.g. treatment of haematological malignancies), is associated with a painful, axonal sensorimotor neuropathy that does not improve on withdrawal of the drug. Nucleoside reverse transcriptase inhibitors are important components of highly active antiretroviral therapy, but are associated with a sensory neuropathy that is likely to be due to a direct effect of these drugs on mitochondrial DNA replication. New research demonstrates that lactate levels may help discriminate between neuropathy caused by nucleoside analogues and HlV-induced neuropathy. Understanding the mechanism of drug-induced neuropathy has led to advances in preventing this disabling condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Chaudhry V, Chaudhry M, Crawford TO, et al. Toxic neuropathy in patients with pre-existing neuropathy. Neurology 2003; 60(2): 337–40

    Article  PubMed  CAS  Google Scholar 

  2. Peltier AC, Russell JW. Recent advances in drug-induced neuropathies. Curr Opin Neurol 2002; 15(5): 633–8

    Article  PubMed  Google Scholar 

  3. Wang MS, Wu Y, Culver DG, et al. Pathogenesis of axonal degeneration: parallels between Wallerian degeneration and vincristine neuropathy. J Neuropathol Exp Neurol 2000; 59(7): 599–606

    PubMed  CAS  Google Scholar 

  4. Wilson RH, Lehky T, Thomas RR, et al. Acute oxaliplatininduced peripheral nerve hyperexcitability. J Clin Oncol 2002; 20(7): 1767–74

    Article  PubMed  CAS  Google Scholar 

  5. Isoardo G, Bergui M, Durelli L, et al. Thalidomide neuropathy: clinical, electrophysiological and neuroradiological features. Acta Neurol Scand 2004; 109(3): 188–93

    Article  PubMed  CAS  Google Scholar 

  6. Physician’s Desk Reference. 58th ed. Montvale (NJ): Thompson PDR, 2004

  7. Backes JM, Howard PA. Association of HMG-CoA reductase inhibitors with neuropathy. Ann Pharmacother 2003; 37(2): 274–8

    Article  PubMed  CAS  Google Scholar 

  8. Jeppesen U, Gaist D, Smith T, et al. Statins and peripheral neuropathy. Eur J Clin Pharmacol 1999; 54(11): 835–8

    Article  PubMed  CAS  Google Scholar 

  9. Lo YL, Leoh TH, Loh LM, et al. Statin therapy and small fibre neuropathy: a serial electrophysiological study. J Neurol Sci 2003; 208(1-2): 105–8

    Article  PubMed  CAS  Google Scholar 

  10. Ziajka PE, Wehmeier T. Peripheral neuropathy and lipid-lowering therapy. South Med J 1998; 91(7): 667–8

    Article  PubMed  CAS  Google Scholar 

  11. Jacobs MB. HMG-CoA reductase inhibitor therapy and peripheral neuropathy [letter]. Ann Intern Med 1994; 120: 970

    PubMed  CAS  Google Scholar 

  12. Rundek T, Naini A, Sacco R, et al. Atorvastatin decreases the coenzyme Q10 level in the blood of patients at risk for cardiovascular disease and stroke. Arch Neurol 2004; 61(6): 889–92

    Article  PubMed  Google Scholar 

  13. Bleske BE, Willis RA, Anthony M, et al. The effect of pravastatin and atorvastatin on coenzyme Q10. Am Heart J 2001; 14(2): E2

    Article  Google Scholar 

  14. Vincent AM, Russell JW, Low P, et al. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 2004; 25: 612–28

    Article  PubMed  CAS  Google Scholar 

  15. Johnson TE, Zhang X, Bleicher KB, et al. Statins induce apoptosis in rat and human myotube cultures by inhibiting protein geranylgeranylation but not ubiquinone. Toxicol Appl Pharmacol 2004; 200(3): 237–50

    Article  PubMed  CAS  Google Scholar 

  16. Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA 2003; 289(13): 1681–90

    Article  PubMed  CAS  Google Scholar 

  17. Moosmann B, Behl C. Selenoprotein synthesis and side-effects of statins. Lancet 2004; 363(9412): 892–4

    Article  PubMed  CAS  Google Scholar 

  18. Gaist D, Jeppesen U, Andersen M, et al. Statins and risk of polyneuropathy: a case-control study. Neurology 2002; 58(9): 1333–7

    Article  PubMed  CAS  Google Scholar 

  19. Corrao G, Zambon A, Bertu L, et al. Lipid lowering drugs prescription and the risk of peripheral neuropathy: an exploratory case-control study using automated databases. J Epidemiol Community Health 2004; 5812): 1047–51

    Article  PubMed  Google Scholar 

  20. Stocker R, Pollicino C, Gay S, et al. Neither plasma coenzyme Q(10) concentration, nor its decline during pravastatin therapy, is linked to recurrent cardiovascular disease events: a prospective case-control study from the LIPID study. Atherosclerosis 2005; [Epub ahead of print]

    Google Scholar 

  21. Lieberman A, Lyons K, Levine J, et al. Statins, cholesterol, coenzyme Q10, and Parkinson’s disease. Parkinsonism Relat Disord 2005; 11(2): 81–4

