Skip to main content

Advertisement

Log in

Exercise and the Immune Response

  • Research Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

A growing number of reports have become available which implicate infectious disease with reduced performance in athletes.

The immune system consists of both nonspecific and specific components geared to control infections. Adaptive immunity functions through both antibody-mediated and cell-mediated compartments to establish and maintain long term immunity to infectious agents. Evidence is accumulating to support the view that physical exercise can lead to modification of the cells of the immune system. However, studies have often not been well designed to control exercise protocols when examining the effects of exercise on the immune system.

Large numbers of peripheral blood lymphocytes are mobilised with exercise and in vitro tests indicate that temporarily these cells may not be capable of responding normally to mitogens. These reactions appear to be influenced by hormones to some degree and there are reports that the cells of the immune system are extremely active biochemically and may depend on products from muscles to maintain their activity.

Specific populations within the circulating leucocyte pool vary significantly with exercise and there is some evidence that the T4/T8 lymphocyte ratio may become significantly reduced. This reduction in ratio may be related to the variable responses to T and B cell mitogens recorded in vitro which overall suggests that a temporary immune suppression may exist following certain training or performance schedules. It is argued that this may lead to a temporary susceptibility to infection and could result from overtraining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson V, Bro-Rasmussen F, Hougaard K. Autoradiographic studies of eosinophil kinetics: the effects of Cortisol. Cell Tissue Kinetics 2: 139–146, 1969

    Google Scholar 

  • Ardawi MS. Glutamine and glucose metabolism in human peripheral lymphocytes. Metabolism 7360: 315–317, 1987

    Google Scholar 

  • Ardawi MS, Newsholme EA. Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilisation pathways in lymphocytes of the rat. Biochemistry Journal 208: 743–748, 1982

    CAS  Google Scholar 

  • Ardawi MS, Newsholme EA. Glutamine metabolism in lymphocytes of the rat. Biochemistry Journal 212: 835–842, 1983

    CAS  Google Scholar 

  • Ardawi MS, Newsholme EA. Intracellular localisation and properties of phosphate-dependent glutaminase in rat mesenteric lymphnodes. Biochemistry Journal 217: 289–296, 1984

    CAS  Google Scholar 

  • Ardawi MS, Newsholme EA. Metabolism in lymphocytes and its importance in the immune response. Essays in Biochemistry 21: 1–43, 1985

    PubMed  CAS  Google Scholar 

  • Bellanti JA (Ed). Immunology III, WB Saunders Co., Philadelphia, 1985

    Google Scholar 

  • Bellanti JA, Kadlec JV. General immunobiology. In Bellanti (Ed.) Immunology III, WB Saunders Co., Philadelphia, 1985

    Google Scholar 

  • Berk LS, Tan SA, Nieman DC, Eby WC. The suppressive effect of stress from acute exhaustive exercise on T-lymphocyte helper/ suppressor cell ratio in athletes and non-athletes. Abstract. Medicine and Science in Sports and Exercise 17: 706, 1985

    Google Scholar 

  • Besedovsky HO, del Rey A, Sorkin E, Da Prada M, Keller HH. Immunoregulation mediated by the sympathetic nervous system. Cellular Immunology 48: 346–355, 1979

    Article  PubMed  CAS  Google Scholar 

  • Besedovsky H, del Rey A, Sorkin E. Immunological-neuroendocrine feedback circuits. In Guillemin et al. (Eds) Neural modulation of immunity, Raven Press, New York, 1985

    Google Scholar 

  • Bieger WP, Weiss M, Michel G, Weicher H. Exercise induced monocytosis and modulation of monocyte function. International Journal of Sports Medicine 1: 30–36, 1980

    Article  Google Scholar 

  • Bishop CR, Athens JW. Leukokinetic studies XIII. A non-steady state kinetic evaluation of the mechanism of cortisone-induced granulocytosis. Journal of Clinical Investigation 47: 249–260, 1968

    Article  PubMed  CAS  Google Scholar 

  • Bloom SR, Johnson RH, Park DM, Rennie MJ, Sulaiman WR. Differences in the metabolic and hormonal response to exercise between racing cyclists and untrained individuals. Journal of Physiology 258: 1–18, 1976

    PubMed  CAS  Google Scholar 

  • Bongers V, Bertrams J. The influence of common variables on T-cell subset analysis by monoclonal antibodies. Journal of Immunological Methods 67: 243–253, 1984

