Skip to main content
Log in

Strategies for In Vivo Delivery of siRNAs

Recent Progress

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

RNA interference (RNAi) is a post-transcriptional gene-silencing mechanism that involves the degradation of messenger RNA in a highly sequence-specific manner. Double-stranded small interfering RNA (siRNA), consisting of 21–25 nucleotides, can induce RNAi and inhibit the expression of target proteins. Therefore, siRNA is considered a promising therapeutic for treatment of a variety of diseases, including genetic and viral diseases, and cancer. Clinical trials of siRNA are ongoing or have been planned, although some issues need to be addressed. For example, cellular uptake of naked siRNA is extremely low due to its polyanionic nature. Furthermore, siRNA is easily degraded by enzymes in blood, tissues, and cells. Several types of chemically modified siRNA have been produced and investigated to improve stability; these have involved modification of the siRNA backbone, the sugar moiety, and the nucleotide bases of antisense and/or sense strands. Because the accumulation at the target site after administration is extremely low, even if stability is improved, an effective delivery system is required to induce RNAi at the site of action. Delivery strategies can be categorized into physical methods, conjugation methods, and drug delivery system carrier-mediated methods. Physical techniques can enhance siRNA uptake at a specific tissue site using electroporation, pressure, mechanical massage, etc. Terminal modification of siRNAs can enhance their resistance to degradation by exonucleases in serum and tissue. Moreover, modification with a suitable ligand can achieve targeted delivery. Several types of carrier for drug delivery have been developed for siRNA in addition to traditional cationic liposome and cationic polymer systems. Ultrasound and microbubbles or liposomal bubbles have also been used in combination with a carrier for siRNA delivery. New materials with unique characteristics such as carbon nanotubes, gold nanoparticles, and gold nanorods have attracted attention as innovative carriers for siRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II

Similar content being viewed by others

References

  1. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998 Feb 19; 391(6669): 806–11

    Article  PubMed  CAS  Google Scholar 

  2. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001 May 24; 411(6836): 494–8

    Article  PubMed  CAS  Google Scholar 

  3. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002 Oct; 3(10): 737–47

    Article  PubMed  CAS  Google Scholar 

  4. Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature 2004 Sep 16; 431(7006): 371–8

    Article  PubMed  CAS  Google Scholar 

  5. Caplen NJ, Parrish S, Imani F, et al. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A 2001 Aug 14; 98(17): 9742–7

    Article  PubMed  CAS  Google Scholar 

  6. Takakura Y, Hashida M. Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharm Res 1996 Jun; 13(6): 820–31

    Article  PubMed  CAS  Google Scholar 

  7. Higuchi Y, Kawakami S, Yamashita F, et al. The potential role of fucosylated cationic liposome/NFκB decoy complexes in the treatment of cytokine-related liver disease. Biomaterials 2007 Jan; 28(3): 532–9

    Article  PubMed  CAS  Google Scholar 

  8. Higuchi Y, Kawakami S, Oka M, et al. Intravenous administration of man-nosylated cationic liposome/NFκB decoy complexes effectively prevent LPS-induced cytokine production in a murine liver failure model. FEBS Lett 2006 Jun 26; 580(15): 3706–14

    Article  PubMed  CAS  Google Scholar 

  9. Miyao T, Takakura Y, Akiyama T, et al. Stability and pharmacokinetic characteristics of oligonucleotides modified at terminal linkages in mice. Antisense Res Dev 1995 Summer; 5(2): 115–21

    PubMed  CAS  Google Scholar 

  10. Takakura Y, Mahato RI, Yoshida M, et al. Uptake characteristics of oligonucleotides in the isolated rat liver perfusion system. Antisense Nucleic Acid Drug Dev 1996 Fall; 6(3): 177–83

    Article  PubMed  CAS  Google Scholar 

  11. Sawai K, Miyao T, Takakura Y, et al. Renal disposition characteristics of oligonucleotides modified at terminal linkages in the perfused rat kidney. Antisense Res Dev 1995 Winter; 5(4): 279–87

