Skip to main content
Log in

Identifying DNA Methylation Biomarkers of Cancer Drug Response

American Journal of Pharmacogenomics

Abstract

In the last few years, DNA methylation has become one of the most studied gene regulation mechanisms in carcinogenesis as a result of the cumulative evidence produced by the scientific community. Moreover, advances in the technologies that allow detection of DNA methylation in a variety of analytes have opened the possibility of developing methylation-based tests. A number of studies have provided evidence that specific methylation changes can alter the response to different therapeutic agents in cancer and, therefore, be useful biomarkers. For example, the association of the methylation status of DNA repair genes such as MGMT and MLH1 illustrate the two main mechanisms of response to DNA damaging agents. Loss of methylation of MGMT, and the subsequent increase in gene expression, leads to a reduction in response to alkylating agents as a result of enhanced repair of drug-induced DNA damage. Conversely, the increase in methylation of MLH1 and its resulting loss of expression has been consistently observed in drug-resistant tumor cells. MLH1 encodes a mismatch repair enzyme activated in response to DNA damage; activation of MLH1 also induces apoptosis of tumor cells, and thus loss of its expression leads to resistance to DNA-damaging agents. Other methylation-regulated genes that could serve as biomarkers in cancer therapy include drug transporters, genes involved in microtubule formation and stability, and genes related to hormonal therapy response. These methylation markers have potential applications for disease prognosis, treatment response prediction, and the development of novel treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I

Similar content being viewed by others

References

  1. Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2000 Nov 9; 343(19): 1350–4

    Article  PubMed  CAS  Google Scholar 

  2. Paz MF, Yaya-Tur R, Rojas-Marcos I, et al. CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 2004 Aug 1; 10(15): 4933–8

    Article  PubMed  CAS  Google Scholar 

  3. Hegi ME, Diserens AC, Godard S, et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 2004 Mar 15; 10(6): 1871–4

    Article  PubMed  CAS  Google Scholar 

  4. Balana C, Ramirez JL, Taron M, et al. O6-methyl-guanine-DNA methyltransferase methylation in serum and tumor DNA predicts response to 1,3-bis (2-chloroethyl)-1-nitrosourea but not to temozolamide plus cisplatin in glioblastoma multiforme. Clin Cancer Res 2003 Apr; 9(4): 1461–8

    PubMed  CAS  Google Scholar 

  5. Esteller M, Gaidano G, Goodman SN, et al. Hypermethylation of the DNA repair gene O (6)-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J Natl Cancer Inst 2002 Jan 2; 94(1): 26–32

    Article  PubMed  CAS  Google Scholar 

  6. Christmann M, Pick M, Lage H, et al. Acquired resistance of melanoma cells to the antineoplastic agent fotemustine is caused by reactivation of the DNA repair gene MGMT. Int J Cancer 2001 Apr 1; 92(1): 123–9

    Article  PubMed  CAS  Google Scholar 

  7. Balch C, Huang TH, Brown R, et al. The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol 2004 Nov; 191(5): 1552–72

    Article  PubMed  CAS  Google Scholar 

  8. Plumb JA, Strathdee G, Sludden J, et al. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the MLH1 gene promoter. Cancer Res 2000 Nov 1; 60(21): 6039–44

    PubMed  CAS  Google Scholar 

  9. Arnold CN, Goel A, Boland CR. Role of MLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer 2003 Aug 10; 106(1): 66–73

    Article  PubMed  CAS  Google Scholar 

  10. Worm J, Kirkin AF, Dzhandzhugazyan KN, et al. Methylation-dependent silencing of the reduced folate carrier gene in inherently methotrexate-resistant human breast cancer cells. J Biol Chem 2001 Oct 26; 276(43): 39990–40000

    Article  PubMed  CAS  Google Scholar 

  11. Hsueh CT, Dolnick BJ. Regulation of folate-binding protein gene expression by DNA methylation in methotrexate-resistant KB cells. Biochem Pharmacol 1994 Mar 15; 47(6): 1019–27

    Article  PubMed  CAS  Google Scholar 

  12. Efferth T, Futscher BW, Osieka R. 5-Azacytidine modulates the response of sensitive and multidrug-resistant K562 leukemic cells to cytostatic drugs. Blood Cells Mol Dis 2001 May–Jun; 27(3): 637–48