    Article  PubMed  CAS  Google Scholar 

  • Bunt JC. Hormonal alterations due to exercise. Sports Medicine 3: 331–345, 1986

    Article  PubMed  CAS  Google Scholar 

  • Busse WW, Anderson CL, Hanson PG, Folts JD. The effect of exercise on the granulocyte response to isoproterenol in the trained athlete and in unconditioned individuals. Journal of Allergy and Clinical Immunology 65: 358–364, 1980

    Article  PubMed  CAS  Google Scholar 

  • Cameron K, Morton A, Keast D. Haematological profiles and polyclonal lymphocyte function in continuous and intermittent exercise. M.Sc. thesis, University of Western Australia, 1987

    Google Scholar 

  • Carmack MA. Exercise-induced modifications in immune responsiveness in rats. Unpublished doctoral dissertation, University of Oregon, 1984

    Google Scholar 

  • Chailleux E, Bigdon JD, Peyrat MA, Godard A, Soulillou JP. Lymphocyte subsets, phytohaemaglutinin responsiveness of blood lymphocytes, and interleukin 2 production in sarcidosis. Thorax 40: 768–773, 1985

    Article  PubMed  CAS  Google Scholar 

  • Cooper DA, Duckett M, Petts U, Penny R. Corticosteroid enhancement of immunoglobulin synthesis by pokeweed mitogen stimulated lymphocytes. Clinical and Experimental Immunology 37: 145–151, 1979

    PubMed  CAS  Google Scholar 

  • Cornil A, DeCoster A, Copinski G, Franckson JRM. The effect of muscular exercise on the plasma Cortisol level in man. Acta Endocrinologica 48: 163–168, 1965

    PubMed  CAS  Google Scholar 

  • Crary B, Hauser SL, Borysenko M, Kutz I, Hoban C, et al. Epinephrine-induced changes in the distribution of lymphocyte subsets in the peripheral blood of humans. Journal of Immunology 131: 1178–1181, 1983

    CAS  Google Scholar 

  • Cream JJ. Prednisolone-induced granulocytosis. British Journal of Haematology 15: 259–267, 1968

    Article  PubMed  CAS  Google Scholar 

  • Cross BB. The effect of aerobic conditioning on antibody production in BALB/C mice. Unpublished doctoral dissertation, University of Maryland, 1985

    Google Scholar 

  • Cupps TR, Fauci AS. Corticosteroid-mediated immunoregulation in man. Immunological Reviews 65: 133–155, 1982

    Article  PubMed  CAS  Google Scholar 

  • Dale DC, Fauci AS, Guerry IVD, Wolff SM. Comparison of agents producing a neurophilic leucocytosis in man: hydrocortisone, prednisone, endotoxin and eitocholanolone. Journal of Clinical Investigation 56: 808–813, 1975

    Article  PubMed  CAS  Google Scholar 

  • Davies CTM, Few JD. Effects of exercise on adrenocorticoid function. Journal of Applied Physiology 35: 877–891, 1973

    Google Scholar 

  • Davies CTM, Few J, Foster KG, Sargent AJ. Plasma catecholamine function during dynamic exercise involving different muscle groups. European Journal of Applied Physiology 32: 195–206, 1974

    Article  CAS  Google Scholar 

  • De Lanne R, Barnes JR, Broucher L. Haematological changes during muscular activity and recovery. Journal of Applied Physiology 15: 31–36, 1960

    Google Scholar 

  • Dessypris A, Kuoppasalmi K, Aldercreutz H. Plasma Cortisol, testosterone, androstenedione and leutenizing hormone in a noncompetitive marathon run. Journal of Steroid Biochemistry 7: 33–37, 1976

    Article  PubMed  CAS  Google Scholar 

  • Douglas DJ. The effects of physical training on the immunological response in mice. Journal of Sports Medicine and Physical Fitness 14: 48–54, 1974

    Google Scholar 

  • Douglas DJ. Hanson PJ. Upper respiratory infections in the conditioned athlete. Medicine and Science in Sports and Exercise 10: 55, 1978

    Google Scholar 

  • Edwards AJ, Bacon RH, Elms CA, Veradi R, Felder M, et al. Changes in the populations of lymphoid cells in human peripheral blood following physical exercise. Clinical and Experimental Immunology 58: 420–427, 1984

