Skip to main content
Log in

Targeting Tau Protein in Alzheimer’s Disease

  • Leading Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized histopathologically by numerous neurons with neurofibrillary tangles and neuritic (senile) amyloid-β (Aβ) plaques, and clinically by progressive dementia. Although Aβ is the primary trigger of AD according to the amyloid cascade hypothesis, neurofibrillary degeneration of abnormally hyperphosphorylated tau is apparently required for the clinical expression of this disease. Furthermore, while approximately 30% of normal aged individuals have as much compact plaque burden in the neocortex as is seen in typical cases of AD, in several tauopathies, such as cortical basal degeneration and Pick’s disease, neurofibrillary degeneration of abnormally hyperphosphorylated tau in the absence of Aβ plaques is associated with dementia. To date, all AD clinical trials based on Aβ as a therapeutic target have failed. In addition to the clinical pathological correlation of neurofibrillary degeneration with dementia in AD and related tauopathies, increasing evidence from in vitro and in vivo studies in experimental animal models provides a compelling case for this lesion as a promising therapeutic target. A number of rational approaches to inhibiting neurofibrillary degeneration include inhibition of one or more tau protein kinases, such as glycogen synthase kinase-3β and cyclin-dependent protein kinase 5, activation of the major tau phosphatase protein phosphatase-2A, elevation of β-N-acetyl-glucosamine modification of tau through inhibition of β-N-acetylglucosaminidase or increase in brain glucose uptake, and promotion of the clearance of the abnormally hyperphosphorylated tau by autophagy or the ubiquitin proteasome system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1

Similar content being viewed by others

References

  1. Davis KL, Samuels SC. In: Enna SJ, Coyle JT, editors. Pharmacological management of neurological and psychiatric disorders. New York: McGraw-Hill, 1998: 267–316

  2. Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study. Lancet 2005 Dec 17; 366(9503): 2112–7

    Article  PubMed  Google Scholar 

  3. Alzheimer’s disease [online]. Available from URL: http://en.wikipedia.org/wiki/Alzheimer%27s_disease#cite_note-Brookmeyer2007-2 [Accessed 2010 Mar 24]

  4. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002 Jul 19; 297(5580): 353–6

    Article  PubMed  CAS  Google Scholar 

  5. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992 Apr 10; 256(5054): 184–5

    Article  PubMed  CAS  Google Scholar 

  6. Weingarten MD, Lockwood AH, Hwo SY, et al. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 1975 May; 72(5): 1858–62

    Article  PubMed  CAS  Google Scholar 

  7. Himmler A, Drechsel D, Kirschner MW, et al. Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol 1989 Apr; 9(4): 1381–8

    PubMed  CAS  Google Scholar 

  8. Goedert M, Spillantini MG, Jakes R, et al. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 1989 Oct; 3(4): 519–26

    Article  PubMed  CAS  Google Scholar 

  9. Kopke E, Tung YC, Shaikh S, et al. Microtubule-associated protein tau: abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 1993 Nov 15; 268(32): 24374–84

    PubMed  CAS  Google Scholar 

  10. Lindwall G, Cole RD. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 1984 Apr 25; 259(8): 5301–5

    PubMed  CAS  Google Scholar 

  11. Alonso AD, Zaidi T, Grundke-Iqbal I, et al. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA 1994 Jun 7; 91(12): 5562–6

    Article  PubMed  CAS  Google Scholar 

  12. Grundke-Iqbal I, Iqbal K, Quinlan M, et al. Microtubule-associated protein tau: a component of Alzheimer paired helical filaments. J Biol Chem 1986 May 5; 261(13): 6084–9

    PubMed  CAS  Google Scholar 

  13. Grundke-Iqbal I, Iqbal K, Tung YC, et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986 Jul; 83(13): 4913–7

    Article  PubMed  CAS  Google Scholar 

  14. Iqbal K, Grundke-Iqbal I, Zaidi T, et al. Defective brain microtubule assembly in Alzheimer’s disease. Lancet 1986 Aug 23; 2(8504): 421–6

    Article  PubMed  CAS  Google Scholar 

  15. Iqbal K, Grundke-Iqbal I, Smith AJ, et al. Identification and localization of a tau peptide to paired helical filaments of Alzheimer disease. Proc Natl Acad Sci USA 1989 Jul; 86(14): 5646–50

    Article  PubMed  CAS  Google Scholar 

  16. Lee VM, Balin BJ, Otvos Jr L, et al. A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 1991 Feb 8; 251(4994): 675–8

