Skip to main content
Log in

Role of Bacterial Superantigens in Atopic Dermatitis

Implications for Future Therapeutic Strategies

American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

The role of staphylococcal superantigens in the pathophysiology of atopic dermatitis (AD) has been the focus of intense interest during the past decade. Although the increased prevalence of Staphylococcus aureus and its bacterial toxins in AD skin is well established, exploitation of the known mechanisms of superantigens in this disease for the development of novel therapies remains an active area of research. With the emergence of multi-drug resistant S. aureus, the need for a better understanding of the pathophysiology of bacterial superantigens in AD has become increasingly important. This review examines the mechanisms of S. aureus colonization and infection, of which the most important are defective skin barrier function, increased S. aureus adherence, and the decreased innate immune responses found in AD skin. The contribution of superantigens to the pathophysiology of AD is then discussed. Important immunologic mechanisms in this context include the role of superantigens in promoting T helper-2 skin inflammation, IgE production, T-regulatory cell subversion, expansion and migration of skin-homing T cells, and IgE anti-superantigen production. Lastly, these findings are discussed with reference to current therapeutic approaches, of which the most important include anti-inflammatory and antimicrobial medications, and future strategies, which are expected to consist of immune-modulators and synthetic antibacterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II

Similar content being viewed by others

References

  1. Leung DY, Meissner HC, Fulton DR, et al. Toxic shock syndrome toxin-secreting Staphylococcus aureus in Kawasaki syndrome. Lancet. 1993 Dec 4; 342 (8884): 1385–8

    Article  PubMed  CAS  Google Scholar 

  2. Leyden JJ, Marples RR, Kligman AM. Staphylococcus aureus in the lesions of atopic dermatitis. Br J Dermatol. 1974 May; 90 (5): 525–30

    Article  PubMed  CAS  Google Scholar 

  3. Dahl MV. Staphylococcus aureus and atopic dermatitis. Arch Dermatol. 1983 Oct; 119 (10): 840–6

    Article  PubMed  CAS  Google Scholar 

  4. Aly R, Maibach HI, Shinefield HR. Microbial flora of atopic dermatitis. Arch Dermatol. 1977 Jun; 113 (6): 780–2

    Article  PubMed  CAS  Google Scholar 

  5. Marrack P, Kappler J. The staphylococcal enterotoxins and their relatives. Science. 1990 Jun 1; 248 (4959): 1066

    PubMed  CAS  Google Scholar 

  6. Hank PJ, Hamid QA, Chrousos GP, et al. Induction of corticosteroid insensitivity in human PBMCs by microbial superantigens. J Allergy Clin Immunol. 2000 Apr; 105 (4): 782–7

    Article  Google Scholar 

  7. Hank PJ, Leung DY. Tacrolimus (FK506): new treatment approach in superantigen-associated diseases like atopic dermatitis?. J Allergy Clin Immunol. 2001 Feb; 107 (2): 391–2

    Article  Google Scholar 

  8. Bax R, Bywater R, Cornaglia G, et al. Surveillance of antimicrobial resistance: what, how and whither?. Clin Microbiol Infect. 2001 Jun; 7 (6): 316–25

    Article  PubMed  CAS  Google Scholar 

  9. Heritage J, Wilcox M, Sandoe J. Antimicrobial resistance potential. Lancet. 2001 Sep 29; 358 (9287): 1099–100

    Article  PubMed  CAS  Google Scholar 

  10. Zetola N, Francis JS, Nuermberger EL, et al. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis. 2005 May; 5 (5): 275–86

    Article  PubMed  Google Scholar 

  11. Fridkin SK, Hageman JC, Morrison M, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med. 2005 Apr 7; 352 (14): 1436–44

    Article  PubMed  CAS  Google Scholar 

  12. Leung DY. Infection in atopic dermatitis. Curr Opin Pediatr. 2003 Aug; 15 (4): 399–404

    Article  PubMed  Google Scholar 

  13. Chu D, Haake A, Holbrook K, et al. The structure and development of skin. In: Freedberg IM, Eisen AZ, Wolff K, et al., editors. Fitzpatrick’s dermatology in general medicine. New York: McGraw-Hill, 2003: 58–88

    Google Scholar 

  14. Leung DY. Atopic dermatitis and the immune system: the role of superantigens and bacteria. J Am Acad Dermatol. 2001 Jul; 45 (1 Suppl.): S13–6