    PubMed  CAS  Google Scholar 

  • Eriksson B, Hedfors E. The effect of adrenalin, insulin and hydrocortisone on human peripheral blood lymphocytes studied by cell surface markers. Scandinavian Journal of Haematology 18: 121–128, 1977

    Article  PubMed  CAS  Google Scholar 

  • Eskola J, Ruuskanen O, Soppi E, Viljanen MK, Jarvinen M, et al. Effect of sport stress on lymphocyte transformation and antibody formation. Clinical and Experimental Immunology 3: 339–345, 1978

    Google Scholar 

  • Estes G, Solomon S, Norton WL. Inhibition of lymphocyte stimulation by cyclic and non-cyclic nucleotides. Journal of Immunology 107: 1489–1492, 1971

    CAS  Google Scholar 

  • Fauci AS. Mechanisms of corticosteroids on lymphocyte subpo-pulations. I. Redistribution of circulating T and B-lympho-cytes to the bone marrow. Immunology 28: 669–679, 1975

    PubMed  CAS  Google Scholar 

  • Fauci AS. Mechanisms of corticosteroid action on lymphocyte subpopulations. II. Differential effect of in vivo hydrocortisone, prednisone and dexamethasone on in vitro expression of lymphocyte function. Clinical and Experimental Immunology 24: 54–62, 1976

    PubMed  CAS  Google Scholar 

  • Fauci AS. Human B lymphocyte function: cell triggering and immunoregulation. Journal of Infectious Diseases 145: 602–612, 1982

    Article  PubMed  CAS  Google Scholar 

  • Fauci AS, Dale DC, Balow JE. Glucocorticosteroid therapy: mechanisms of action and clinical considerations. Annals of Internal Medicine 84: 304–315, 1976

    PubMed  CAS  Google Scholar 

  • Few JD. Effect of exercise on the secretion and metabolism of Cortisol in man. Journal of Endocrinology 62: 342–353, 1974

    Article  Google Scholar 

  • Filipovich AH, Hordinsky-Kramarczuk M, Nelson D, Hallgren H. The correlation between inducer/suppressor ratios, generation of concanavalin A-activated suppressor cells and mito-gen-stimulated proliferation of peripheral blood lymphocytes in patients with alopecia areata and normal controls. Clinical Immunology and Immunopathology 25: 21–31, 1982

    Article  PubMed  CAS  Google Scholar 

  • Freedman M, Altszuler N, Karpatkin S. Presence of a nonsplenic platelet pool. Blood 50: 419–425, 1977

    PubMed  CAS  Google Scholar 

  • Gader AMA, Cash JD. The effect of adrenaline, noradrenaline, isoprenoline and salbutamol on the resting levels of white blood cells in man. Scandinavian Journal of Haematology 14: 5–10, 1975

    Article  PubMed  CAS  Google Scholar 

  • Galbo H. Hormonal and metabolic adaptation to exercise, George Thieme Verlag, Stuttgart, 1983

    Google Scholar 

  • Galbo H, Christensen NJ, Hoist JJ. Glucose-induced decrease in glucagon and epinephrine responses to exercise in man. Journal of Applied Physiology 42: 525–530, 1977

    PubMed  CAS  Google Scholar 

  • Galbo H, Holst JJ, Christensen NJ. Glucagon and plasma catecholamine responses to graded and prolonged exercise in man. Journal of Applied Physiology 38: 70–76, 1973

    Google Scholar 

  • Gawel MJ, Park DM, Alaghband-Zadeh J, Clifford Rose F. Exercise and hormonal secretion. Postgraduate Medical Journal 55: 373–376, 1979

    Article  PubMed  CAS  Google Scholar 

  • Gemsa D, Leser FG, Deimann W, Resch K. Suppression of T lymphocyte proliferation during lymphoma growth in mice: role of PGE2-producing macrophages. Immunobiology 161: 385–392, 1982

    Article  PubMed  CAS  Google Scholar 

  • Gillis S, Crabtree GR, Smith KA. Glucocorticoid-induced inhibition of T cell growth factor production. I. The effect of mi-togen-induced lymphocyte proliferation. Journal of Immunology 123: 1624–1631, 1979