    PubMed  CAS  Google Scholar 

  12. Sawai K, Mahato RI, Oka Y, et al. Disposition of oligonucleotides in isolated perfused rat kidney: involvement of scavenger receptors in their renal uptake. J Pharmacol Exp Ther 1996 Oct; 279(1): 284–90

    PubMed  CAS  Google Scholar 

  13. Medarova Z, Pharm W, Farrar C,et al. In vivo imaging ofsiRNA delivery and silencing in tumors. Nat Med 2007 Mar; 13(3): 372–7

    Article  PubMed  CAS  Google Scholar 

  14. Lee JH, Lee K, Moon SH, et al. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed Engl 2009; 48(23): 4174–9

    Article  PubMed  CAS  Google Scholar 

  15. Yezhelyev MV, Qi L, O'Regan RM, et al. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc 2008 Jul 16; 130(28): 9006–12

    Article  PubMed  CAS  Google Scholar 

  16. Qi L, Gao X. Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano 2008 Jul; 2(7): 1403–10

    Article  PubMed  CAS  Google Scholar 

  17. Klein S, Zolk O, Fromm MF, et al. Functionalized silicon quantum dots tailored for targeted siRNA delivery. Biochem Biophys Res Commun 2009 Sep 11; 387(1): 164–8

    Article  PubMed  CAS  Google Scholar 

  18. Eder PS, DeVine RJ, Dagle JM, et al. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res Dev 1991 Summer; 1(2): 141–51

    PubMed  CAS  Google Scholar 

  19. Kennedy S, Wang D, Ruvkun G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 2004 Feb 12; 427(6975): 645–9

    Article  PubMed  CAS  Google Scholar 

  20. Amarzguioui M, Holen T, Babaie E, et al. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 2003 Jan 15; 31(2): 589–95

    Article  PubMed  CAS  Google Scholar 

  21. Bramsen JB, Laursen MB, Damgaard CK, et al. Improved silencing properties using small internally segmented interfering RNAs. Nucleic Acids Res 2007; 35(17): 5886–97

    Article  PubMed  CAS  Google Scholar 

  22. Chiu YL, Rana TM. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 2002 Sep; 10(3): 549–61

    Article  CAS  Google Scholar 

  23. Jackson AL, Burchard J, Leake D, et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 2006 Jul; 12(7): 1197–205

    Article  PubMed  CAS  Google Scholar 

  24. Bramsen JB, Laursen MB, Nielsen AF, et al. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res 2009 May; 37(9): 2867–81

    Article  PubMed  CAS  Google Scholar 

  25. Behlke MA. Chemical modification of siRNAs for in vivo use. Oligonucleotides 2008 Dec; 18(4): 305–19

    Article  PubMed  CAS  Google Scholar 

  26. Braasch DA, Jensen S, Liu Y, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 2003 Jul 8; 42(26): 7967–75

    Article  PubMed  CAS  Google Scholar 

  27. Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA 2003 Sep; 9(9): 1034–48

    Article  PubMed  CAS  Google Scholar 

  28. Li ZY, Mao H, Kallick DA, et al. The effects of thiophosphate substitutions on native siRNA gene silencing. Biochem Biophys Res Commun 2005 Apr 15; 329(3): 1026–30

    Article  PubMed  CAS  Google Scholar 

  29. Choung S, Kim YJ, Kim S, et al. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun 2006 Apr 14; 342(3): 919–27

    Article  PubMed  CAS  Google Scholar 

  30. Hall AH, Wan J, Shaughnessy EE, et al. RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res 2004 Nov 15; 32(20): 5991–6000

    Article  PubMed  CAS  Google Scholar 

  31. Hall AH, Wan J, Spesock A, et al. High potency silencing by single-stranded boranophosphate siRNA. Nucleic Acids Res 2006 May 22; 34(9): 2773–81

    Article  PubMed  CAS  Google Scholar 

  32. Levin AA. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta 1999 Dec 10; 1489(1): 69–84

    Article  PubMed  CAS  Google Scholar 

  33. Braasch DA, Paroo Z, Constantinescu A, et al. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg Med Chem Lett 2004 Mar 8; 14(5): 1139–43

    Article  PubMed  CAS  Google Scholar 

  34. Hoerter JA, Walter NG. Chemical modification resolves the asymmetry of siRNA strand degradation in human blood serum. RNA 2007 Nov; 13(11): 1887–93

