Skip to main content
Log in

The Role of Non-Nucleoside Reverse Transcriptase Inhibitors in Children with HIV-1 Infection

  • Review Article
  • Published:
Paediatric Drugs Aims and scope Submit manuscript

Abstract

Over 1.4 million of the worlds’ children are infected with HIV-1, mostly acquired in the perinatal period. Antiviral therapeutic options for children with HIV-1 infection have lagged behind those for infected adults. However, we now know that prevention of perinatal HIV-1 transmission to children is possible and that combination therapy for the management of infected children is efficacious. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are developing a more prominent role in combination therapy regimens, particularly as alternatives to protease inhibitors. They also have a role in preventing perinatal transmission, where it has been shown that only 2 doses of the NNRTI nevirapine can significantly reduce mother-to-child transmission of HIV-1. This has major therapeutic implications, particularly in areas where combination therapy is not readily available.

Palatable paediatric formulations of NNRTIs are available or are being developed. Whilst pharmacokinetic data regarding the use of antiretrovirals in children remain scarce, published clinical trials have demonstrated the efficacy of NNRTIs when used as part of combination regimens in the management of HIV-1 infected children. The toxicity profile of NNRTIs is relatively favourable; however, severe skin rash, hepatotoxicity and central nervous system adverse effects with various NNRTIs can lead to treatment cessation. The development of class resistance with single step mutations in the reverse transcriptase gene remains a major therapeutic problem with this class of antiretrovirals.

Novel NNRTIs under development are of interest either because of improved pharmacodynamics, reduced toxicity profiles or because of action against NNRTI-mutation containing resistant virus. There are no data available yet on the use of these drugs in the paediatric population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII

Similar content being viewed by others

References

  1. UNAIDS Joint United Nations Programme on HIV/AIDS. AIDS epidemic update. Geneva: UNAIDS, 2000 Dec

    Google Scholar 

  2. Davison K, Nicholl A. The changing global epidemiology of HIV infection and AIDS. Commun Dis Rep CDR Rev 1997; 7: R134–86

    PubMed  CAS  Google Scholar 

  3. Working Group on Mother-To-Infant Transmission of HIV. Rates of mother-to-infant transmission of HIV-1 in Africa, America, and Europe: results from 13 perinatal studies. J Acquir Immun Defic Syndr Hum Retrovirol 1995; 8: 506–10

    Article  Google Scholar 

  4. Bertolli J, St Louis ME, Simonds RJ, et al. Estimating the timing of mother-to-child transmission of human immunodeficiency virus in the breastfeeding population in Kinshasa, Zaire. J Infect Dis 1996; 174: 722–6

    Article  PubMed  CAS  Google Scholar 

  5. Dunn DT, Brandt CD, Krivine A, et al. The sensitivity of HIV-1 DNA polymerase chain reaction in the neonatal period and the relative contributions of intra-uterine and intra-partum transmission. AIDS 1995; 9: F7–11

    Article  PubMed  CAS  Google Scholar 

  6. Kuhn L, Abrams EJ, Matheson PB, et al. Timing of maternal-infant transmission: associations between intrapartum factors and early polymerase chain reaction results. AIDS 1997; 11: 429–35

    Article  PubMed  CAS  Google Scholar 

  7. Hammett T, Lindegren ML, Byers R, et al. Progress towards elimination of perinatal HIV infection in the United States [abstract no. MoOrC239]. XIII International AIDS Conference; 2000 Jul 9–14: Durban

  8. Mofensen LM, Lambert JS, Stiehm ER, et al. Risk factors for perinatal transmission of HIV-1 in women treated with zidovudine. PACTG 185. N Engl J Med 1999; 341: 385–93

    Article  Google Scholar 

  9. Garcia PM, Kalish LA, Pitt J, et al. Maternal levels of plasma human immunodeficiency virus type 1 RNA and the risk of perinatal transmission. Women and Infants Transmission Study Group. N Engl J Med 1999; 341: 394–402

    Article  PubMed  CAS  Google Scholar 

  10. Van Dyke BB, Korber BT, Popek E, et al. The ariel project: a prospective cohort study of maternal-child transmission of human immunodeficiency virus type 1 in the era of maternal antiretroviral therapy. J Infect Dis 1999; 179: 319–28