    CAS  Google Scholar 

  • Gisler RH, Bussard AE, Mazie JC, Hess R. Hormonal regulation of the immune response. I. Induction of an immune response in vitro with lymphoid cells from mice exposed to systemic stress. Cellular Immunology 2: 634–645, 1971

    Article  PubMed  CAS  Google Scholar 

  • Good RA, Feraandes G. Enhancement of immunologic function and resistance to tumor growth in BALB-C mice by exercise. Federation Proceedings 40: 1040, 1981

    Google Scholar 

  • Goodwin JS, Messner R, Peake GL. Prostaglandin suppression of mitogen-stimulated lymphocytes in vitro: changes with mitogen dose and preincubation. Journal of Clinical Investigation 62: 753–760, 1978

    Article  PubMed  CAS  Google Scholar 

  • Goodwin JS, Messner RP, Williams RC. Inhibitors of T-cell mitogenesis: effect of mitogen dose. Cellular Immunology 45: 303–308, 1979

    Article  PubMed  CAS  Google Scholar 

  • Goodwin JS, Webb DR. Regulation of the immune response by prostaglandins. Clinical Immunology and Immunopathology 15: 106–122, 1980

    Article  PubMed  CAS  Google Scholar 

  • Gordon D, Henderson DC, Westwick J. Effects of prostaglandins E2and I2 on human lymphocyte transformation in the presence and absence of inhibitors of prostaglandin synthesis. British Journal of Pharmacology 67: 17–22, 1979

    PubMed  CAS  Google Scholar 

  • Gordon D, Nouri AME. Comparison of the inhibition by glucocorticosteroids and cyclosporin A of mitogen-stimulated human lymphocyte proliferation. Clinical and Experimental Immunology 44: 287–294, 1981

    PubMed  CAS  Google Scholar 

  • Green RL, Kaplan SS, Rabin BS, Stanitski CL, Zdziarski V. Immune function in marathon runners. Annals of Allergy 47: 73–75, 1981

    PubMed  CAS  Google Scholar 

  • Guyton AC. Textbook of medical physiology, 7th ed., W.B. Saunders, Philadelphia, 1986

    Google Scholar 

  • Hadden JW, Hadden EM, Middleton Jr E. Lymphocyte blast transformation. I. Demonstration of adrenergic receptors in human peripheral lymphocytes. Cellular Immunology 1: 583–595, 1970

    Article  PubMed  CAS  Google Scholar 

  • Hadden JW, Hadden EM, Middleton Jr E, Good RA. Lymphocyte blast transformation. II. The mechanism of action of alpha adrenergic receptor effects. International Archives of Allergy 40: 526–539, 1971

    Article  CAS  Google Scholar 

  • Hagberg JM, McLane JA, Ehsani AA, Winder WW. Disappearance of norepinephrine from the circulation following strenuous exercise. Journal of Applied Physiology 47: 1311–1314, 1979

    PubMed  CAS  Google Scholar 

  • Hansbrough JF, Bender EB, Zapata-Sirvent R, Anderson J. Altered helper and suppressor lymphocyte populations in surgical patients. A measure of postoperative immunosuppression. American Journal of Surgery 148: 304–307, 1984

    Google Scholar 

  • Hanson PG, Flaherty DK. Immunological responses to training in conditioned runners. Clinical Sciences 60: 225–228, 1981

    CAS  Google Scholar 

  • Hedfors E, Holm G, Ohnell B. Variations of blood lymphocytes during work studied by cell surface markers, DNA synthesis and cytotoxicity. Clinical and Experimental Immunology 24: 328–335, 1976

    PubMed  CAS  Google Scholar 

  • Hedfors E, Holm G, Ivansen M, Wahren J. Physiological variation of blood lymphocyte reactivity: T-cell subsets, immunoglobulin production, and mixed lymphocyte reactivity. Clinical Immunology and Immunopathology 27: 9–14, 1983

    Article  PubMed  CAS  Google Scholar 

  • Hellstedt H. In vitro activation of human T and B lymphocytes by pokeweek mitogen. Clinical and Experimental Immunology 19: 75–82, 1975

    Google Scholar 

  • Hinkle LE, Christensen WN, Benjamin B, Kane FD, Wolff HD. Observations on the role of nasal adaptive reactions, emotions and life situations in the genesis of minor respiratory illnesses. Psychosomatic Medicine 24: 515–521, 1962