    Article  PubMed  CAS  Google Scholar 

  17. Gong CX, Liu F, Grundke-Iqbal I, et al. Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Transm 2005 Jun; 112(6): 813–38

    Article  PubMed  CAS  Google Scholar 

  18. Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people. J Neurol Sci 1970 Sep; 11(3): 205–42

    Article  PubMed  CAS  Google Scholar 

  19. Alafuzoff I, Iqbal K, Friden H, et al. Histopathological criteria for progressive dementia disorders: clinical-pathological correlation and classification by multivariate data analysis. Acta Neuropathol (Berl) 1987; 74(3): 209–25

    Article  CAS  Google Scholar 

  20. Arriagada PV, Growdon JH, Hedley-Whyte ET, et al. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 1992 Mar; 42 (3 Pt 1): 631–9

    Article  PubMed  CAS  Google Scholar 

  21. Dickson DW, Farlo J, Davies P, et al. Alzheimer’s disease: a double-labeling immunohistochemical study of senile plaques. Am J Pathol 1988 Jul; 132(1): 86–101

    PubMed  CAS  Google Scholar 

  22. Katzman R, Terry R, DeTeresa R, et al. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 1988 Feb; 23(2): 138–44

    Article  PubMed  CAS  Google Scholar 

  23. Dickson DW, Crystal HA, Mattiace LA, et al. Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 1992 Jan–Feb; 13(1): 179–89

    Article  PubMed  CAS  Google Scholar 

  24. Hutton M, Lendon CL, Rizzu P, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998 Jun 18; 393(6686): 702–5

    Article  PubMed  CAS  Google Scholar 

  25. Poorkaj P, Bird TD, Wijsman E, et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 1998 Jun; 43(6): 815–25

    Article  PubMed  CAS  Google Scholar 

  26. Spillantini MG, Murrell JR, Goedert M, et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 1998 Jun 23; 95(13): 7737–41

    Article  PubMed  CAS  Google Scholar 

  27. Roberson ED, Scearce-Levie K, Palop JJ, et al. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 2007 May 4; 316(5825): 750–4

    Article  PubMed  CAS  Google Scholar 

  28. Oddo S, Vasilevko V, Caccamo A, et al. Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J Biol Chem 2006 Dec 22; 281(51): 39413–23

    Article  PubMed  CAS  Google Scholar 

  29. Iqbal K, Liu F, Gong CX, et al. Mechanisms of tau-in-duced neurodegeneration. Acta Neuropathol 2009 Jul; 118(1): 53–69

    Article  PubMed  CAS  Google Scholar 

  30. Alonso AD, Grundke-Iqbal I, Iqbal K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles offilaments and disassembles microtubules. Nat Med 1996 Jul; 2(7): 783–7

    Article  PubMed  CAS  Google Scholar 

  31. Alonso AD, Grundke-Iqbal I, Barra HS, et al. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of micro-tubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci USA 1997 Jan 7; 94(1): 298–303

    Article  PubMed  CAS  Google Scholar 

  32. Li B, Chohan MO, Grundke-Iqbal I, et al. Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol (Berl) 2007 May; 113(5): 501–11

    Article  CAS  Google Scholar 

  33. Wang JZ, Gong CX, Zaidi T, et al. Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and -2B. J Biol Chem 1995 Mar 3; 270(9): 4854–60

    Article  PubMed  CAS  Google Scholar 

  34. Iqbal K, Zaidi T, Bancher C, et al. Alzheimer paired helical filaments: restoration of the biological activity by dephosphorylation. FEBS Lett 1994 Jul 25; 349(1): 104–8

    Article  PubMed  CAS  Google Scholar 

  35. Alonso AD, Li B, Grundke-Iqbal I, et al. Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci USA 2006; 23: 8864–9

    Article  CAS  Google Scholar 

  36. Gamblin TC, Chen F, Zambrano A, et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci U S A 2003 Aug 19; 100(17): 10032–7

    Article  PubMed  CAS  Google Scholar 

  37. Guillozet-Bongaarts AL, Garcia-Sierra F, Reynolds MR, et al. Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease. Neurobiol Aging 2005 Jul; 26(7): 1015–22