    Article  PubMed  CAS  Google Scholar 

  13. Kantharidis P, El-Osta S, Silva M, et al. Regulation of MDR1 gene expression: emerging concepts. Drug Resist Updat 2000 Apr; 3(2): 99–108

    Article  PubMed  CAS  Google Scholar 

  14. Baker EK, El-Osta A. The rise of DNA methylation and the importance of chromatin on multidrug resistance in cancer. Exp Cell Res 2003 Nov 1; 290(2): 177–94

    Article  PubMed  CAS  Google Scholar 

  15. Bearzatto A, Szadkowski M, Macpherson P, et al. Epigenetic regulation of the MGMT and hMSH6 DNA repair genes in cells resistant to methylating agents. Cancer Res 2000 Jun 15; 60(12): 3262–70

    PubMed  CAS  Google Scholar 

  16. Christmann M, Kaina B. Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents. J Biol Chem 2000 Nov 17; 275(46): 36256–62

    Article  PubMed  CAS  Google Scholar 

  17. Roman-Gomez J, Castillejo JA, Jimenez A, et al. Cadherin-13, a mediator of calcium-dependent cell-cell adhesion, is silenced by methylation in chronic myeloid leukemia and correlates with pretreatment risk profile and cytogenetic response to interferon alfa. J Clin Oncol 2003 Apr 15; 21(8): 1472–9

    Article  PubMed  CAS  Google Scholar 

  18. Duan Z, Feller AJ, Toh HC, et al. TRAG-3, a novel gene, isolated from a taxol-resistant ovarian carcinoma cell line. Gene 1999 Mar 18; 229(1–2): 75–81

    Article  PubMed  CAS  Google Scholar 

  19. Duan Z, Duan Y, Lamendola DE, et al. Overexpression of MAGE/GAGE genes in paclitaxel/doxorubicin-resistant human cancer cell lines. Clin Cancer Res 2003 Jul; 9(7): 2778–85

    PubMed  CAS  Google Scholar 

  20. Yao X, Hu JF, Li T, et al. Epigenetic regulation of the taxol resistance-associated gene TRAG-3 in human tumors. Cancer Genet Cytogenet 2004 May; 151(1): 1–13

    Article  PubMed  CAS  Google Scholar 

  21. Satoh A, Toyota M, Itoh F, et al. Epigenetic inactivation of CHFR and sensitivity to microtubule inhibitors in gastric cancer. Cancer Res 2003 Dec 15; 63(24): 8606–13

    PubMed  CAS  Google Scholar 

  22. D’Andrea AD. The Fanconi anemia/BRCA signaling pathway: disruption in cisplatin-sensitive ovarian cancers. Cell Cycle 2003 Jul-Aug; 2(4): 290–2

    PubMed  Google Scholar 

  23. Olopade OI, Wei M. FANCF methylation contributes to chemoselectivity in ovarian cancer. Cancer Cell 2003 May; 3(5): 417–20

    Article  PubMed  CAS  Google Scholar 

  24. Taniguchi T, Tischkowitz M, Ameziane N, et al. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med 2003 May; 9(5): 568–74

    Article  PubMed  CAS  Google Scholar 

  25. Liu L, Tommasi S, Lee DH, et al. Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene 2003 Nov 6; 22(50): 8125–36

    Article  PubMed  CAS  Google Scholar 

  26. Koul S, McKiernan JM, Narayan G, et al. Role of promoter hypermethylation in Cisplatin treatment response of male germ cell tumors. Mol Cancer 2004 May 18; 3(1): 16

    Article  PubMed  Google Scholar 

  27. Lafarge S, Sylvain V, Ferrara M, et al. Inhibition of BRCA1 leads to increased chemoresistance to microtubule-interfering agents, an effect that involves the JNK pathway. Oncogene 2001 Oct 4; 20(45): 6597–606

    Article  PubMed  CAS  Google Scholar 

  28. Widschwendter M, Berger J, Muller HM, et al. Epigenetic downregulation of the retinoic acid receptor-beta2 gene in breast cancer. J Mammary Gland Biol Neoplasia 2001 Apr; 6(2): 193–201