    Article  PubMed  CAS  Google Scholar 

  35. Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003 Jun 1; 31(11): 2705–16

    Article  PubMed  CAS  Google Scholar 

  36. Allerson CR, Sioufi N, Jarres R, et al. Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem 2005 Feb 24; 48(4): 901–4

    Article  PubMed  CAS  Google Scholar 

  37. Prakash TP, Allerson CR, Dande P, et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem 2005 Jun 30; 48(13): 4247–53

    Article  PubMed  CAS  Google Scholar 

  38. Layzer JM, McCaffrey AP, Tanner AK, et al. In vivo activity of nuclease-resistant siRNAs. RNA 2004 May; 10(5): 766–71

    Article  PubMed  CAS  Google Scholar 

  39. Morrissey DV, Blanchard K, Shaw L, et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 2005 Jun; 41(6): 1349–56

    Article  PubMed  CAS  Google Scholar 

  40. Grünweller A, Wyszko E, Bieber B, et al. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 2003 Jun 15; 31(12): 3185–93

    Article  PubMed  Google Scholar 

  41. Elmén J, Thonberg H, Ljungberg K, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 2005 Jan 14; 33(1): 439–47

    Article  PubMed  CAS  Google Scholar 

  42. Mook OR, Baas F, de Wissel MB, et al. Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 2007 Mar; 6(3): 833–43

    Article  PubMed  CAS  Google Scholar 

  43. Dowler T, Bergeron D, Tedeschi AL, et al. Improvements in siRNA properties mediated by 20-deoxy-2′-fluoro-beta-D-arabinonucleic acid (FANA). Nucleic Acids Res 2006 Mar 22; 34(6): 1669–75

    Article  PubMed  CAS  Google Scholar 

  44. Gao S, Dagnaes-Hansen F, Nielsen EJ, et al. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther 2009 Jul; 17(7): 1225–33

    Article  PubMed  CAS  Google Scholar 

  45. Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999 Jul; 6(7): 1258–66

    Article  PubMed  CAS  Google Scholar 

  46. Zhang G, Budker V, Wolff J. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999 Jul 1; 10(10): 1735–7

    Article  PubMed  CAS  Google Scholar 

  47. Suda T, Suda K, Liu D. Computer-assisted hydrodynamic gene delivery. Mol Ther 2008 Jun; 16(6): 1098–104

    Article  PubMed  CAS  Google Scholar 

  48. Liu F, Huang L. Noninvasive gene delivery to the liver by mechanical massage. Hepatology 2002 Jun; 35(6): 1314–9

    Article  PubMed  Google Scholar 

  49. Liu F, Lei J, Vollmer R, et al. Mechanism of liver gene transfer by mechanical massage. Mol Ther 2004 Mar; 9(3): 452–7

    Article  PubMed  CAS  Google Scholar 

  50. Mukai H, Kawakami S, Hashida M. Renal press-mediated transfection method for plasmid DNA and siRNA to the kidney. Biochem Biophys Res Commun 2008 Aug 1; 372(3): 383–7

    Article  PubMed  CAS  Google Scholar 

  51. Mukai H, Kawakami S, Kamiya Y, et al. Tissue press-mediated transfection method: transfection to the spleen as a novel target, controlling the tissue press and evaluation of the pro-inflammatory cytokine production. Hum Gene Ther 2009 Oct; 20(10): 1157–67

    Article  PubMed  CAS  Google Scholar 

  52. Coster HG. A quantitative analysis of the voltage-current relationships of fixed charge membranes and the associated property of “punch-through”. Biophys J 1965 Sep; 5(5): 669–86

    Article  PubMed  CAS  Google Scholar 

  53. Kong XC, Barzaghi P, Ruegg MA. Inhibition of synapse assembly in mam-malian muscle in vivo by RNA interference. EMBO Rep 2004 Feb; 5(2): 183–8

    Article  PubMed  CAS  Google Scholar 

  54. Golzio M, Mazzolini L, Moller P, et al. Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery. Gene Ther 2005 Feb; 12(3): 246–51