    Article  PubMed  CAS  Google Scholar 

  38. Basurto-Islas G, Luna-Munoz J, Guillozet-Bongaarts AL, et al. Accumulation of aspartic acid421- and glutamic acid391-cleaved tau in neurofibrillary tangles correlates with progression in Alzheimer disease. J Neuropathol Exp Neurol 2008 May; 67(5): 470–83

    PubMed  CAS  Google Scholar 

  39. Novak M, Jakes R, Edwards PC, et al. Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51. Proc Natl Acad Sci U S A 1991 Jul 1; 88(13): 5837–41

    Article  PubMed  CAS  Google Scholar 

  40. Alonso AD, Mederlyova A, Novak M, et al. Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J Biol Chem 2004 Aug 13; 279(33): 34873–81

    Article  CAS  Google Scholar 

  41. Zilka N, Filipcik P, Koson P, et al. Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 2006 Jun 26; 580(15): 3582–8

    Article  PubMed  CAS  Google Scholar 

  42. Ferrer I, Gomez-Isla T, Puig B, et al. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr Alzheimer Res 2005 Jan; 2(1): 3–18

    Article  PubMed  CAS  Google Scholar 

  43. Mazanetz MP, Fischer PM. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov 2007 Jun; 6(6): 464–79

    Article  PubMed  CAS  Google Scholar 

  44. Goedert M, Jakes R, Qi Z, et al. Protein phosphatase 2A is the major enzyme in brain that dephosphorylates tau protein phosphorylated by proline-directed protein kinases or cyclic AMP-dependent protein kinase. J Neurochem 1995 Dec; 65(6): 2804–7

    Article  PubMed  CAS  Google Scholar 

  45. Sontag E, Nunbhakdi-Craig V, Lee G, et al. Regulation of the phosphorylation state and microtubule-binding activity of tau by protein phosphatase 2A. Neuron 1996 Dec; 17(6): 1201–7

    Article  PubMed  CAS  Google Scholar 

  46. Gong CX, Lidsky T, Wegiel J, et al. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain: implications for neurofibrillary degeneration in Alzheimer’s disease. J Biol Chem 2000 Feb 25; 275(8): 5535–44

    Article  PubMed  CAS  Google Scholar 

  47. Liu F, Grundke-Iqbal I, Iqbal K, et al. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 2005 Oct; 22(8): 1942–50

    Article  PubMed  Google Scholar 

  48. Avila J, Hernandez F. GSK-3 inhibitors for Alzheimer’s disease. Expert Rev Neurother 2007 Nov; 7(11): 1527–33

    Article  PubMed  CAS  Google Scholar 

  49. Giese KP. GSK-3: a key player in neurodegeneration and memory. IUBMB Life 2009 May; 61(5): 516–21

    Article  PubMed  CAS  Google Scholar 

  50. Wen Y, Planel E, Herman M, et al. Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 beta mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J Neurosci 2008 Mar 5; 28(10): 2624–32

    Article  PubMed  CAS  Google Scholar 

  51. Pei JJ, Braak E, Braak H, et al. Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 1999 Sep; 58(9): 1010–9

    Article  PubMed  CAS  Google Scholar 

  52. Perez M, Hernandez F, Lim F, et al. Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J Alzheimers Dis 2003 Aug; 5(4): 301–8

    PubMed  CAS  Google Scholar 

  53. Nakashima H, Ishihara T, Suguimoto P, et al. Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies. Acta Neuropathol 2005 Dec; 110(6): 547–56

    Article  PubMed  CAS  Google Scholar 

  54. Noble W, Planel E, Zehr C, et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 2005 May 10; 102(19): 6990–5

    Article  PubMed  CAS  Google Scholar 

  55. Engel T, Goni-Oliver P, Lucas JJ, et al. Chronic lithium administration to FTDP-17 tau and GSK-3beta over-expressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 2006 Dec; 99(6): 1445–55

    Article  PubMed  CAS  Google Scholar 

  56. Le Corre S, Klafki HW, Plesnila N, et al. An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc Natl Acad Sci U S A 2006 Jun 20; 103(25): 9673–8

    Article  PubMed  CAS  Google Scholar 

  57. Phiel CJ, Klein PS. Molecular targets of lithium action. Annu Rev Pharmacol Toxicol 2001; 41: 789–813

    Article  PubMed  CAS  Google Scholar 

  58. Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 2004 Sep; 25(9): 471–80

    Article  PubMed  CAS  Google Scholar 

  59. Cohen P, Goedert M. GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov 2004 Jun; 3(6): 479–87

    Article  PubMed  CAS  Google Scholar 

  60. Patel DS, Dessalew N, Iqbal P, et al. Structure-based approaches in the design of GSK-3 selective inhibitors. Curr Protein Pept Sci 2007 Aug; 8(4): 352–64