    Article  PubMed  CAS  Google Scholar 

  29. Virmani AK, Rathi A, Zöchbauer-Müller S, et al. Promoter methylation and silencing of the retinoic acid receptor beta in lung carcinomas. J Natl Cancer Inst 2000 Aug; 92(16): 1303–7

    Article  PubMed  CAS  Google Scholar 

  30. Esteller M, Guo M, Moreno V, et al. Hypermethylation-associated Inactivation of the cellular retinol-binding-protein 1 gene in human cancer. Cancer Res 2002 Oct 15; 62(20): 5902–5

    PubMed  CAS  Google Scholar 

  31. Chang HG, Kim SJ, Chung KW, et al. Tamoxifen-resistant breast cancers show less frequent methylation of the estrogen receptor beta but not the estrogen receptor alpha gene. J Mol Med 2005 Feb; 83(2): 132–9

    Article  PubMed  CAS  Google Scholar 

  32. Yang X, Phillips DL, Ferguson AT, et al. Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res 2001 Oct 1; 61(19): 7025–9

    PubMed  CAS  Google Scholar 

  33. Jarrard DF, Kinoshita H, Shi Y, et al. Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells. Cancer Res 1998 Dec 1; 58(23): 5310–4

    PubMed  CAS  Google Scholar 

  34. Izbicka E, MacDonald JR, Davidson K, et al. 5,6 Dihydro-5′-azacytidine (DHAC) restores androgen responsiveness in androgen-insensitive prostate cancer cells. Anticancer Res 1999 Mar–Apr; 19(2A): 1285–91

    PubMed  CAS  Google Scholar 

  35. Bird A. The essentials of DNA methylation. Cell 1992 Jul 10; 70(1): 5–8

    Article  PubMed  CAS  Google Scholar 

  36. Cross S, Bird A. CpG islands and genes. Curr Opin Genet Dev 1995; 5: 309–14

    Article  PubMed  CAS  Google Scholar 

  37. Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 1993 Dec 15; 90(24): 11995–9

    Article  PubMed  CAS  Google Scholar 

  38. Chan MF, Liang G, Jones PA. Relationship between transcription and DNA methylation. Curr Top Microbiol Immunol 2000; 249: 75–86

    Article  PubMed  CAS  Google Scholar 

  39. Hermann R, Doerfler W. Interference with protein binding at AP2 sites by sequence-specific methylation in the late E2A promoter of adenovirus type 2 DNA. FEBS Lett 1991 Apr 9; 281(1–2): 191–5

    Article  PubMed  CAS  Google Scholar 

  40. Clark SJ, Harrison J, Molloy PL. Sp1 binding is inhibited by (m)Cp (m)CpG methylation. Gene 1997 Aug 11; 195(1): 67–71

    Article  PubMed  CAS  Google Scholar 

  41. Prendergast GC, Ziff EB. Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 1991 Jan 11; 251(4990): 186–9

    Article  PubMed  CAS  Google Scholar 

  42. Bester TH. Gene silencing: methylation meets acetylation. Nature 1998 May 28; 393(6683): 311–2

    Article  Google Scholar 

  43. Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 1997 Feb 21; 88(4): 471–81

    Article  PubMed  CAS  Google Scholar 

  44. Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998 May 28; 393(6683): 386–9

    Article  PubMed  CAS  Google Scholar 

  45. Jones PL, Veenstra GJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998 Jun; 19(2): 187–91

    Article  PubMed  CAS  Google Scholar 

  46. Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 2002 Apr; 1(4): 287–99

    Article  PubMed  CAS  Google Scholar 

  47. Marks PA, Richon VM, Breslow R, et al. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 2001 Nov; 13(6): 477–83

    Article  PubMed  CAS  Google Scholar 

  48. Bachman KE, Park BH, Rhee I, et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 2003 Jan; 3(1): 89–95

    Article  PubMed  CAS  Google Scholar 

  49. Chan MF, Liang G, Jones PA. Relationship between transcription and DNA methylation. Curr Top Microbiol Immunol 2000; 249: 75–86

    Article  PubMed  CAS  Google Scholar 

  50. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene 2001 May 28; 20(24): 3139–55

