Skip to main content
Log in

Targeted Therapies for Solid Tumors

Current Status and Future Perspectives

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

The therapeutic benefits of targeted clinical interventions with increased selectivity and fewer adverse effects hold great promise in the treatment of solid malignancies, both in monotherapy and in combination. Molecular targeted therapies offer increasingly customized solutions based on the targeting of multiple specific pathways essential for cancer development and metastasis, allowing the maintenance of quality of life while efficiently attacking the tumor. To date, several monoclonal antibodies (mAbs) and small-molecule inhibitors have been approved for the treatment of colorectal, breast, head and neck, non-small cell lung and renal cell cancer. A number of additional targeted therapies are currently being investigated in ongoing clinical trials in various tumor types such as lung, gastric, cervical, uterine melanoma, and brain tumors. This article describes current and newly developed targeted therapies in solid tumors, with a special focus on tyrosine kinase inhibitors. These include mAbs and small-molecule inhibitors that aim to specifically disrupt receptor signaling pathways, which are essential for proliferation, survival and migration of tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chabner BA, Roberts Jr TG. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 2005 Jan; 5(1): 65–72

    Article  PubMed  CAS  Google Scholar 

  2. Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer 2006 Sep; 6(9): 714–27

    Article  PubMed  CAS  Google Scholar 

  3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000 Jan 7; 100(1): 57–70

    Article  PubMed  CAS  Google Scholar 

  4. Savage DG, Antman KH. Imatinib mesylate: a new oral targeted therapy. N Engl J Med 2002 Feb 28; 346(9): 683–93

    Article  PubMed  CAS  Google Scholar 

  5. Herbst RS, Fukuoka M, Baselga J. Gefitinib: a novel targeted approach to treating cancer. Nat Rev Cancer 2004 Dec; 4(12): 956–65

    Article  PubMed  CAS  Google Scholar 

  6. Ferrara N, Hillan KJ, Gerber HP, et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004 May; 3(5): 391–400

    Article  PubMed  CAS  Google Scholar 

  7. Saltz L, Easley C, Kirkpatrick P. Panitumumab. Nat Rev Drug Discov 2006 Dec; 5(12): 987–8

    Article  PubMed  CAS  Google Scholar 

  8. Baselga J. The EGFR as a target for anticancer therapy: focus on cetuximab. Eur J Cancer 2001 Sep; 37Suppl. 4: S16–22

    Article  PubMed  CAS  Google Scholar 

  9. Goldberg RM. Cetuximab. Nat Rev Drug Discov 2005 May; Suppl.: S10-1

  10. Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 2009 Jul; 9(7): 463–75

    Article  PubMed  CAS  Google Scholar 

  11. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005 May; 5(5): 341–54

    Article  PubMed  CAS  Google Scholar 

  12. Vlahovic G, Crawford J. Activation of tyrosine kinases in cancer. Oncologist 2003; 8(6): 531–8

    Article  PubMed  CAS  Google Scholar 

  13. Pal SK, Pegram M. Epidermal growth factor receptor and signal transduction: potential targets for anti-cancer therapy. Anticancer Drugs 2005 Jun; 16(5): 483–94

    Article  PubMed  CAS  Google Scholar 

  14. Baselga J. Why the epidermal growth factor receptor? zThe rationale for cancer therapy. Oncologist 2002; 7Suppl. 4: 2–8

    Article  PubMed  CAS  Google Scholar 

  15. Mendelsohn J. Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol 2002 Sep 15; 20(18 Suppl.): 1S–13S

    PubMed  CAS  Google Scholar 

  16. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer 2001 Sep; 37 Suppl. 4: S9–15

    Article  Google Scholar 

  17. Volm M, Mattern J, Koomagi R. Expression of platelet-derived endothelial cell growth factor in non-small cell lung carcinomas: relationship to various biological factors. Int J Oncol 1998 Nov; 13(5): 975–9