    Article  PubMed  CAS  Google Scholar 

  55. Matsuda T, Cepko CL. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci U S A 2004 Jan 6; 101(1): 16–22

    Article  PubMed  CAS  Google Scholar 

  56. Schiffelers RM, Xu J, Storm G, et al. Effects of treatment with small interfering RNA on joint inflammation in mice with collagen-induced arthritis. Arthritis Rheum 2005 Apr; 52(4): 1314–8

    Article  PubMed  CAS  Google Scholar 

  57. Takahashi Y, Nishikawa M, Kobayashi N, et al. Gene silencing in primary and metastatic tumors by small interfering RNA delivery in mice: quantitative analysis using melanoma cells expressing firefly and sea pansy luciferases. J Control Release 2005 Jul 20; 105(3): 332–43

    Article  PubMed  CAS  Google Scholar 

  58. Takei Y, Nemoto T, Mu P, et al. In vivo silencing of a molecular target by short interfering RNA electroporation: tumor vascularization correlates to delivery efficiency. Mol Cancer Ther 2008 Jan; 7(1): 211–21

    Article  PubMed  CAS  Google Scholar 

  59. Guignet EG, Meyer T. Suspended-drop electroporation for high-throughput delivery of biomolecules into cells. Nat Methods 2008 May; 5(5): 393–5

    Article  PubMed  CAS  Google Scholar 

  60. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003 Oct 17; 115(2): 209–16

    Article  PubMed  CAS  Google Scholar 

  61. Schwarz DS, Hutvágner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003 Oct 17; 115(2): 199–208

    Article  PubMed  CAS  Google Scholar 

  62. Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004 Nov 11; 432(7014): 173–8

    Article  PubMed  CAS  Google Scholar 

  63. McNamara 2nd JO, Andrechek ER, Wang Y, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006 Aug; 24(8): 1005–15

    Article  PubMed  CAS  Google Scholar 

  64. Zhou J, Li H, Li S, et al. Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 2008 Aug; 16(8): 1481–9

    Article  PubMed  CAS  Google Scholar 

  65. Muratovska A, Eccles MR. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett 2004 Jan 30; 558(1–3): 63–8

    Article  PubMed  CAS  Google Scholar 

  66. Davidson TJ, Harel S, Arboleda VA, et al. Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J Neurosci 2004 Nov 10; 24(45): 10040–6

    Article  PubMed  CAS  Google Scholar 

  67. Moschos SA, Jones SW, Perry MM, et al. Lung delivery studies using siRNA conjugated to TAT(48–60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem 2007 Sep–Oct; 18(5): 1450–9

    Article  PubMed  CAS  Google Scholar 

  68. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986 Dec; 46(12 Pt 1): 6387–92

    PubMed  CAS  Google Scholar 

  69. Sonoke S, Ueda T, Fujiwara K, et al. Tumor regression in mice by delivery of Bcl-2 small interfering RNA with pegylated cationic liposomes. Cancer Res 2008 Nov 1; 68(21): 8843–51

    Article  PubMed  CAS  Google Scholar 

  70. Kawakami S, Higuchi Y, Hashida M. Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J Pharm Sci 2008 Feb; 97(2): 726–45

    Article  PubMed  CAS  Google Scholar 

  71. Peer D, Park EJ, Morishita Y, et al. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 2008 Feb 1; 319(5863): 627–30

    Article  PubMed  CAS  Google Scholar 

  72. Zheng X, Vladau C, Zhang X, et al. A novel in vivo siRNA delivery system specifically targeting dendritic cells and silencing CD40 genes for immunomodulation. Blood 2009 Mar 19; 113(12): 2646–54

    Article  PubMed  CAS  Google Scholar 

  73. Sato Y, Murase K, Kato J, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 2008 Apr; 26(4): 431–42

    Article  PubMed  CAS  Google Scholar 

  74. Kim SI, Shin D, Choi TH, et al. Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol Ther 2007 Jun; 15(6): 1145–52

    PubMed  CAS  Google Scholar 

  75. Sato A, Takagi M, Shimamoto A, et al. Small interfering RNA delivery to the liver by intravenous administration of galactosylated cationic liposomes in mice. Biomaterials 2007 Mar; 28(7): 1434–42