    Article  PubMed  Google Scholar 

  11. Rouzioux C, Costagliola D, Burgard M, et al., and the HIV Infection in Newborns French Collabarative Study Group. Estimated timing of mother-to-child human immunodeficiency virus type 1 (HIV-1) transmission by use of a Marcov model. Am J Epidemiol 1995; 142: 1330–7

    PubMed  CAS  Google Scholar 

  12. Kalish LA, Pitt J, Lew J, et al. Defining the time of fetal or perinatal acquisition of human immunodeficiency virus type 1 on the basis of age at first positive culture. J Infect Dis 1997; 175: 712–5

    Article  PubMed  CAS  Google Scholar 

  13. Dunn DT, Newell ML, Ades AE, et al. Risk of human immunodeficiency virus type 1 transmission through breastfeeding. Lancet 1992; 340: 585–8

    Article  PubMed  CAS  Google Scholar 

  14. Connor EM, Sperling RS, Gelber R, et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. N Engl J Med 1994; 331: 1173–80

    Article  PubMed  CAS  Google Scholar 

  15. Bryson Y. Perinatal HIV-1 transmission: recent advances and therapeutic interventions. AIDS 1996; 10Suppl. 3: S33–42

    PubMed  Google Scholar 

  16. Mayaux MJ, Teglas JP, Mandelbrot L, et al. Acceptability and impact of zidovudine for prevention of mother-to-child human immunodeficiency virus-1 transmission in France. J Pediatr 1997; 131: 857–62

    Article  PubMed  CAS  Google Scholar 

  17. Fiscus SA, Adimora AA, Schoenbach VJ, et al. Perinatal HIV infection and the effect of zidovudine therapy on transmission in rural and urban counties. JAMA 1996; 275: 1483–8

    Article  PubMed  CAS  Google Scholar 

  18. Schaffer N, Chuachoowong R, Mock PA, et al. Short-course zidovudine for perinatal HIV-1 transmission in Bangkok, Thailand: a randomised controlled trial. Lancet 1999; 353: 773–80

    Article  Google Scholar 

  19. Wiktor SZ, Ekpini E, Karon JM, et al. Short-course oral zidovudine for prevention of mother-to-child transmission of HIV-1 in Abidjan, Côte d’Ivoire: a randomised trial. Lancet 1999; 353: 781–5

    Article  PubMed  CAS  Google Scholar 

  20. Dabis F, Msellati P, Meda N, et al. Six month efficacy, tolerance, and acceptability of a short regimen of oral zidovudine to reduce vertical transmission of HIV in breastfed children in Côte d’Ivoire and Burkina Faso: a double-blind, placebo-controlled multicentre trial. Lancet 1999; 353: 786–92

    Article  PubMed  CAS  Google Scholar 

  21. Gray G. The PETRA study: early and late efficacy of three short ZDV/3TC combination regimens to prevent mother-to-child transmission of HIV-1 [abstract no. LbOr5]. PETRA Trial Management Committee. XIII International AIDS Conference; 2000 Jul 9–14: Durban

  22. Gray G, McIntyre J, Jivkov B, et al. Preliminary efficacy, safety, tolerability and pharmacokinetics of short course regimens of nucleoside analogues for the prevention of mother-to-child transmission of HIV [abstract no. TuOrB355]. XIII International AIDS Conference; 2000 Jul 9–14: Durban

  23. Moodley D, Mclntyre J. Evaluation of safety and efficacy of two simple regimens for the prevention of mother to child transmission (MTCT) of HIV infection: nevirapine vs lami-vudine and zidovudine used in a randomised clinical trial (the SAINT study) [abstract no. TuOrB356]. SAINT Study Team. XIII International AIDS Conference; 2000 Jul 9–14: Durban

  24. The International Perinatal HIV Group. The mode of delivery and the risk of vertical transmission of human immunodeficiency virus type 1: a meta-analysis of 15 prospective cohort studies. N Engl J Med 1999; 340: 977–87

    Article  Google Scholar 

  25. The European Mode of Delivery Collaboration. Elective cae-sarean section versus vaginal delivery in prevention of vertical HIV-1 transmission: a randomised clinical trial. Lancet 1999; 353: 1035–9

    Article  Google Scholar 

  26. Bulterys M, Chao A, Dushimana A, et al. Fatal complications after Caesarian section in HIV-infected women. AIDS 1996; 10: 923–4

    Article  PubMed  CAS  Google Scholar 

  27. Semprini AE, Castagni C, Ravizza M, et al. The incidence of complications after Caesarian section in 156 HIV-positive women. AIDS 1995; 9: 913–7