    PubMed  CAS  Google Scholar 

  18. Selvaggi G, Novello S, Torri V, et al. Epidermal growth factor receptor overexpression correlates with a poor prognosis in completely resected non-small-cell lung cancer. Ann Oncol 2004 Jan; 15(1): 28–32

    Article  PubMed  CAS  Google Scholar 

  19. Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem 1962 May; 237: 1555–62

    PubMed  CAS  Google Scholar 

  20. Sato JD, Kawamoto T, Le AD, et al. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol Biol Med 1983 Dec; 1(5): 511–29

    PubMed  CAS  Google Scholar 

  21. Goldstein NI, Prewett M, Zuklys K, et al. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1995 Nov; 1(11): 1311–8

    PubMed  CAS  Google Scholar 

  22. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004 Jul 22; 351(4): 337–45

    Article  PubMed  CAS  Google Scholar 

  23. Nahta R, Esteva FJ. Trastuzumab: triumphs and tribulations. Oncogene 2007 May 28; 26(25): 3637–43

    Article  PubMed  CAS  Google Scholar 

  24. Coultas L, Bouillet P, Stanley EG, et al. Proapoptotic BH3-only Bcl-2 family member Bik/Blk/Nbk is expressed in hemopoietic and endothelial cells but is redundant for their programmed death. Mol Cell Biol 2004 Feb; 24(4): 1570–81

    Article  PubMed  CAS  Google Scholar 

  25. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 2008 Aug; 8(8): 579–91

    Article  PubMed  CAS  Google Scholar 

  26. Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989 Dec 8; 246(4935): 1309–12

    Article  PubMed  CAS  Google Scholar 

  27. Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989 Dec 8; 246(4935): 1306–9

    Article  PubMed  CAS  Google Scholar 

  28. Herbst RS. Therapeutic options to target angiogenesis in human malignancies. Expert Opin Emerg Drugs 2006 Nov; 11(4): 635–50

    Article  PubMed  CAS  Google Scholar 

  29. Rafii S, Lyden D, Benezra R, et al. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2002 Nov; 2(11): 826–35

    Article  PubMed  CAS  Google Scholar 

  30. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005 Dec 8; 438(7069): 820–7

    Article  PubMed  CAS  Google Scholar 

  31. Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 2002 Apr; 1(3): 219–27

    Article  PubMed  CAS  Google Scholar 

  32. Schrama D, Reisfeld RA, Becker JC. Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 2006 Feb; 5(2): 147–59

    Article  PubMed  CAS  Google Scholar 

  33. Huang SM, Bock JM, Harari PM. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 1999 Apr 15; 59(8): 1935–40

    PubMed  CAS  Google Scholar 

  34. Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009 Apr 2; 360(14): 1408–17

    Article  PubMed  Google Scholar 

  35. Burtness B, Goldwasser MA, Flood W, et al. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J Clin Oncol 2005 Dec 1; 23(34): 8646–54

    Article  PubMed  Google Scholar 

  36. Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 2008; 359(11): 1116–27

    Article  PubMed  CAS  Google Scholar 

  37. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006 Feb 9; 354(6): 567–78

    Article  PubMed  CAS  Google Scholar 

  38. Zureikat AH, McKee MD. Targeted therapy for solid tumors: current status. Surg Oncol Clin N Am 2008 Apr; 17(2): 279–301

    Article  PubMed  Google Scholar 

  39. Yang XD, Jia XC, Corvalan JR, et al. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol 2001 Apr; 38(1): 17–23

    Article  PubMed  CAS  Google Scholar 

  40. Van Cutsem E, Peeters M, Siena S, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 2007 May 1; 25(13): 1658–64

    Article  PubMed  Google Scholar 

  41. Hecht JR, Mitchell E, Chidiac T, et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009; 27(5): 672–80

    Article  PubMed  CAS  Google Scholar 

  42. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial). J Clin Oncol 2003 Jun 15; 21(12): 2237–46

    Article  PubMed  CAS  Google Scholar 

  43. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 2003 Oct 22; 290(16): 2149–58