    Article  PubMed  CAS  Google Scholar 

  15. Cho SH, Strickland I, Boguniewicz M, et al. Fibronectin and fibrinogen contribute to the enhanced binding of Staphylococcus aureus to atopic skin. J Allergy Clin Immunol. 2001 Aug; 108 (2): 269–74

    Article  PubMed  CAS  Google Scholar 

  16. Akiyama H, Hamada T, Huh WK, et al. Confocal laser scanning microscopic observation of glycocalyx production by Staphylococcus aureus in skin lesions of buttons impetigo, atopic dermatitis and pemphigus foliaceus. Br J Dermatol. 2003 Mar; 148 (3): 526–32

    Article  PubMed  CAS  Google Scholar 

  17. Morishita Y, Tada J, Sato A, et al. Possible influences of Staphylococcus aureus on atopic dermatitis: the colonizing features and the effects of staphylococcal enterotoxins. Clin Exp Allergy. 1999 Aug; 29 (8): 1110–7

    Article  PubMed  CAS  Google Scholar 

  18. Arikawa J, Ishibashi M, Kawashima M, et al. Decreased levels of sphingosine, a natural antimicrobial agent, may be associated with vulnerability of the stratum comeum from patients with atopic dermatitis to colonization by Staphylococcus aureus. J Invest Dermatol. 2002 Aug; 119 (2): 433–9

    Article  PubMed  CAS  Google Scholar 

  19. Mempel M, Schmidt T, Weidinger S, et al. Role of Staphylococcus aureus surface-associated proteins in the attachment to cultured HaCaT keratinocytes in a new adhesion assay. J Invest Dermatol. 1998 Sep; 111 (3): 452–6

    Article  PubMed  CAS  Google Scholar 

  20. Postlethwaite AE, Hotness MA, Katai H, et al. Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J Clin Invest. 1992 Oct; 90 (4): 1479–85

    Article  PubMed  CAS  Google Scholar 

  21. Christophers E, Henseler T. Contrasting disease patterns in psoriasis and atopic dermatitis. Arch Dermatol Res. 1987; 279 Suppl.: S48–51

    Article  PubMed  Google Scholar 

  22. Grice K, Sattar H, Baker H, et al. The relationship of transepidermal water loss to skin temperature in psoriasis and eczema. J Invest Dermatol. 1975 May; 64 (5): 313–5

    Article  PubMed  CAS  Google Scholar 

  23. Nomura I, Goleva E, Howell MD, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003 Sep 15; 171 (6): 3262–9

    PubMed  CAS  Google Scholar 

  24. Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002 Oct 10; 347 (15): 1151–60

    Article  PubMed  CAS  Google Scholar 

  25. Gallo RL, Murakamt M, Ohtake T, et al. Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy Clin Immunol. 2002 Dec; 110 (6): 823–31

    Article  PubMed  CAS  Google Scholar 

  26. Howell MD, Novak N, Bieber T, et al. Interleukin-10 downregulates anti-microbial peptide expression in atopic dermatitis. J Invest Dermatol. 2005 Oct; 125 (4): 738–45

    Article  PubMed  CAS  Google Scholar 

  27. Laouini D, Kawamoto S, Yalcindag A, et al. Epicutaneous sensitization with superantigen induces allergic skin inflammation. J Allergy Clin Immunol. 2003 Nov; 112 (5): 981–7

    Article  PubMed  CAS  Google Scholar 

  28. Lin YT, Wang CT, Hsu CT, et al. Differential susceptibility to staphylococcal superantigen (SsAg)-induced apoptosis of CD4+ T cells from atopic dermatitis patients and healthy subjects: the inhibitory effect of IL-4 on SsAg-induced apoptosis. J Immunol. 2003 Jul 15; 171 (2): 1102–8

    PubMed  CAS  Google Scholar 

  29. Leung DY, Soler NA. Cellular and immunologic mechanisms in atopic dermatitis. J Am Acad Dermatol. 2001 Jan; 44 (1 Suppl.): S1–12

    Article  PubMed  CAS  Google Scholar 

  30. Travers JB, Norris DA, Leung DY. The keratinocyte as a target for staphylococcal bacterial toxins. J Investig Dermatol Symp Proc. 2001 Dec; 6 (3): 225–30

    Article  PubMed  CAS  Google Scholar 

  31. Yarwood JM, Leung DY, Schlievert PM. Evidence for the involvement of bacterial superantigens in psoriasis, atopic dermatitis, and Kawasaki syndrome. FEMS Microbiol Lett. 2000 Nov 1; 192 (1): 1–7