    Article  PubMed  CAS  Google Scholar 

  76. Akinc A, Zumbuehl A, Goldberg M, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 2008 May; 26(5): 561–9

    Article  PubMed  CAS  Google Scholar 

  77. Akinc A, Goldberg M, Qin J, et al. Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol Ther 2009 May; 17(5): 872–9

    Article  PubMed  CAS  Google Scholar 

  78. Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2005 Aug; 23(8): 1002–7

    Article  PubMed  CAS  Google Scholar 

  79. Judge AD, Robbins M, Tavakoli I, et al. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Invest 2009 Mar; 119(3): 661–73

    Article  PubMed  CAS  Google Scholar 

  80. Kinoshita M, Hynynen K. A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound. Biochem Biophys Res Commun 2005 Sep 23; 335(2): 393–9

    Article  PubMed  CAS  Google Scholar 

  81. Kinoshita M, Hynynen K. Key factors that affect sonoporation efficiency in in vitro settings: the importance of standing wave in sonoporation. Biochem Biophys Res Commun 2007 Aug 10; 359(4): 860–5

    Article  PubMed  CAS  Google Scholar 

  82. Otani K, Yamahara K, Ohnishi S, et al. Nonviral delivery of siRNA into mesenchymal stem cells by a combination of ultrasound and microbubbles. J Control Release 2009 Jan 19; 133(2): 146–53

    Article  PubMed  CAS  Google Scholar 

  83. Negishi Y, Endo Y, Fukuyama T, et al. Delivery of siRNA into the cytoplasm by liposomal bubbles and ultrasound. J Control Release 2008 Dec 8; 132(2): 124–30

    Article  PubMed  CAS  Google Scholar 

  84. MacDiarmid JA, Mugridge NB, Weiss JC, et al. Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell 2007 May; 11(5): 431–45

    Article  PubMed  CAS  Google Scholar 

  85. MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, et al. Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat Biotechnol 2009 Jul; 27(7): 643–51

    Article  PubMed  CAS  Google Scholar 

  86. Minakuchi Y, Takeshita F, Kosaka N, et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res 2004 Jul 22; 32(13): e109

    Article  PubMed  Google Scholar 

  87. Takeshita F, Minakuchi Y, Nagahara S, et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci U S A 2005 Aug 23; 102(34): 12177–82

    Article  PubMed  CAS  Google Scholar 

  88. Kinouchi N, Ohsawa Y, Ishimaru N, et al. Atelocollagen-mediated local and systemic applications of myostatin-targeting siRNA increase skeletal muscle mass. Gene Ther 2008 Aug; 15(15): 1126–30

    Article  PubMed  CAS  Google Scholar 

  89. Howard KA, Paludan SR, Behlke MA, et al. Chitosan/siRNA nanoparticle-mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in amurine arthritis model. Mol Ther 2009 Jan; 17(1): 162–8

    Article  PubMed  CAS  Google Scholar 

  90. Kawakami S, Hashida M. Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab Pharmacokinet 2007 Jun; 22(3): 142–51

    Article  PubMed  CAS  Google Scholar 

  91. Akhtar S, Benter I. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev 2007 Mar 30; 59(2–3): 164–82

    Article  PubMed  CAS  Google Scholar 

  92. Gao K, Huang L. Nonviral methods for siRNA delivery. Mol Pharm 2009 May–Jun;6(3): 651–8

    Article  PubMed  CAS  Google Scholar 

  93. Akinc A, Thomas M, Klibanov AM, et al. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 2005 May; 7(5): 657–63

    Article  PubMed  CAS  Google Scholar 

  94. Saito Y, Higuchi Y, Kawakami S, et al. Immunostimulatory characteristics induced by linear polyethyleneimine/plasmid DNA complexes in cultured macrophages. Hum Gene Ther 2009 Feb; 20(2): 137–45

    Article  PubMed  CAS  Google Scholar 

  95. Kim YH, Park JH, Lee M, et al. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J Control Release 2005 Mar 2; 103(1): 209–19