    Article  PubMed  Google Scholar 

  22. Kane RC, Bross PF, Farrell AT, et al. US FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 2003; 8(6): 508–13

    Article  PubMed  Google Scholar 

  23. Adams J, Kauffman M. Development of the proteasome inhibitor Velcade (bortezomib). Cancer Invest 2004; 22(2): 304–11

    Article  PubMed  CAS  Google Scholar 

  24. Raymond E, Chaney SG, Taamma A, et al. Oxaliplatin: a review of preclinical and clinical studies. Ann Oncol 1998; 9(10): 1053–71

    Article  PubMed  CAS  Google Scholar 

  25. Grothey A. Oxaliplatin-safety profile: neurotoxicity. Semin Oncol 2003; 30(4 Suppl. 15): 5–13

    Article  PubMed  CAS  Google Scholar 

  26. Lehky TJ, Leonard GD, Wilson RH, et al. Oxaliplatin-induced neurotoxicity: acute hyperexcitability and chronic neuropathy. Muscle Nerve 2004; 29(3): 387–92

    Article  PubMed  CAS  Google Scholar 

  27. Gamelin L, Boisdron-Celle M, Delva R, et al. Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: a retrospective study of 161 patients receiving oxaliplatin combined with 5-Fluorouracil and leucovorin for advanced colorectal cancer. Clin Cancer Res 2004; 10(12 Pt 1): 4055–61

    Article  PubMed  CAS  Google Scholar 

  28. McDonald ES, Windebank AJ. Mechanisms of neurotoxic injury and cell death. Neurol Clin 2000; 18(3): 525–40

    Article  PubMed  CAS  Google Scholar 

  29. ter Laak MP, Hamers FP, Kirk CJ, et al. rhGGF2 protects against cisplatin-induced neuropathy in the rat. J Neurosci Res 2000; 60: 237–44

    Article  PubMed  Google Scholar 

  30. Fischer SJ, Podratz JL, Windebank AJ. Nerve growth factor rescue of cisplatin neurotoxicity is mediated through the high affinity receptor: studies in PC12 cells and p75 null mouse dorsal root ganglia. Neurosci Lett 2001; 308: 1–4

    Article  PubMed  CAS  Google Scholar 

  31. Pace A, Savarese A, Picardo M, et al. Neuroprotective effect of vitamin E supplementation in patients treated with cisplatin chemotherapy. J Clin Oncol 2003; 21(5): 927–31

    Article  PubMed  CAS  Google Scholar 

  32. Theiss C, Meller K. Taxol impairs anterograde axonal transport of microinjected horseradish peroxidase in dorsal root ganglia neurons in vitro. Cell Tissue Research 2000; 299(2): 213–24

    Article  PubMed  CAS  Google Scholar 

  33. Sahenk Z, Barohn R, New P, et al. Taxol neuropath: electrodiagnostic and sural nerve biopsy findings. Arch Neurology 1994; 51(7): 726–9

    Article  CAS  Google Scholar 

  34. Apfel SC. Taxoids. In: Spencer PS, Schaumberg HH, editors. Experimental and clinical neurotoxicology. New York (NY): Oxford University Press, 2000: 1135–40

    Google Scholar 

  35. Savarese D, Boucher J, Corey B. Glutamine treatment of paclitaxel-induced myalgias and arthralgias. J Clin Oncol 1998; 16: 3918–9

    PubMed  CAS  Google Scholar 

  36. Grothey A. Clinical management of oxaliplatin-associated neurotoxicity. Clin Colorectal Cancer 2005; 5Suppl. 1: S38–46

    Article  PubMed  CAS  Google Scholar 

  37. Griggs JJ. Reducing the toxicity of anticancer therapy: new strategies. Leuk Res 1998; 22Suppl. 1: S27–33

    Article  PubMed  CAS  Google Scholar 

  38. Leong SS, Tan EH, Fong KW, et al. Randomized double-blind trial of combined modality treatment with or without amifostine in unresectable stage III non-small-cell lung cancer. J Clin Oncol 2003; 21(9): 1767–74

    Article  PubMed  CAS  Google Scholar 

  39. Wang MS, Davis AA, Culver DG, et al. Calpain inhibition protects against Taxol-induced sensory neuropathy. Brain 2004; 127(Pt 3): 671–9

    PubMed  Google Scholar 

  40. Rose PG, Smrekar M. Improvement of paclitaxel-induced neuropathy by substitution of docetaxel for paclitaxel. Gynecol Oncol 2003; 91(2): 423–5

    Article  PubMed  CAS  Google Scholar 

  41. Giannini F, Volpi N, Rossi S, et al. Thalidomide-induced neuropathy: a ganglionopathy? Neurology 2003; 60(5): 877–8

    Article  PubMed  CAS  Google Scholar 

  42. Cavaletti G, Beronio A, Reni L, et al. Thalidomide sensory neurotoxicity: a clinical and neurophysiologic study. Neurology 2004; 62(12): 2291–3