    Article  PubMed  CAS  Google Scholar 

  28. Cooper ER, Charurat M, Burns DN, et al. Trends in antiretrovi-ral therapy and mother-infant transmission of HIV. The women and infants transmission study group. J Acquir Immune Defic Syndr 2000; 24: 45–7

    PubMed  CAS  Google Scholar 

  29. European Collaborative Study and the Swiss Mother and Child HIV Cohort Study. Combination of antiretroviral therapy and duration of pregnancy. AIDS 2000; 14: 2913–20

    Article  Google Scholar 

  30. Coutsoudis A, Pulay K, Spooner E, et al. Influence of infant-feeding patterns on early mother- to-child transmission of HIV-1 in Durban, South Africa: a prospective cohort study. Lancet 1999; 354: 471–6

    Article  PubMed  CAS  Google Scholar 

  31. Nduati R, John G, Mbori-Ngacha D, et al. Effect of breastfeeding and formula feeding on transmission of HIV-1. JAMA 2000; 283: 1167–74

    Article  PubMed  CAS  Google Scholar 

  32. Jeffery BS, Mercer KG. Pretoria pasteurisation: a potential method for the reduction of postnatal mother to child transmission of the human immunodeficiency virus. J Trop Pediatr 2000; 46: 219–23

    Article  PubMed  CAS  Google Scholar 

  33. Joergensen A. Pasteurisation of HIV contaminated breast milk [abstract no. Lb Pp 122]. XIII International AIDS Conference; 2000 Jul 9–14: Durban

  34. Public Health Service Task Force. Recommendations for use of antiretroviral drugs in pregnant HIV-1-infected women for maternal health and interventions to reduce perinatal HIV-1 transmission in the United States. HIV/AIDS Treatment Information Service: treatment guidelines [online]. Available from URL: http://www.hivatis.org [Accessed 2001 Aug 30]

  35. Ioannidis JPA, Abrams EJ, Ammann A, et al. Perinatal transmission of human immunodeficiency virus type-1 by pregnant women with RNA virus loads <1000 copies/ml. J Infect Dis 2001; 183: 539–45

    Article  PubMed  CAS  Google Scholar 

  36. Blanche S, Tardieu M, Rustin P, et al. Persistant mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. Lancet 1999; 354: 1084–9

    Article  PubMed  CAS  Google Scholar 

  37. Mofenson LM. Perinatal exposure to zidovudine: benefits and risks. N Engl J Med 2000; 343: 803–5

    Article  PubMed  CAS  Google Scholar 

  38. Lipshultz SE, Easley KA, Orav EJ, et al. Absence of cardiac toxicity of zidovudine in children. N Engl J Med 2000; 343: 759–66

    Article  PubMed  CAS  Google Scholar 

  39. Cunningham CK, Britto P, Gelber R, et al. Genotypic resistance analysis in women participating in PA CTG 316 with HIV-1 RNA <400 copies/mL [abstract no. 712]. 8th Conference on Retroviruses and Opportunistic Infections; 2001 Feb 4–8; Chicago (IL)

  40. Jackson JB, Becker-Pergola G, Guay L, et al. Identification of the K103N resistance mutation in Ugandan women receiving nevirapine to prevent HIV-1 vertical transmission. AIDS 2000; 14: F111–5

    Article  PubMed  CAS  Google Scholar 

  41. Health care provider important drug warning. New York: Bristol-Myers Squibb Pharmaceuticals; 2001 Jan 15

  42. Shearer WT, Quinn TC, LaRussa P, et al. Viral load and disease progression in infants infected with human immunodeficiency virus type 1. N Engl J Med 1997; 336: 1337–42

    Article  PubMed  CAS  Google Scholar 

  43. Melvin AJ, Rodrigo AG, Mohan KM, et al. HIV-1 dynamics in children. J Acquir Immune Defic Syndr Hum Retrovirol 1999; 20: 468–73

    Article  PubMed  CAS  Google Scholar 

  44. Blanche S, Newell ML, Mayaux MJ, et al. Morbidity and mortality in European children vertically infected by HIV-1. The French Pediatric HIV Infection Study Group and European Collaborative Study. J Acquir Immune Def Hum Virol 1997; 14: 442–50