    Article  PubMed  CAS  Google Scholar 

  61. Takashima A. GSK-3 is essential in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 2006; 9(3 Suppl.): 309–17

    PubMed  CAS  Google Scholar 

  62. Churcher I. Tau therapeutic strategies for the treatment of Alzheimer’s disease. Curr Top Med Chem 2006; 6(6): 579–95

    Article  PubMed  CAS  Google Scholar 

  63. Muyllaert D, Kremer A, Jaworski T, et al. Glycogen synthase kinase-3beta, or a link between amyloid and tau pathology? Genes Brain Behav 2008 Feb; 7Suppl. 1: 57–66

    PubMed  CAS  Google Scholar 

  64. Hampel H, Ewers M, Burger K, et al. Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry 2009 Jun; 70(6): 922–31

    Article  PubMed  CAS  Google Scholar 

  65. Wang JZ, Grundke-Iqbal I, Iqbal K. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 2007 Jan; 25(1): 59–68

    Article  PubMed  Google Scholar 

  66. Patrick GN, Zukerberg L, Nikolic M, et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 1999 Dec 9; 402(6762): 615–22

    Article  PubMed  CAS  Google Scholar 

  67. Nguyen KC, Rosales JL, Barboza M, et al. Controversies over p25 in Alzheimer’s disease. J Alzheimers Dis 2002 Apr; 4(2): 123–6

    PubMed  CAS  Google Scholar 

  68. Tandon A, Yu H, Wang L, et al. Brain levels of CDK5 activator p25 are not increased in Alzheimer’s or other neurodegenerative diseases with neurofibrillary tangles. J Neurochem 2003 Aug; 86(3): 572–81

    Article  PubMed  CAS  Google Scholar 

  69. Taniguchi S, Fujita Y, Hayashi S, et al. Calpain-mediated degradation of p35 to p25 in postmortem human and rat brains. FEBS Lett 2001 Jan 26; 489(1): 46–50

    Article  PubMed  CAS  Google Scholar 

  70. Yoo BC, Lubec G. p25 protein in neurodegeneration. Nature 2001 Jun 14; 411(6839): 763–4; discussion 764–5

    Article  PubMed  CAS  Google Scholar 

  71. Knockaert M, Greengard P, Meijer L. Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol Sci 2002 Sep; 23(9): 417–25

    Article  PubMed  CAS  Google Scholar 

  72. Pallas M, Verdaguer E, Jorda EG, et al. Flavopiridol: an antitumor drug with potential application in the treatment of neurodegenerative diseases. Med Hypotheses 2005; 64(1): 120–3

    Article  PubMed  CAS  Google Scholar 

  73. De Azevedo WF, Leclerc S, Meijer L, et al. Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem 1997 Jan 15; 243(1–2): 518–26

    Article  PubMed  Google Scholar 

  74. Meijer L, Borgne A, Mulner O, et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 1997 Jan 15; 243(1–2): 527–36

    Article  PubMed  CAS  Google Scholar 

  75. Vita M, Abdel-Rehim M, Olofsson S, et al. Tissue distribution, pharmacokinetics and identification of roscovitine metabolites in rat. Eur J Pharm Sci 2005 May; 25(1): 91–103

    Article  PubMed  CAS  Google Scholar 

  76. Kitazawa M, Oddo S, Yamasaki TR, et al. Lipopoly-saccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 2005 Sep 28; 25(39): 8843–53

    Article  PubMed  CAS  Google Scholar 

  77. Wen Y, Yang SH, Liu R, et al. Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats. Biochim Biophys Acta 2007 Apr; 1772(4): 473–83

    Article  PubMed  CAS  Google Scholar 

  78. Zhang M, Li J, Chakrabarty P, et al. Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in Niemann-Pick Type C mice. Am J Pathol 2004 Sep; 165(3): 843–53

    Article  PubMed  CAS  Google Scholar 

  79. Kesavapany S, Zheng YL, Amin N, et al. Peptides derived from Cdk5 activator p35, specifically inhibit deregulated activity of Cdk5. Biotechnol J 2007 Aug; 2(8): 978–87