    Article  PubMed  CAS  Google Scholar 

  43. Calabrese L, Fleischer AB. Thalidomide: current and potential clinical applications. Am J Med 2000; 108(6): 487–95

    Article  PubMed  CAS  Google Scholar 

  44. D’Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 1994; 91(9): 4082–5

    Article  PubMed  Google Scholar 

  45. Zorat F, Pozzato G. Thalidomide in myelodysplastic syndromes. Biomed Pharmacother 2002; 56(1): 20–30

    Article  PubMed  CAS  Google Scholar 

  46. Singhal S, Mehta J. Thalidomide in cancer. Biomed Pharmacother 2002; 56(1): 4–12

    Article  PubMed  CAS  Google Scholar 

  47. McBride WG. Fetal nerve cell degeneration produced by thalidomide in rabbits. Teratology 1974; 10(3): 283–91

    Article  PubMed  CAS  Google Scholar 

  48. Lagueny A, Rommel A, Vignolly B, et al. Thalidomide neuropathy: an electrophysiologic study. Muscle Nerve 1986; 9(9): 837–44

    Article  PubMed  CAS  Google Scholar 

  49. Bastuji-Garin S, Ochonisky S, Bouche P, et al. Incidence and risk factors for thalidomide neuropathy: a prospective study of 135 dermatologic patients. J Invest Dermatol 2002; 119(5): 1020–6

    Article  PubMed  CAS  Google Scholar 

  50. Chaudhry V, Cornblath DR, Corse A, et al. Thalidomide-induced neuropathy. Neurology 2002; 59(12): 1872–5

    Article  PubMed  CAS  Google Scholar 

  51. Rao DG, Kane NM, Oware A. Thalidomide neuropathy: role of F-wave monitoring. Muscle Nerve 2000; 23(8): 1301–2

    Article  PubMed  CAS  Google Scholar 

  52. Moore RD, Wong WM, Keruly JC, et al. Incidence of neuropathy in HIV-infected patients on monotherapy versus those on combination therapy with didanosine, stavudine and hydroxyurea. AIDS 2000; 14(3): 273–8

    Article  PubMed  CAS  Google Scholar 

  53. Griffin JW, McArthur JC, Polydefkis M. Assessment of cutaneous innervation by skin biopsies. Curr Opin Neurol 2001; 14: 655–9

    Article  PubMed  CAS  Google Scholar 

  54. Keilbaugh SA, Prusoff WH, Simpson MV. The PC12 cell as a model for studies of the mechanism of induction of peripheral neuropathy by anti-HIV-1 dideoxynucleoside analogs. Biochem Pharmacol 1991; 42: R5–8

    Article  PubMed  CAS  Google Scholar 

  55. White AJ. Mitochondrial toxicity and HIV therapy. Sex Transm Infect 2001; 77: 158–73

    Article  PubMed  CAS  Google Scholar 

  56. Arezzo JC. Dideoxycytidine and other nucleoside analogs. In: Spencer PS, Schaumberg HH, editors. Experimental and clinical neurotoxicology. New York (NY): Oxford University Press, 2000: 486–9

    Google Scholar 

  57. Sundar K, Suarez M, Banogon PE, et al. Zidovudine-induced fatal lactic acidosis and hepatic failure in patients with acquired immunodeficiency syndrome: report of two patients and review of the literature. Crit Care Med 1997; 25(8): 1425–30

    Article  PubMed  CAS  Google Scholar 

  58. Reiss P, Casula M, de Ronde A, et al. Greater and more rapid depletion of mitochondrial DNA in blood of patients treated with dual (zidovudine+didanosine or zidovudine+zalcitabine) vs single (zidovudine) nucleoside reverse transcriptase inhibitors. HIV Med 2004; 5(1): 11–4

    Article  PubMed  CAS  Google Scholar 

  59. Claessens YE, Cariou A, Monchi M, et al. Detecting life-threatening lactic acidosis related to nucleoside-analog treatment of human immunodeficiency virus-infected patients, and treatment with L-carnitine. Crit Care Med 2003; 31(4): 1042–7

    Article  PubMed  CAS  Google Scholar 

  60. Coghlan ME, Sommadossi JP, Jhala NC, et al. Symptomatic lactic acidosis in hospitalized antiretroviral-treated patients with human immunodeficiency virus infection: a report of 12 cases. Clin Infect Dis 2001; 33(11): 1914–21

    Article  PubMed  CAS  Google Scholar 

  61. Brew BJ, Tisch S, Law M. Lactate concentrations distinguish between nucleoside neuropathy and HIV neuropathy. AIDS 2003; 17(7): 1094–6

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms Denice Janus for secretarial assistance. The authors were supported in part by NIH NS42056, The Juvenile Diabetes Research Foundation Center for the Study of Complications in Diabetes (JDRF), Office of Research Development (Medical Research Service), Department of Veterans Affairs (JWR) and NIH T32 NS07222 (ACP). The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peltier, A.C., Russell, J.W. Advances in Understanding Drug-Induced Neuropathies. Drug-Safety 29, 23–30 (2006). https://doi.org/10.2165/00002018-200629010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200629010-00002

Keywords

Navigation