    Article  PubMed  CAS  Google Scholar 

  32. Zollner TM, Wichelhaus TA, Hartung A, et al. Colonization with superantigen-producing Staphylococcus aureus is associated with increased severity of atopic dermatitis. Clin Exp Allergy. 2000 Jul; 30 (7): 994–1000

    Article  PubMed  CAS  Google Scholar 

  33. Taskapan MO, Kumar P. Role of staphylococcal superantigens in atopic dermatitis: from colonization to inflammation. Ann Allergy Asthma Immunol. 2000 Jan; 84 (1): 3–10

    Article  PubMed  CAS  Google Scholar 

  34. Strickland I, Hauk PJ, Trumble AE, et al. Evidence for superantigen involvement in skin homing of T cells in atopic dermatitis. J Invest Dermatol. 1999 Feb; 112 (2): 249–53

    Article  PubMed  CAS  Google Scholar 

  35. Bunikowski R, Mielke M, Skarabis H, et al. Prevalence and role of serum IgE antibodies to the Staphylococcus aureus-derived superantigens SEA and SEB in children with atopic dermatitis. J Allergy Clin Immunol. 1999 Jan; 103 (1 Pt 1): 119–24

    Article  PubMed  CAS  Google Scholar 

  36. Leung DY, Hank P, Strickland I, et al. The role of superantigens in human diseases: therapeutic implications for the treatment of skin diseases. Br J Dermatol. 1998 Dec; 139 Suppl. 53: 17–29

    Article  PubMed  CAS  Google Scholar 

  37. Bunikowski R, Mielke ME, Skarabis H, et al. Evidence for a disease-promoting effect of Staphylococcus aureus-derived exotoxins in atopic dermatitis. J Allergy Clin Immunol. 2000; 105: 814–9

    Article  PubMed  CAS  Google Scholar 

  38. Proft T, Fraser JD. Bacterial superantigens. Clin Exp Immunol. 2003 Sep; 133 (3): 299–306

    Article  PubMed  CAS  Google Scholar 

  39. Carlsson R, Fischer H, Sjogren HO. Binding of staphylococcal enterotoxin A to accessory cells is a requirement for its ability to activate human T cells. J Immunol. 1988 Apr 15; 140 (8): 2484–8

    PubMed  CAS  Google Scholar 

  40. Breuer K, Kapp A, Werfel T. Bacterial infections and atopic dermatitis. Allergy. 2001 Nov; 56 (11): 1034–41

    Article  PubMed  CAS  Google Scholar 

  41. Nomura I, Tanaka K, Tomita H, et al. Evaluation of the staphylococcal exotoxins and their specific IgE in childhood atopic dermatitis. J Allergy Clin Immunol. 1999 Aug; 104 (2 Pt 1): 441–6

    Article  PubMed  CAS  Google Scholar 

  42. Tomi NS, Kranke B, Aberer E. Staphylococcal toxins in patients with psoriasis, atopic dermatitis, and erythroderma, and in healthy controls. J Am Acad Dermatol. 2005; 53: 67–72

    Article  PubMed  Google Scholar 

  43. Yagi S, Wakaki N, Ikeda N, et al. Presence of staphylococcal exfoliative toxin A in sera of patients with atopic dermatitis. Clin Exp Allergy. 2004; 34: 984–93

    Article  PubMed  CAS  Google Scholar 

  44. Strange P, Skov L, Lisby S, et al. Staphylococcal enterotoxin B applied on intact normal and intact atopic skin induces dermatitis. Arch Dermatol. 1996 Jan; 132 (1): 27–33

    Article  PubMed  CAS  Google Scholar 

  45. Skov L, Olsen JV, Giomo R, et al. Application of staphylococcal enterotoxin B on normal and atopic skin induces up-regulation of T cells by a superantigenmediated mechanism. J Allergy Clin Immunol. 2000 Apr; 105 (4): 820–6

    Article  PubMed  CAS  Google Scholar 

  46. Michie CA, Davis T. Atopic dermatitis and staphylococcal superantigens. Lancet. 1996 Feb 3; 347 (8997): 324

    Article  PubMed  CAS  Google Scholar 

  47. Wachs GN, Maibach HI. Co-operative double-blind trial of an antibiotic/corticoid combination in impetiginized atopic dermatitis. Br J Dermatol. 1976 Sep; 95 (3): 323–8