    Article  PubMed  CAS  Google Scholar 

  80. Gong CX, Grundke-Iqbal I, Iqbal K. Dephosphorylation of Alzheimer’s disease abnormally phosphorylated tau by protein phosphatase-2A. Neuroscience 1994 Aug; 61(4): 765–72

    Article  PubMed  CAS  Google Scholar 

  81. Gong CX, Singh TJ, Grundke-Iqbal I, et al. Phosphoprotein phosphatase activities in Alzheimer disease brain. J Neurochem 1993 Sep; 61(3): 921–7

    Article  PubMed  CAS  Google Scholar 

  82. Gong CX, Shaikh S, Wang JZ, et al. Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J Neurochem 1995 Aug; 65(2): 732–8

    Article  PubMed  CAS  Google Scholar 

  83. Loring JF, Wen X, Lee JM, et al. A gene expression profile of Alzheimer’s disease. DNA Cell Biol 2001 Nov; 20(11): 683–95

    Article  PubMed  CAS  Google Scholar 

  84. Sontag E, Luangpirom A, Hladik C, et al. Altered expression levels of the protein phosphatase 2A ABalphaC enzyme are associated with Alzheimer disease pathology. J Neuropathol Exp Neurol 2004 Apr; 63(4): 287–301

    PubMed  CAS  Google Scholar 

  85. Vogelsberg-Ragaglia V, Schuck T, Trojanowski JQ, et al. PP2A mRNA expression is quantitatively decreased in Alzheimer’s disease hippocampus. Exp Neurol 2001 Apr; 168(2): 402–12

    Article  PubMed  CAS  Google Scholar 

  86. Ulloa L, Montejo de Garcini E, Gomez-Ramos P, et al. Microtubule-associated protein MAP1B showing a fetal phosphorylation pattern is present in sites of neurofibrillary degeneration in brains of Alzheimer’s disease patients. Brain Res Mol Brain Res 1994 Oct; 26(1–2): 113–22

    Article  PubMed  CAS  Google Scholar 

  87. Vijayan S, El-Akkad E, Grundke-Iqbal I, et al. A pool of beta-tubulin is hyperphosphorylated at serine residues in Alzheimer disease brain. FEBS Lett 2001 Dec 14; 509(3): 375–81

    Article  PubMed  CAS  Google Scholar 

  88. Wang J, Tung YC, Wang Y, et al. Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett 2001 Oct 19; 507(1): 81–7

    Article  PubMed  CAS  Google Scholar 

  89. Deng Y, Li B, Liu F, et al. Regulation between O-GlcNAcylation and phosphorylation of neurofilament-M and their dysregulation in Alzheimer disease. Faseb J 2008 Jan; 22(1): 138–45

    Article  PubMed  CAS  Google Scholar 

  90. Li M, Makkinje A, Damuni Z. The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem 1996 May 10; 271(19): 11059–62

    Article  PubMed  CAS  Google Scholar 

  91. Li M, Makkinje A, Damuni Z. Molecular identification of I1PP2A, a novel potent heat-stable inhibitor protein of protein phosphatase 2A. Biochemistry 1996 Jun 4; 35(22): 6998–7002

    Article  PubMed  CAS  Google Scholar 

  92. Tanimukai H, Grundke-Iqbal I, Iqbal K. Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer’s disease. Am J Pathol 2005 Jun; 166(6): 1761–71

    Article  PubMed  CAS  Google Scholar 

  93. Tsujio I, Zaidi T, Xu J, et al. Inhibitors of protein phosphatase-2A from human brain structures, immunocytological localization and activities towards dephosphorylation of the Alzheimer type hyperphosphorylated tau. FEBS Lett 2005 Jan 17; 579(2): 363–72

    Article  PubMed  CAS  Google Scholar 

  94. Li L, Sengupta A, Haque N, et al. Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. FEBS Lett 2004 May 21; 566(1–3): 261–9

    Article  PubMed  CAS  Google Scholar 

  95. Li SP, Deng YQ, Wang XC, et al. Melatonin protects SH-SY5Y neuroblastoma cells from calyculin A-induced neurofilament impairment and neurotoxicity. J Pineal Res 2004 Apr; 36(3): 186–91

    Article  PubMed  CAS  Google Scholar 

  96. Li XC, Wang ZF, Zhang JX, et al. Effect of melatonin on calyculin A-induced tau hyperphosphorylation. Eur J Pharmacol 2005 Mar 7; 510(1–2): 25–30