    Google Scholar 

  • Hirsen DJ, Malham LM. Effects of exercise on cytotoxic lymphocytes. (Abstract). Federation Proceedings 42: 854, 1983

    Google Scholar 

  • Hume DA, Weidemann MJ. Mitogenic lymphocyte transformation, pp. 148–170, Elsevier/North Holland, Amsterdam, 1980

    Google Scholar 

  • Ibele GM, Kay NE, Johnson CJ, Jacob HS. Human platelets exert cytotoxic effects on tumour cells. Blood 65: 1252–1255, 1985

    PubMed  CAS  Google Scholar 

  • Ilfeld DN, Krakauer RS, Blaese RM. Suppression of the human autologous mixed lymphocyte reaction by physiologic concentrations of hydrocortisone. Journal of Immunology 119: 428–434, 1977

    CAS  Google Scholar 

  • Jelinek DF, Thompson PA, Lipsky PE. Regulation of human B-cell activation by prostaglandin E2: suppression of the generation of immunoglobulin-secreting cells. Journal of Clinical Investigation 75: 1339–1349, 1985

    Article  PubMed  CAS  Google Scholar 

  • Jokl E. The immunological status of athletes. Journal of Sports Medicine 14: 165–167, 1974

    CAS  Google Scholar 

  • Jokl E. The immunological status of athletes. In Brunner & Jokl (Eds) Role of exercise in internal medicine, pp. 129–134,S Karger, Basel, 1977

    Google Scholar 

  • Joseph M, Auriault C, Capron A, Vorng H, Viens P. IgE-dependent killing of schistosomes by platelets. Nature 303: 810–812, 1983

    Article  PubMed  CAS  Google Scholar 

  • Kanonchoff AD, Cavanaugh DJ, Mehl VL, Bartels RL, Penn GM, et al. Changes in lymphocyte population during acute exercise. Abstract. Medicine and Science in Sport and Exercise 16: 175, 1984

    Google Scholar 

  • Katz P, Fauci AS. Autologous and allogeneic intercellular interactions: modulation by adherent cells, irradiation and in vitro and in vivo corticosteroids. Journal of Immunology 123: 2270–2277, 1979

    CAS  Google Scholar 

  • Keast D. A simple ranting index for the measurement of the ranting syndrome and its use in the study of the influence of the gut flora in its production. Immunology 15: 237–245, 1968

    PubMed  CAS  Google Scholar 

  • Keast D. The urine ranting syndrome and neoplasia. Immunology 16: 693–697, 1969

    PubMed  CAS  Google Scholar 

  • Keast D. In Bammer & Newberry (Eds) Stress and cancer, pp. 71–97, Hogrefe Inc., Toronto, 1980

    Google Scholar 

  • Kellgreen JH, Janus O. The eosinopenic response to cortisone and ACTH in normal subjects. British Medical Journal 2: 1183–1189, 1951

    Article  Google Scholar 

  • Kit S. The role of hexose monophosphate shunt in tumours and lymphatic tissues. Cancer Research 16: 70–76, 1976

    Google Scholar 

  • Koivisto VA, Soman VR, Conrad P, Hendler R, Nadel E, et al. Insulin binding to monocytes in trained athletes: changes in the resting state after exercise. Journal of Clinical Investigation 64: 1011–1015, 1979

    Article  PubMed  CAS  Google Scholar 

  • Koivisto VA, Soman VR, Defronzo R, Felig P. Effects of acute exercise and training on insulin binding to monocytes and insulin sensitivity in vivo. Acta Paediatrica Scandinavica (Suppl.) 283: 70–78, 1980

    Article  PubMed  CAS  Google Scholar 

  • Kuoppasalmi K, Naveri H, Harkonen M, Aldercreutz H. Plasma cortisol, androstenedione, testosterone and luteinising hormone in running exercise of different intensities. Scandinavian Journal of Clinical and Laboratory Investigation 40: 403–409, 1980

    Article  PubMed  CAS  Google Scholar 

  • Landmann RMA, Muller FB, Perini CH, Wesp M, Erne P, et al. Changes of immunoregulatory cells induced by psychological and physical stress: relationship to plasma catecholamines. Clinical and Experimental Immunology 58: 127–135, 1984