    Article  PubMed  CAS  Google Scholar 

  51. Pradhan S, Bacolla A, Wells RD, et al. Recombinant human DNA (cytosine-5) methyltransferase: I. expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 1999 Nov 12; 274(46): 33002–10

    Article  PubMed  CAS  Google Scholar 

  52. Chuang LS, Ian HI, Koh TW, et al. Human DNA- (cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 1997 Sep 26; 277(5334): 1996–2000

    Article  PubMed  CAS  Google Scholar 

  53. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69: 915–26

    Article  PubMed  CAS  Google Scholar 

  54. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature 1993; 366: 362–5

    Article  PubMed  CAS  Google Scholar 

  55. Panning B, Jaenisch R. RNA and the epigenetic regulation of X chromosome inactivation. Cell 1998; 93: 305–8

    Article  PubMed  CAS  Google Scholar 

  56. Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 1998; 20: 116–7

    Article  PubMed  CAS  Google Scholar 

  57. Richardson B. Impact of aging on DNA methylation. Ageing Res Rev 2003 Jul; 2(3): 245–61

    Article  PubMed  CAS  Google Scholar 

  58. Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004 May 27; 429(6990): 457–63

    Article  PubMed  CAS  Google Scholar 

  59. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002 Jun; 3(6): 415–28

    PubMed  CAS  Google Scholar 

  60. Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer 2003 Apr; 3(4): 253–66

    Article  PubMed  CAS  Google Scholar 

  61. Ludlum DB. DNA alkylation by the haloethylnitrosoureas: nature of modifications produced and their enzymatic repair or removal. Mutat Res 1990 Nov–Dec; 233(1–2): 117–26

    PubMed  CAS  Google Scholar 

  62. Jaeckle KA, Eyre HJ, Townsend JJ, et al. Correlation of tumor O6 methylguanine-DNA methyltransferase levels with survival of malignant astrocytoma patients treated with bis-chloroethylnitrosourea: a Southwest Oncology Group study. J Clin Oncol 1998 Oct; 16(10): 3310–5

    PubMed  CAS  Google Scholar 

  63. Chen ZP, Yarosh D, Garcia Y, et al. Relationship between O6-methylguanine-DNA methyltransferase levels and clinical response induced by chloroethylnitrosourea therapy in glioma patients. Can J Neurol Sci 1999 May; 26(2): 104–9

    PubMed  CAS  Google Scholar 

  64. Aquilina G, Hess P, Branch P, et al. A mismatch recognition defect in colon carcinoma confers DNA microsatellite instability and a mutator phenotype. Proc Natl Acad Sci U S A 1994 Sep 13; 91(19): 8905–9

    Article  PubMed  CAS  Google Scholar 

  65. Karran P, Bignami M. DNA damage tolerance, mismatch repair and genome instability. Bioessays 1994 Nov; 16(11): 833–9

    Article  PubMed  CAS  Google Scholar 

  66. Brown R, Hirst GL, Gallagher WM, et al. MLH1 expression and cellular responses of ovarian tumour cells to treatment with cytotoxic anticancer agents. Oncogene 1997 Jul 3; 15(1): 45–52

    Article  PubMed  CAS  Google Scholar 

  67. Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 2003 Jul; 3(7): 502–16

    Article  PubMed  CAS  Google Scholar 

  68. Kat A, Thilly WG, Fang WH, et al. An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc Natl Acad Sci U S A 1993 Jul 15; 90(14): 6424–8

    Article  PubMed  CAS  Google Scholar 

  69. Gifford G, Paul J, Vasey PA, et al. The acquisition of MLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin Cancer Res 2004 Jul 1; 10(13): 4420–6

    Article  PubMed  CAS  Google Scholar 

  70. Johnson L, Chu E. Lack of benefit of 5-fluorouracil-based adjuvant chemotherapy in colorectal cancer with microsatellite instability. Clin Colorectal Cancer 2002 Nov; 2(3): 146–8

    Article  PubMed  CAS  Google Scholar 

  71. Sakaeda T, Nakamura T, Okumura K. Pharmacogenetics of MDR1 and its impact on the pharmacokinetics and pharmacodynamics of drugs. Pharmacogenomics 2003 Jul; 4(4): 397–410