    Article  PubMed  CAS  Google Scholar 

  44. Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial — INTACT 1. J Clin Oncol 2004 Mar 1; 22(5): 777–84

    Article  PubMed  CAS  Google Scholar 

  45. Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial — INTACT 2. J Clin Oncol 2004 Mar 1; 22(5): 785–94

    Article  PubMed  CAS  Google Scholar 

  46. Thatcher N, Chang A, Parikh P, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 2005 Oct 29–Nov 4; 366(9496): 1527–37

    Article  PubMed  CAS  Google Scholar 

  47. Hirsch FR, Dziadziuszko R, Thatcher N, et al. Epidermal growth factor receptor immunohistochemistry: comparison of antibodies and cutoff points to predict benefit from gefitinib in a phase 3 placebo-controlled study in advanced nonsmall-cell lung cancer. Cancer 2008 Mar 1; 112(5): 1114–21

    Article  PubMed  CAS  Google Scholar 

  48. Rocha-Lima CM, Soares HP, Raez LE, et al. EGFR targeting of solid tumors. Cancer Control 2007 Jul; 14(3): 295–304

    PubMed  Google Scholar 

  49. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005 Jul 14; 353(2): 123–32

    Article  PubMed  CAS  Google Scholar 

  50. Gatzemeier U, Pluzanska A, Szczesna A, et al. Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the Tarceva Lung Cancer Investigation Trial. J Clin Oncol 2007 Apr 20; 25(12): 1545–52

    Article  PubMed  CAS  Google Scholar 

  51. Herbst RS, Prager D, Hermann R, et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 2005 Sep 1; 23(25): 5892–9

    Article  PubMed  CAS  Google Scholar 

  52. Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007 May 20; 25(15): 1960–6

    Article  PubMed  CAS  Google Scholar 

  53. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–82

    Article  PubMed  CAS  Google Scholar 

  54. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999 Sep; 17(9): 2639–48

    PubMed  CAS  Google Scholar 

  55. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002 Feb 1; 20(3): 719–26

    Article  PubMed  CAS  Google Scholar 

  56. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001 Mar 15; 344(11): 783–92

    Article  PubMed  CAS  Google Scholar 

  57. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005 Oct 20; 353(16): 1673–84

    Article  PubMed  CAS  Google Scholar 

  58. Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006 Dec 28; 355(26): 2733–43

    Article  PubMed  CAS  Google Scholar 

  59. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004 Jun 3; 350(23): 2335–42

    Article  PubMed  CAS  Google Scholar 

  60. Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 2007 Apr 20; 25(12): 1539–44

    Article  PubMed  CAS  Google Scholar 

  61. Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 2004 Jun 1; 22(11): 2184–91

    Article  PubMed  CAS  Google Scholar 

  62. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006 Dec 14; 355(24): 2542–50

    Article  PubMed  CAS  Google Scholar 

  63. Miller KD, Chap LI, Holmes FA, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 2005 Feb 1; 23(4): 792–9

    Article  PubMed  CAS  Google Scholar 

  64. Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 2007 Dec 27; 357(26): 2666–76

    Article  PubMed  CAS  Google Scholar 

  65. Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 2007 Dec 22; 370(9605): 2103–11

    Article  PubMed  Google Scholar 

  66. Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 2009; 27(28): 4733–40

    Article  PubMed  CAS  Google Scholar 

  67. Nghiemphu PL, Liu W, Lee Y, et al. Bevacizumab and chemotherapy for recurrent glioblastoma: a single-institution experience. Neurology 2009; 72(14): 1217–22

    Article  PubMed  CAS  Google Scholar 

  68. Ratain MJ, Eisen T, Stadler WM, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 2006 Jun 1; 24(16): 2505–12

    Article  PubMed  CAS  Google Scholar 

  69. Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007 Jan 11; 356(2): 125–34

    Article  PubMed  CAS  Google Scholar 

  70. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008 Jul 24; 359(4): 378–90