    PubMed  CAS  Google Scholar 

  • Lentner C (Ed.). Giegy scientific tables: physical chemistry, composition of blood, haematology, somatometric data, Vol. 3, Ciba Geigy, Basle, 1984

    Google Scholar 

  • Levy V, Kaplan HS. Impaired lymphocyte function in untreated Hodgkins Disease. New England Journal of Medicine 290: 181–186, 1974

    Article  PubMed  CAS  Google Scholar 

  • Lewicki R, Tchórzewski H, Denys A, Kowalska M, Golínska A. Effects of physical exercise on some parameters of immunity in conditioned sportsmen. International Journal of Sports Medicine 8: 309–314, 1987

    Article  PubMed  CAS  Google Scholar 

  • Lopez Bortet M, Fontan G, Garcia MC, Landazuri MO. Relationship between IL1 synthesis and the proliferative response to PHA in different primary immunodeficiencies. Journal of Immunology 128: 679–683, 1982

    Google Scholar 

  • Michael G, Vocke T, Fiehn W, Weicker H, Schwarz W, et al. Bidirection alteration of insulin receptor affinity by different forms of physical exercise. American Journal of Physiology 246 (2, pt 1): E153–E159, 1984

    Google Scholar 

  • Mishler JM, Sharp AA. Adrenaline: further discussion of its role in mobilization of neutrophils. Scandinavian Journal of Haematology 17: 78–80, 1976

    PubMed  CAS  Google Scholar 

  • Monjan AA, Collector MI. Stress-induced modulation of the immune response. Science 196: 307–308, 1977

    Article  PubMed  CAS  Google Scholar 

  • Moorthy AV, Zimmerman W. Human leucocyte response to an endurance race. European Journal of Applied Physiology 38: 271–276, 1978

    Article  CAS  Google Scholar 

  • Muir AL, Cruz M, Martin BA, Thommasen H, Belzberg A, et al. Leukocyte kinetics in the human lung: role of exercise and catecholamines. Journal of Applied Physiology 57: 711–719, 1984

    PubMed  CAS  Google Scholar 

  • Myhre BA, Walker LJ, White ML. Bactericidal properties of platelet concentrates. Transfusion 14: 116–119, 1974

    Article  PubMed  CAS  Google Scholar 

  • Nash HL. Can exercise make us immune to disease? Physician and Sports Medicine 14: 250–253, 1986

    Google Scholar 

  • Neifield JP, Tormey DC. Effects of steroid hormones on phytohaemaglutinin stimulated human peripheral blood lymphocytes. Transplantation 27: 309–314, 1979

    Article  Google Scholar 

  • Newsholme EA, Leech AR. Biochemistry for the medical sciences, Wiley, Chichester, 1983

    Google Scholar 

  • Nguyen TB, Bradley J, Roberts-Thompson P. The effects of physical exercise on circulating white cells and lymphocyte sub-populations. Programme and Abstracts of the Fourteenth Annual Meeting of the Australian Society for Immunology 100, 1984

  • Novogrodsky A, Rubin AL, Steryel KH. Selective suppression by adherent cells, prostaglandin and cyclic AMP analogues of blastogenesis induced by different mitogens. Journal of Immunology 122: 1–7, 1979

    CAS  Google Scholar 

  • Nowell PC. Inhibition of human leucocyte mitosis by prednisolone in vitro. Cancer Research 21: 1518–1521, 1961

    PubMed  CAS  Google Scholar 

  • Oppenheim JJ, Blaese RM, Waldmann TA. Impaired lymphocyte transformation and delayed hypersensitivity in Wiskott-Aldrich syndrome. Journal of Immunology 104: 835–844, 1970

    CAS  Google Scholar 

  • Peatfield RC, Gawel MJ, Clifford-Rose F, Guthrie DL, Pearson TC. The effects of exercise on platelet numbers and size. Medical Laboratory Sciences 42: 40–43, 1985

    PubMed  CAS  Google Scholar 

  • Pedersen O, Beck-Nielsen H, Heding L. Increased insulin receptors after exercise in patients with insulin-dependent diabetes mellitus. New England Journal of Medicine 302: 886–892, 1980

    Article  PubMed  CAS  Google Scholar 

  • Peter HH. Immunsystem und Infektanfalligkeit. Deutsche Zeitschrift für Sportmedizin 11: 348–355, 1985