    Article  PubMed  CAS  Google Scholar 

  48. Lever R, Hadley K, Downey D, et al. Staphylococcal colonization in atopic dermatitis and the effect of topical mupirocin therapy. Br J Dermatol. 1988 Aug; 119 (2): 189–98

    Article  PubMed  CAS  Google Scholar 

  49. Saloga J, Leung DY, Reardon C, et al. Cutaneous exposure to the superantigen staphylococcal enterotoxin B elicits a T-cell-dependent inflammatory response. J Invest Dermatol. 1996 May; 106 (5): 982–8

    Article  PubMed  CAS  Google Scholar 

  50. Herz U, Schnoy N, Borelli S, et al. A human-SCID mouse model for allergic immune response bacterial superantigen enhances skin inflammation and suppresses IgE production. J Invest Dermatol. 1998 Mar; 110 (3): 224–31

    Article  PubMed  CAS  Google Scholar 

  51. Zollner TM, Munk ME, Keller T, et al. The superantigen exfoliative toxin induces cutaneous lymphocyte-associated antigen expression in peripheral human T lymphocytes. Immunol Lett. 1996 Jan; 49 (1-2): 111–6

    Article  PubMed  CAS  Google Scholar 

  52. Leung DY, Gately M, Trumble A, et al. Bacterial superantigens induce T cell expression of the skin-selective homing receptor, the cutaneous lymphocyte-associated antigen, via stimulation of interleukin 12 production. J Exp Med. 1995 Feb 1; 181 (2): 747–53

    Article  PubMed  CAS  Google Scholar 

  53. Abemalhy-Carver KJ, Sampson HA, Picker LJ, et al. Milk-induced eczema is associated with the expansion of T cells expressing cutaneous lymphocyte antigen. J Clin Invest. 1995 Feb; 95 (2): 913–8

    Article  Google Scholar 

  54. Leung DY, Boguniewicz M, Howell MD, et al. New insights into atopic dermatitis. J Clin Invest. 2004 Mar; 113 (5): 651–7

    PubMed  CAS  Google Scholar 

  55. Mangan DF, Robertson B, Wahl SM. IL-4 enhances programmed cell death (apoptosis) in stimulated human monocytes. J Immunol. 1992 Mar 15; 148 (6): 1812–6

    PubMed  CAS  Google Scholar 

  56. Bratton DL, May KR, Kailey JM, et al. Staphylococcal toxic shock syndrome toxin-1 inhibits monocyte apoptosis. J Allergy Clin Immunol. 1999 May; 103 (5 Pt 1): 895–900

    Article  PubMed  CAS  Google Scholar 

  57. On LS, Goleva E, Hall C, et al. T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. J Allergy Clin Immunol. 2004 Apr; 113 (4): 756–63

    Article  Google Scholar 

  58. Hofer MF, Harbeck RJ, Schlievert PM, et al. Staphylococcal toxins augment specific IgE responses by atopic patients exposed to allergen. J Invest Dermatol. 1999 Feb; 112 (2): 171–6

    Article  PubMed  CAS  Google Scholar 

  59. Hofer MF, Lester MR, Schlievert PM, et al. Upregulation of IgE synthesis by staphylococcal toxic shock syndrome toxin-1 in peripheral blood mononuclear cells from patients with atopic dermatitis. Clin Exp Allergy. 1995 Dec; 25 (12): 1218–27

    Article  PubMed  CAS  Google Scholar 

  60. Lester MR, Hofer MF, Renz H, et al. Modulatory effects of staphylococcal superantigen TSST-1 on IgE synthesis in atopic dermatitis. Clin Immunol Immunopathol. 1995 Dec; 77 (3): 332–8

    Article  PubMed  CAS  Google Scholar 

  61. Neuber K, Steinrucke K, Ring J. Staphylococcal enterotoxin B affects in vitro IgE synthesis, interferon-gamma, interleukin-4 and interleukin-5 production in atopic eczema. Int Arch Allergy Immunol. 1995 May-Jun; 107 (1-3): 179–82

    Article  PubMed  CAS  Google Scholar 

  62. Leung DY, Harbeck R, Bina P, et al. Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis: evidence for a new group of allergens. J Clin Invest. 1993 Sep; 92 (3): 1374–80