    Article  PubMed  CAS  Google Scholar 

  71. Wellbrock C, Hurlstone A. BRAF as therapeutic target in melanoma. Biochem Pharmacol. Epub 2010 Mar 27

  72. Amaravadi RK, Schuchter LM, McDermott DF, et al. Phase II trial of temozolomide and sorafenib in advanced melanoma patients with or without brain metastases. Clin Cancer Res 2009 Dec 15; 15(24): 7711–8

    Article  PubMed  CAS  Google Scholar 

  73. Wagner AD, Arnold D, Grothey AA, et al. Anti-angiogenic therapies for metastatic colorectal cancer. Cochrane Database Syst Rev 2009 Jul 8; (3): CD005392

  74. Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 2006 Sep; 6(9): 729–34

    Article  PubMed  CAS  Google Scholar 

  75. Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006 Aug; 5(8): 671–88

    Article  PubMed  CAS  Google Scholar 

  76. Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 2007 May 31; 356(22): 2271–81

    Article  PubMed  CAS  Google Scholar 

  77. Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 2008 Aug 9; 372(9637): 449–56

    Article  PubMed  CAS  Google Scholar 

  78. Heng DY, Kollmannsberger C. Sunitinib. Recent Results Cancer Res 2010; 184: 71–82

    Article  PubMed  CAS  Google Scholar 

  79. Giron F, Baez Y, Nino-Murcia A, et al. Conversion therapy to everolimus in renal transplant recipients: results after one year. Transplant Proc 2008 Apr; 40(3): 711–3

    Article  PubMed  CAS  Google Scholar 

  80. Demetri GD, van Oosterom AT, Garrett CR, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 2006 Oct 14; 368(9544): 1329–38

    Article  PubMed  CAS  Google Scholar 

  81. Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 2004 Apr 1; 64(7): 2343–6

    Article  PubMed  CAS  Google Scholar 

  82. Rivera F, Salcedo M, Vega N, et al. Current situation of zalutumumab. Expert Opin Biol Ther 2009; 9(5): 667–74

    Article  PubMed  CAS  Google Scholar 

  83. Chu QS. Aflibercept (AVE0005): an alternative strategy for inhibiting tumour angiogenesis by vascular endothelial growth factors. Expert Opin Biol Ther 2009 Feb; 9(2): 263–71

    Article  PubMed  CAS  Google Scholar 

  84. Sternberg CN, Davis ID, Mardiak J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 2010 Feb 20; 28(6): 1061–8

    Article  PubMed  CAS  Google Scholar 

  85. Sonpavde G, Hutson TE, Sternberg CN. Pazopanib, a potent orally administered small-molecule multitargeted tyrosine kinase inhibitor for renal cell carcinoma. Expert Opin Investig Drugs 2008 Feb; 17(2): 253–61

    Article  PubMed  CAS  Google Scholar 

  86. Robertson JD, Botwood NA, Rothenberg ML, et al. Phase III trial of FOLFOX plus bevacizumab or cediranib (AZD2171) as first-line treatment of patients with metastatic colorectal cancer: HORIZON III. Clin Colorectal Cancer 2009 Jan; 8(1): 59–60

    Article  CAS  Google Scholar 

  87. RECENTIN did not meet primary endpoint in Horizon III study in metastatic colorectal cancer [press release]. AstraZeneca, 2010 Mar 08 [online]. Available from URL: http://www.astrazeneca.com/media/latest-press-releases/recoentin-horizon?itemId=8748245 [Accessed 2010 Jun 11]

  88. Krupitskaya Y, Wakelee HA. Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr Opin Investig Drugs 2009 Jun; 10(6): 597–605

    PubMed  CAS  Google Scholar 

  89. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008 Aug; 8(8): 592–603

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

The author would like to thank Dr Sabrina Engel for her editorial support in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archontoula Stoffel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoffel, A. Targeted Therapies for Solid Tumors. BioDrugs 24, 303–316 (2010). https://doi.org/10.2165/11535880-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11535880-000000000-00000

Keywords

Navigation