    Article  PubMed  CAS  Google Scholar 

  72. Kantharidis P, El-Osta A, deSilva M, et al. Altered methylation of the human MDR1 promoter is associated with acquired multidrug resistance. Clin Cancer Res 1997 Nov; 3(11): 2025–32

    PubMed  CAS  Google Scholar 

  73. Rothem L, Stark M, Kaufman Y, et al. Reduced folate carrier gene silencing in multiple antifolate-resistant tumor cell lines is due to a simultaneous loss of function of multiple transcription factors but not promoter methylation. J Biol Chem 2004 Jan 2; 279(1): 374–84

    Article  PubMed  CAS  Google Scholar 

  74. Ferreri AJ, Dell’Oro S, Capello D, et al. Aberrant methylation in the promoter region of the reduced folate carrier gene is a potential mechanism of resistance to methotrexate in primary central nervous system lymphomas. Br J Haematol 2004 Sep; 126(5): 657–64

    Article  PubMed  CAS  Google Scholar 

  75. Toyota M, Sasaki Y, Satoh A, et al. Epigenetic inactivation of CHFR in human tumors. Proc Natl Acad Sci U S A 2003 Jun 24; 100(13): 7818–23

    Article  PubMed  CAS  Google Scholar 

  76. Li LC, Chui R, Nakajima K, et al. Frequent methylation of estrogen receptor in prostate cancer: correlation with tumor progression. Cancer Res 2000 Feb 1; 60(3): 702–6

    PubMed  CAS  Google Scholar 

  77. Zhao C, Lam EW, Sunters A, et al. Expression of estrogen receptor beta isoforms in normal breast epithelial cells and breast cancer: regulation by methylation. Oncogene 2003 Oct 23; 22(48): 7600–6

    Article  PubMed  CAS  Google Scholar 

  78. Lapidus RG, Ferguson AT, Ottaviano YL, et al. Methylation of estrogen and progesterone receptor gene 5′ CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin Cancer Res 1996 May; 2(5): 805–10

    PubMed  CAS  Google Scholar 

  79. Nass SJ, Herman JG, Gabrielson E, et al. Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Res 2000 Aug 15; 60(16): 4346–8

    PubMed  CAS  Google Scholar 

  80. Sasaki M, Kaneuchi M, Fujimoto S, et al. Hypermethylation can selectively silence multiple promoters of steroid receptors in cancers. Mol Cell Endocrinol 2003 Apr 28; 202(1–2): 201–7

    Article  PubMed  CAS  Google Scholar 

  81. Widschwendter M, Siegmund KD, Muller HM, et al. Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res 2004 Jun 1; 64(11): 3807–13

    Article  PubMed  CAS  Google Scholar 

  82. Eads CA, Danenberg KD, Kawakami K, et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 2000 Apr 15; 28(8): e32

    Article  PubMed  CAS  Google Scholar 

  83. Maier S, Nimmrich I, Marx A, et al. DNA methylation profile predicts risk of recurrence in tamoxifen-treated, node-negative breast cancer patients [abstract for oral presentation]. In: Grunberg SM, editor. 40th Annual Meeting of the American Society of Clinical Oncology: Annual Meeting Proceedings; 2004 Jun 5–8; New Orleans. 525

  84. Toyota M, Kopecky KJ, Toyota MO, et al. Methylation profiling in acute myeloid leukemia. Blood 2001 May 1; 97(9): 2823–9

    Article  PubMed  CAS  Google Scholar 

  85. Dowell JE, Minna JD. Cancer chemotherapy targeted at reactivating the expression of epigenetically inactivated genes. J Clin Oncol 2004 Apr 15; 22(8): 1353–5

    Article  PubMed  Google Scholar 

  86. Reid GK, Besterman JM, MacLeod AR. Selective inhibition of DNA methyltransferase enzymes as a novel strategy for cancer treatment. Curr Opin Mol Ther 2002 Apr; 4(2): 130–7

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

All authors are the employees of Epigenomics, a company developing DNA-methylation based biomarkers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Maier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, S., Dahlstroem, C., Haefliger, C. et al. Identifying DNA Methylation Biomarkers of Cancer Drug Response. Am J Pharmacogenomics 5, 223–232 (2005). https://doi.org/10.2165/00129785-200505040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200505040-00003

Keywords

Navigation