    Google Scholar 

  • Peters EM, Bateman ED. Ultramarathon running and upper respiratory tract infections: an epidemiological survey. South African Medical Journal 64: 582–584, 1983

    PubMed  CAS  Google Scholar 

  • Petrova IV, Kuzmin SN, Kurshakova TS, Susdalnitskiti RS, Pershin BB. Neutrophil phagocytic activity and the humoral factors of general and local immunity under intensive physical loading. Zhurnal Mikrobiologii Epidemiologii i Immunobiologii 12: 53–57, 1983

    Google Scholar 

  • Reynold AE, Quigley TB, Kennard HE, Thorn GW. Reaction of the adrenal cortex to physical and emotional stress in college oarsmen. New England Journal of Medicine 244: 754–757, 1951

    Article  Google Scholar 

  • Roberts JA. Virus illness and sports performance. Sports Medicine 3: 298–303, 1986

    Article  PubMed  CAS  Google Scholar 

  • Robertson AJ, Potts RC, Browning MKC, Gibbs JH, Ramesar K, et al. The effect of strenuous exercise on plasma cortisol levels and circulating lymphocytes. Abstract. Scottish Medical Journal 24: 255, 1979

    Google Scholar 

  • Roosnek EE, Brouwer MC, Aarden LA. T-cell triggering by lectins 1. Requirements for interleukin 2 production; lectin concentration determines the accessory cell dependency. European Journal of Immunology 15: 652–656, 1985

    Article  PubMed  CAS  Google Scholar 

  • Rybka J, Novosad P. Reaction of human organism to exercise. 1. Theoretical part. Acta Universitatis Carolinae Medica 30: 251–295, 1984

    PubMed  CAS  Google Scholar 

  • Sakasela E, Timonen T, Annamari R, Hayry P. Morphological and functional characteristics of isolated effector cells responsible for human natural killer cell activity to fetal fibroblasts and to cultured cell line targets. Immunological Reviews 44: 71–123, 1979

    Article  Google Scholar 

  • Saltin B (Ed.). Biochemistry of exercise VI, International Series on Sport Sciences, Vol. 16, Human Kinetics Publishers, Champaign, 1986

    Google Scholar 

  • Sasaki MS, Norman A. Proliferation of human lymphocytes in culture. Nature 210: 913–914, 1966

    Article  PubMed  CAS  Google Scholar 

  • Saxon A, Stevens RH, Ramer SJ, Clements PJ, Yu DY. Glucocorticoids administered in vivo inhibit human suppressor T-lymphoycyte function and diminish B-lymphocyte responsiveness in in vitro immunoglobulin synthesis. Journal of Clinical Investigation 61: 922–930, 1978

    Article  PubMed  CAS  Google Scholar 

  • Selye H. Stress in health, Butterworth (Publishers) Inc., Boston, 1976

    Google Scholar 

  • Seneczko F, Rzetelski B. Peripheral blood T and B-lymphocytes at various phases of annual training cycle in soccer players and non-training persons. Immunologica Poliska 9: 197–206, 1985

    Google Scholar 

  • Solomon GF, Amkrant AA, Kasper P. Immunity, emotions and stress. Annals of Clinical Research 6: 313–322, 1974

    PubMed  CAS  Google Scholar 

  • Smith KA, Crabtree GR, Kenned SJ, Munck AV. Glucocorticoid receptors and glucocorticoid sensitivity of mitogen stimulated and unstimulated human lymphocytes. Nature 267: 523–526, 1977

    Article  PubMed  CAS  Google Scholar 

  • Soman VR, Koivisto VA, Grantham P, Felig P. Increased insulin binding to monocytes after acute exercise in normal man. Journal of Clinical En ocrinological Metabolism 47: 216–219, 1978

    Article  CAS  Google Scholar 

  • Soman VR, Koivisto VA, Deibert D, Felig P, DeFronzo RA. Increased insulin sensitivity and insulin binding to monocytes after physical training. New England Journal of Medicine 29: 1200–1204, 1979

    Article  Google Scholar 

  • Soppi E, Varjo P, Eskola J, Laitinen PA. Effect of strenuous physical stress on circulating lymphocyte function before and after training. Journal of Clinical and Laboratory Immunology 8: 43–46, 1982