    Article  PubMed  CAS  Google Scholar 

  97. Wang DL, Ling ZQ, Cao FY, et al. Melatonin attenuates isoproterenol-induced protein kinase A overactivation and tau hyperphosphorylation in rat brain. J Pineal Res 2004 Aug; 37(1): 11–6

    Article  PubMed  CAS  Google Scholar 

  98. Zhu LQ, Wang SH, Ling ZQ, et al. Effect of inhibiting melatonin biosynthesis on spatial memory retention and tau phosphorylation in rat. J Pineal Res 2004 Sep; 37(2): 71–7

    Article  PubMed  CAS  Google Scholar 

  99. Chohan MO, Khatoon S, Iqbal IG, et al. Involvement of I2PP2A in the abnormal hyperphosphorylation oftau and its reversal by memantine. FEBS Lett 2006 Jul 10; 580(16): 3973–9

    Article  PubMed  CAS  Google Scholar 

  100. Degerman Gunnarsson M, Kilander L, Basun H, et al. Reduction of phosphorylated tau during memantine treatment of Alzheimer’s disease. Dement Geriatr Cogn Disord 2007; 24(4): 247–52

    Article  PubMed  CAS  Google Scholar 

  101. Arnold CS, Johnson GV, Cole RN, et al. The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J Biol Chem 1996 Nov 15; 271(46): 28741–4

    Article  PubMed  CAS  Google Scholar 

  102. Lefebvre T, Ferreira S, Dupont-Wallois L, et al. Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of tau proteins: a role in nuclear localization. Biochim Biophys Acta 2003 Jan 20; 1619(2): 167–76

    Article  PubMed  CAS  Google Scholar 

  103. Liu F, Iqbal K, Grundke-Iqbal I, et al. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci U S A 2004 Jul 20; 101(29): 10804–9

    Article  PubMed  CAS  Google Scholar 

  104. Li X, Lu F, Wang JZ, et al. Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur J Neurosci 2006 Apr; 23(8): 2078–86

    Article  PubMed  Google Scholar 

  105. Liu F, Shi J, Tanimukai H, et al. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain 2009 Jul; 132 (Pt 7): 1820–32

    Article  PubMed  Google Scholar 

  106. Robertson LA, Moya KL, Breen KC. The potential role of tau protein O-glycosylation in Alzheimer’s disease. J Alzheimers Dis 2004 Oct; 6(5): 489–95

    PubMed  CAS  Google Scholar 

  107. Gong CX, Liu F, Grundke-Iqbal I, et al. Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlcNAcylation. J Alzheimers Dis 2006 Mar; 9(1): 1–12

    PubMed  CAS  Google Scholar 

  108. Gong CX, Liu F, Grundke-Iqbal I, et al. O-Glycosylation regulates hyperphosphorylation of tau: a novel mechanism leading to neurofibrillary degeneration in Alzheimer disease. In: Iqbal K, Windisch M, Avila J, editors. Alzheimer’s disease: new advances. Madrid: Medimond International, 2007: 253–61

    Google Scholar 

  109. d’Abramo C, Ricciarelli R, Pronzato MA, et al. Troglitazone, a peroxisome proliferator-activated receptor-gamma agonist, decreases tau phosphorylation in CHOtau4R cells. J Neurochem 2006 Aug; 98(4): 1068–77

    Article  PubMed  CAS  Google Scholar 

  110. Hu SH, Yang YP, Zhang MX, et al. Rosiglitazone ameliorates Alzheimer-like hyperphosphorylation of tau protein in the hippocampus of rats with insulin resistance. Prog Biochem Biophys 2007; 34: 533–7

    CAS  Google Scholar 

  111. Pedersen WA, McMillan PJ, Kulstad JJ, et al. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol 2006 Jun; 199(2): 265–73

    Article  PubMed  CAS  Google Scholar 

  112. Risner ME, Saunders AM, Altman JF, et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 2006 Jul–Aug; 6(4): 246–54

    PubMed  CAS  Google Scholar 

  113. Gold M, Alderton C, Zvartau-Hind M, et al. Effects of rosiglitazone as monotherapy in APOE4-stratified subjects with mild- to moderate-Alzheimer’s disease [abstract]. Alzheimers Dement 2009; 5(S1): 86

    Article  Google Scholar 

  114. Macauley MS, Whitworth GE, Debowski AW, et al. O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. J Biol Chem 2005 Jul 8; 280(27): 25313–22