    Article  PubMed  CAS  Google Scholar 

  63. Hanifin JM, Cooper KD, Ho VC, et al. Guidelines of care for atopic dermatitis, developed in accordance with the American Academy of Dermatology (AAD)/American Academy of Dermatology Association ‘Administrative Regulations for Evidence-Based Clinical Practice Guidelines’. J Am Acad Dermatol. 2004 Mar; 50 (3): 391–404

    Article  PubMed  Google Scholar 

  64. Leung DY, Nicklas RA, Li JT, et al. Disease management of atopic dermatitis: an updated practice parameter. Joint Task Force on Practice Parameters. Ann Allergy Asthma Immunol. 2004 Sep; 93 (3 Suppl. 2): S1–21

    Article  PubMed  Google Scholar 

  65. Boguniewicz M, Sampson H, Leung SB, et al. Effects of cefuroxime axetil on Staphylococcus aureus colonization and superantigen production in atopic dermatitis. J Allergy Clin Immunol. 2001 Oct; 108 (4): 651–2

    Article  PubMed  CAS  Google Scholar 

  66. Abeck D, Mempel M. Staphylococcus aureus colonization in atopic dermatitis and its therapeutic implications. Br J Dermatol. 1998 Dec; 139 Suppl. 53: 13–6

    Article  PubMed  Google Scholar 

  67. Yoshimura M, Namma S, Akamatsu H, et al. Antimicrobial effects of phototherapy and photochemotherapy in vivo and in vitro. Br J Dermatol. 1996 Oct; 135 (4): 528–32

    Article  PubMed  CAS  Google Scholar 

  68. Stalder JF, Fleury M, Sourisse M, et al. Local steroid therapy and bacterial skin flora in atopic dermatitis. Br J Dermatol. 1994 Oct; 131 (4): 536–40

    Article  PubMed  CAS  Google Scholar 

  69. Nilsson E, Henning C, Hjorleifsson ML. Density of the microflora in hand eczema before and after topical treatment with a potent corticosteroid. J Am Acad Dermatol. 1986 Aug; 15 (2 Pt 1): 192–7

    Article  PubMed  CAS  Google Scholar 

  70. Nilsson EJ, Henning CG, Magnusson J. Topical corticosteroids and Staphylococcus aureus in atopic dermatitis. J Am Acad Dermatol. 1992 Jul; 27 (1): 29–34

    Article  PubMed  CAS  Google Scholar 

  71. Pournaras CC, Lubbe J, Samat JH. Staphylococcal colonization in atopic dermatitis treatment with topical tacrolimus (FK506). J Invest Dermatol. 2001 Mar; 116 (3): 480–1

    Article  PubMed  CAS  Google Scholar 

  72. Remitz A, Kyllonen H, Granlund H, et al. Tacrolimus ointment reduces staphylococcal colonization of atopic dermatitis lesions. J Allergy Clin Immunol. 2001 Jan; 107 (1): 196–7

    Article  PubMed  CAS  Google Scholar 

  73. Polano MK, De Vries HR. Analysis of the results obtained in the treatment of atopic dermatitis with corticosteroid-and neomycin-containing ointments. Dermatologica. 1960 Apr; 120: 191–9

    Article  PubMed  CAS  Google Scholar 

  74. Li L, Goleva E, Hall CF, et al. Superantigen-induced corticosteroid resistance of human T cells occurs through activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK-ERK) pathway. J Allergy Clin Immunol. 2004 Nov; 114 (5): 1059–69

    Article  PubMed  CAS  Google Scholar 

  75. Savage PB, Li C, Taotafa U, et al. Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol Lett. 2002 Nov 19; 217 (1): 1–7

    Article  PubMed  CAS  Google Scholar 

  76. Schlievert PM. Will therapeutic peptides be kryptonite for superantigens?. Nat Med. 2000 Apr; 6 (4): 378–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants AR41256, HL-36577, HL37260, and 3M01 RR00051 from the US National Institutes of Health, the University of Colorado Health Sciences Center Cancer Center, the American Academy of Allergy, Asthma & Immunology Fujisawa Skin Disease Award, and The Edelstein Family Chair in Pediatric Allergy-Immunology. We especially thank Maureen Sandoval for her assistance in the preparation of this manuscript. The authors have no potential conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardona, I.D., Cho, S.H. & Leung, D.Y. Role of Bacterial Superantigens in Atopic Dermatitis. Am J Clin Dermatol 7, 273–279 (2006). https://doi.org/10.2165/00128071-200607050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128071-200607050-00001

Keywords

Navigation