    Article  PubMed  CAS  Google Scholar 

  96. Woodrow KA, Cu Y, Booth CJ, et al. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater 2009 Jun; 8(6): 526–33

    Article  PubMed  CAS  Google Scholar 

  97. Vandenbroucke RE, De Geest BG, Bonné S, et al. Prolonged gene silencing in hepatoma cells and primary hepatocytes after small interfering RNA delivery with biodegradable poly(beta-amino esters). J Gene Med 2008 Jul; 10(7): 783–94

    Article  PubMed  CAS  Google Scholar 

  98. Aouadi M, Tesz GJ, Nicoloro SM, et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009 Apr 30; 458(7242): 1180–4

    Article  PubMed  CAS  Google Scholar 

  99. Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 2009 May–Jun; 6(3): 659–68

    Article  PubMed  CAS  Google Scholar 

  100. Eguchi A, Meade BR, Chang YC, et al. Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 2009 Jun; 27(6): 567–71

    Article  PubMed  CAS  Google Scholar 

  101. Crombez L, Aldrian-Herrada G, Konate K, et al. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther 2009 Jan; 17(1): 95–103

    Article  PubMed  CAS  Google Scholar 

  102. Crombez L, Morris MC, Dufort S, et al. Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res 2009 Aug; 37(14): 4559–69

    Article  PubMed  CAS  Google Scholar 

  103. Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007 Jul 5; 448(7149): 39–43

    Article  PubMed  CAS  Google Scholar 

  104. Kumar P, Ban HS, Kim SS, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008 Aug 22; 134(4): 577–86

    Article  PubMed  CAS  Google Scholar 

  105. Kam NW, Liu Z, Dai H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 2005 Sep 14; 127(36): 12492–3

    Article  PubMed  CAS  Google Scholar 

  106. Liu Z, Winters M, Holodniy M, et al. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed Engl 2007; 46(12): 2023–7

    Article  PubMed  CAS  Google Scholar 

  107. Wang X, Ren J, Qu X. Targeted RNA interference of cyclin A2 mediated by functionalized single-walled carbon nanotubes induces proliferation arrest and apoptosis in chronic myelogenous leukemia K562 cells. Chem Med Chem 2008 Jun; 3(6): 940–5

    PubMed  CAS  Google Scholar 

  108. Zhang Z, Yang X, Zhang Y, et al. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 2006 Aug 15

  109. Podesta JE, Al-Jamal KT, Herrero MA, et al. Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small 2009 May; 5(10): 1176–85

    Article  PubMed  CAS  Google Scholar 

  110. Herrero MA, Toma FM, Al-Jamal KT, et al. Synthesis and characterization of a carbon nanotube-dendron series for efficient siRNA delivery. J Am Chem Soc 2009 Jul 22; 131(28): 9843–8

    Article  PubMed  CAS  Google Scholar 

  111. Bonoiu AC, Mahajan SD, Ding H, et al. Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc Natl Acad Sci U S A 2009 Apr 7; 106(14): 5546–50

    Article  PubMed  CAS  Google Scholar 

  112. Elbakry A, Zaky A, Liebl R, et al. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett 2009 May; 9(5): 2059–64

    Article  PubMed  CAS  Google Scholar 

  113. Giljohann DA, Seferos DS, Prigodich AE, et al. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 2009 Feb 18; 131(6): 2072–3

    Article  PubMed  CAS  Google Scholar 

  114. Lee JS, Green JJ, Love KT, et al. Gold, poly(beta-amino ester) nanoparticles for small interfering RNA delivery. Nano Lett 2009 Jun; 9(6): 2402–6

    Article  PubMed  CAS  Google Scholar 

  115. Braun GB, Pallaoro A, Wu G, et al. Laser-activated gene silencing via gold nanoshell-siRNA conjugates. ACS Nano. Epub 2009 Jun 15

Download references

Acknowledgments

The authors thank all colleagues who have conducted work in this rapidly changing field, and apologize to the colleagues whose work in the field was not directly cited in this review because of space limitations and the highly selective topic.

No funding has been used in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriko Higuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, Y., Kawakami, S. & Hashida, M. Strategies for In Vivo Delivery of siRNAs. BioDrugs 24, 195–205 (2010). https://doi.org/10.2165/11534450-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11534450-000000000-00000

Keywords

Navigation