    Article  PubMed  CAS  Google Scholar 

  115. Whitworth GE, Macauley MS, Stubbs KA, et al. Analysis of PUGNAc and NAG-thiazoline as transition state analogues for human O-GlcNAcase: mechanistic and structural insights into inhibitor selectivity and transition state poise. J Am Chem Soc 2007 Jan 24; 129(3): 635–44

    Article  PubMed  CAS  Google Scholar 

  116. Yuzwa SA, Macauley MS, Heinonen JE, et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation oftau in vivo. Nat Chem Biol 2008 Aug; 4(8): 483–90

    Article  PubMed  CAS  Google Scholar 

  117. Sahara N, Maeda S, Murayama M, et al. Assembly of two distinct dimers and higher-order oligomers from full-length tau. Eur J Neurosci 2007 May; 25(10): 3020–9

    Article  PubMed  Google Scholar 

  118. Bancher C, Brunner C, Lassmann H, et al. Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 1989 Jan 16; 477(1–2): 90–9

    Article  PubMed  CAS  Google Scholar 

  119. Maeda S, Sahara N, Saito Y, et al. Granular tau oligomers as intermediates of tau filaments. Biochemistry 2007 Mar 27; 46(12): 3856–61

    Article  PubMed  CAS  Google Scholar 

  120. Iqbal K, Alonso Adel C, Grundke-Iqbal I. Cytosolic abnormally hyperphosphorylated tau but not paired helical filaments sequester normal MAPs and inhibit microtubule assembly. J Alzheimers Dis 2008 Aug; 14(4): 365–70

    PubMed  Google Scholar 

  121. Santacruz K, Lewis J, Spires T, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 2005 Jul 15; 309(5733): 476–81

    Article  PubMed  CAS  Google Scholar 

  122. Morsch R, Simon W, Coleman PD. Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 1999 Feb; 58(2): 188–97

    Article  PubMed  CAS  Google Scholar 

  123. Cash AD, Aliev G, Siedlak SL, et al. Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am J Pathol 2003 May; 162(5): 1623–7

    Article  PubMed  CAS  Google Scholar 

  124. Andorfer C, Acker CM, Kress Y, et al. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 2005 Jun 1; 25(22): 5446–54

    Article  PubMed  CAS  Google Scholar 

  125. Kayed R, Head E, Thompson JL, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003 Apr 18; 300(5618): 486–9

    Article  PubMed  CAS  Google Scholar 

  126. Arrasate M, Mitra S, Schweitzer ES, et al. Inclusion body formation reduces levels ofmutant huntingtin and the risk of neuronal death. Nature 2004 Oct 14; 431(7010): 805–10

    Article  PubMed  CAS  Google Scholar 

  127. Sanbe A, Osinska H, Villa C, et al. Reversal of amyloid-induced heart disease in desmin-related cardiomyopathy. Proc Natl Acad Sci U S A 2005 Sep 20; 102(38): 13592–7

    Article  PubMed  CAS  Google Scholar 

  128. Brunden KR, Trojanowski JQ, Lee VM. Advances in taufocused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov 2009 Oct; 8(10): 783–93

    Article  PubMed  CAS  Google Scholar 

  129. Wischik CM, Edwards PC, Lai RY, et al. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci U S A 1996 Oct 1; 93(20): 11213–8

    Article  PubMed  CAS  Google Scholar 

  130. Staff RT, Ahearn TS, Murray AD, et al. Tau aggregation inhibitor (TAI) therapy with rember arrests the trajectory of rCBF decline in brain regions affected by tau pathology in mild to moderate Alzheimer’s disease. Alzheimers Dement 2008; 4(4): T775

    Article  Google Scholar 

  131. Pickhardt M, Gazova Z, von Bergen M, et al. Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells. J Biol Chem 2005 Feb 4; 280(5): 3628–35

    Article  PubMed  CAS  Google Scholar 

  132. Crowe A, Huang W, Ballatore C, et al. Identification of aminothienopyridazine inhibitors of tau assembly by quantitative high-throughput screening. Biochemistry 2009 Aug 18; 48(32): 7732–45

    Article  PubMed  CAS  Google Scholar 

  133. Schneider A, Biernat J, von Bergen M, et al. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 1999 Mar 23; 38(12): 3549–58

    Article  PubMed  CAS  Google Scholar 

  134. Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease: an immunoelectron microscopy study. J Neuropathol Exp Neurol 2005 Feb; 64(2): 113–22