    PubMed  CAS  Google Scholar 

  • Sprent J. Circulating T and B-lymphocytes of the mouse. I. Migratory properties. Cellular Immunology 7: 10–39, 1973

    Article  PubMed  CAS  Google Scholar 

  • Steel CM, Evans J, Smith MA. Physiological variation in circulating B-cell: T-cell ratio in man. Nature 247: 387–388, 1964

    Article  Google Scholar 

  • Steel CM, French EB, Aitchison WRC. Studies on adrenaline-induced leucocytosis in normal man. I. The role of the spleen and the thoracic duct. British Journal of Haematology 21: 413–421, 1971

    Article  PubMed  CAS  Google Scholar 

  • Stein M. Bereavement, stress and immunity. In Guillemin et al. (Eds) Neural modulation of immunity, Raven Press, New York, 1985

    Google Scholar 

  • Strom TB, Lundin AP, Carpenter CB. The role of cyclic nucleotides in lymphocyte activation and function. Progress in Clinical Immunology 3: 115–153, 1977

    PubMed  CAS  Google Scholar 

  • Sutton J, Young JD, Lazarus L, Hickie JB, Maksvytis J. The hormonal response to physical exercise. Australasian Annals of Medicine 18: 84–90, 1969

    PubMed  CAS  Google Scholar 

  • Targan S, Britvan L, Dorey F. Activation of human NKCC by moderate exercise: increased frequency of NK cells with enhanced capability of effector-target lytic interactions. Clinical and Experimental Immunology 45: 352–360, 1981

    PubMed  CAS  Google Scholar 

  • Tate SS, Mister A. In Prusiner & Stadtman (Eds) The enzymes of glutamine metabolism, pp. 77–125, Academic Press, New York, 1973

  • Tavadia HB, Fleming KA, Hume PD, Simpson HW. Circadian rhythmicity of human plasma cortisol and PHA-induced lymphocyte transformation. Clinical and Experimental Immunology 22: 190–193, 1975

    PubMed  CAS  Google Scholar 

  • Tharp GD. The role of glucocorticoids in exercise. Medicine and Science in Sports and Exercise 7: 6–11, 1975

    CAS  Google Scholar 

  • Toivonen H, Kauvalainen K. Effect of sport stress on lymphocyte transformation and antibody formation. Clinical and Experimental Immunology 32: 339–345, 1978

    PubMed  Google Scholar 

  • Thomas Y, Sosman J, Rogozinski L, Irigoyen O, Kung PC, et al. Functional analysis of human T cell subsets defined by monoclonal antibodies. I. Collaborative T-T interactions in the immunoregulation of B cell differentiation. Journal of Immunology 126: 1948–1951, 1981

    CAS  Google Scholar 

  • Tomasi TB, Trudeau FB, Czerwinski D, Erredge S. Immune parameters in athletes before and after strenuous exercise. Journal of Clinical Immunology 2: 173–178, 1982

    Article  PubMed  CAS  Google Scholar 

  • Thompson SP, McMahon LJ, Nugent LA. Endogenous cortisol: a regulator of the number of lymphocytes in peripheral blood. Clinical Immunology and Immunopathology 17: 506–514, 1980

    Article  Google Scholar 

  • Thompson PA, Jelinek DF, Lipsky PE. Regulation of human B cell proliferation by prostaglandin E2. Journal of Immunology 133: 2446–2553, 1984

    CAS  Google Scholar 

  • Watson J. The involvement of cyclic nucleotide metabolism in the initiation of lymphocyte proliferation induced by mitogens. Journal of Immunology 117: 1656–1663, 1976

    CAS  Google Scholar 

  • Webel ML, Ritts RE. The effects of corticosteroid concentrations on lymphocyte blastogenesis. Cellular Immunology 32: 287–292, 1977

    Article  PubMed  CAS  Google Scholar 

  • Weber HA. Quantitative study of eosinopenia and other stress indices. Journal of Sports Medicine 11: 12–23, 1971

    CAS  Google Scholar 

  • Yamanda R. Stress and susceptibility to viral infections. Proceedings of the Society for Experimental Medicine 116: 677–680, 1964

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keast, D., Cameron, K. & Morton, A.R. Exercise and the Immune Response. Sports Medicine 5, 248–267 (1988). https://doi.org/10.2165/00007256-198805040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-198805040-00004

Keywords

Navigation