    PubMed  Google Scholar 

  135. Hamos JE, Oblas B, Pulaski-Salo D, et al. Expression of heat shock proteins in Alzheimer’s disease. Neurology 1991 Mar; 41(3): 345–50

    Article  PubMed  CAS  Google Scholar 

  136. Keck S, Nitsch R, Grune T, et al. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 2003 Apr; 85(1): 115–22

    Article  PubMed  CAS  Google Scholar 

  137. Keller JN, Hanni KB, Markesbery WR. Impaired protea-some function in Alzheimer’s disease. J Neurochem 2000 Jul; 75(1): 436–9

    Article  PubMed  CAS  Google Scholar 

  138. Perez N, Sugar J, Charya S, et al. Increased synthesis and accumulation of heat shock 70 proteins in Alzheimer’s disease. Brain Res Mol Brain Res 1991 Oct; 11(3–4): 249–54

    Article  PubMed  CAS  Google Scholar 

  139. Dickey CA, Dunmore J, Lu B, et al. HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. Faseb J 2006 Apr; 20(6): 753–5

    PubMed  CAS  Google Scholar 

  140. Dickey CA, Kamal A, Lundgren K, et al. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 2007 Mar; 117(3): 648–58

    Article  PubMed  CAS  Google Scholar 

  141. Luo W, Dou F, Rodina A, et al. Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci U S A 2007 May 29; 104(22): 9511–6

    Article  PubMed  CAS  Google Scholar 

  142. Nixon RA. Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci 2006 Sep; 29(9): 528–35

    Article  PubMed  CAS  Google Scholar 

  143. Williams A, Jahreiss L, Sarkar S, et al. Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr Top Dev Biol 2006; 76: 89–101

    Article  PubMed  CAS  Google Scholar 

  144. Berger Z, Ravikumar B, Menzies FM, et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 2006 Feb 1; 15(3): 433–42

    Article  PubMed  CAS  Google Scholar 

  145. Hamano T, Gendron TF, Causevic E, et al. Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci 2008 Mar; 27(5): 1119–30

    Article  PubMed  Google Scholar 

  146. Sarkar S, Floto RA, Berger Z, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005 Sep 26; 170(7): 1101–11

    Article  PubMed  CAS  Google Scholar 

  147. Asuni AA, Boutajangout A, Quartermain D, et al. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 2007 Aug 22; 27(34): 9115–29

    Article  PubMed  CAS  Google Scholar 

  148. Sigurdsson EM. Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J Alzheimers Dis 2008 Oct; 15(2): 157–68

    PubMed  CAS  Google Scholar 

  149. Zilka N, Kontsekova E, Novak M. Chaperone-like antibodies targeting misfolded tau protein: new vistas in the immunotherapy of neurodegenerative foldopathies. J Alzheimers Dis 2008 Oct; 15(2): 169–79

    PubMed  CAS  Google Scholar 

  150. Gomez-Ramos A, Diaz-Hernandez M, Cuadros R, et al. Extracellular tau is toxic to neuronal cells. FEBS Lett 2006 Sep 4; 580(20): 4842–50

    Article  PubMed  CAS  Google Scholar 

  151. Gomez-Ramos A, Diaz-Hernandez M, Rubio A, et al. Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol Cell Neurosci 2008 Apr; 37(4): 673–81

    Article  PubMed  CAS  Google Scholar 

  152. Iqbal K, Flory M, Khatoon S, et al. Subgroups of Alzheimer’s disease based on cerebrospinal fluid molecular markers. Ann Neurol 2005 Nov; 58(5): 748–57

    Article  PubMed  CAS  Google Scholar 

  153. Iqbal K, Chohan MO, Grundke-Iqbal I. Stratification of patients is the way to go to develop neuroprotective/disease-modifying drugs for Alzheimer’s disease. J Alzheimers Dis 2008 Oct; 15(2): 339–45

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Studies carried out in our laboratories were supported in part by the New York State Office of Mental Retardation and Developmental Disabilities and National Institutes of Health grants AG019158, AG028538, AG27429, AG031969 and TW008123. The authors have no conflicts of interest that are directly relevant to the content of this article. The authors are grateful to Janet Murphy for secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Iqbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, CX., Grundke-Iqbal, I. & Iqbal, K. Targeting Tau Protein in Alzheimer’s Disease. Drugs Aging 27, 351–365 (2010). https://doi.org/10.2165/11536110-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11536110-000000000-00000

Keywords

Navigation