    Article  CAS  Google Scholar 

  45. Spira R, Lepage P, Msellati P, et al. Natural history of human immunodeficiency virus type 1 infection in children: a five-year prospective study in Rwanda. Mother-to-Child HIV-1 Transmission Study Group. Pediatrics 1999; 104: E56

    Article  PubMed  CAS  Google Scholar 

  46. Diaz C, Hanson C, Cooper ER, et al. Disease progression in a cohort of infants with vertically acquired HIV infection observed from birth. The Women and Infants Transmission Study (WITS). J Acquir Immune Defic Syndr Hum Retrovirol 1998; 18: 221–8

    Article  PubMed  CAS  Google Scholar 

  47. Valentine ME, Jackson CR, Vavro C, et al. Evaluation of surrogate markers and clinical outcomes in two-year follow-up of eighty-six human immunodeficiency virus-infected patients. Pediatr Infect Dis J 1998; 17: 18–23

    Article  PubMed  CAS  Google Scholar 

  48. Palumbo PE, Raskino C, Fiscus S, et al. Predictive value of quantitative plasma HIV RNA and CD4+ lymphocyte count in HIV-infected infants and children. JAMA 1998; 279: 756–61

    Article  PubMed  CAS  Google Scholar 

  49. Kalish LA, Mclntosh K, Read JS, et al. Evaluation of human immunodeficiency virus type 1 load, CD4 T-cell level and clinical class as time-fixed and time-varying markers of disease progression in HIV-1 infected children. J Infect Dis 1999; 180: 1514–20

    Article  PubMed  CAS  Google Scholar 

  50. Kuhn L, Abrams EJ, Weedon J, et al. Disease progression and early viral dynamics in human immunodeficiency virus-infected children exposed to zidovudine during prenatal and perinatal periods. J Infect Dis. 2000; 182: 104–11

    Article  PubMed  CAS  Google Scholar 

  51. Luzuriaga K, Sullivan JL. Prevention and treatment of pediatric HIV infection. JAMA 1998; 280: 17–8

    Article  PubMed  CAS  Google Scholar 

  52. Sleasman JW, Nelson RP, Goodenow MM, et al. Immuno-reconstitution after retroviral therapy in children with HIV infection involves multi-lymphocyte lineages. J Pediatr 1999; 134: 597–606

    Article  PubMed  CAS  Google Scholar 

  53. Vigano A, Clerici M, Bricalli D, et al. Immune reconstitution and the role of the thymus during potent antiretroviral therapy in vertically HIV-infected children [abstract 12247]. 12th World AIDS Conference; 1998 Jun 28–Jul 3; Geneva

  54. Spiegel HM, Chandwani R, Sheehy ME, et al. The impact of early initiation of highly active antiretroviral therapy on the human immunodeficiency virus type 1-specific CD8 T cell response in children. J Infect Dis 2000; 182: 88–95

    Article  PubMed  CAS  Google Scholar 

  55. Luzuriaga K, McManus M, Catalina M, et al. Early therapy of vertical human immunodeficiency virus type 1 (HIV-1) infection: control of viral replication and absence of persistent HIV-1-specific immune responses. J Virol 2000; 74: 6984–91

    Article  PubMed  CAS  Google Scholar 

  56. Franco JM, Leon-Leal JA, Leal M, et al. CD4+ and CD8+ T lymphocyte regeneration after anti-retroviral therapy in HIV-1-infected children and adult patients. Clin Exp Immunol 2000; 119: 493–8

    Article  PubMed  CAS  Google Scholar 

  57. Vigano A, Vella S, Saresella M, et al. Early immune reconstitution after potent antiretroviral therapy in HIV-infected children correlates with the increase in thymus volume. AIDS 2000; 14: 251–61

    Article  PubMed  CAS  Google Scholar 

  58. Hartwig NG, de Groot R, Hooijkaas H, et al. Restoration of CD4+ T-cell count in HIV-1 infected children treated with highly active antiretroviral therapy (HAART) is independent of age [abstract no. 569]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17–20; Toronto

  59. Centers for Disease Control and Prevention. Guidelines for the use of antiretroviral agents in pediatric HIV infection. MMWR Morb Mortal Wkly Rep 1998; 47: RR–4

    Google Scholar 

  60. Working Group on Antiretroviral Therapy and Medical Management of HIV-infected Children. Antiretroviral therapy and medical management of pediatric HIV infection. Pediatrics 1998; 102 Suppl.: 1005–62

    Google Scholar 

  61. CTTAC Guidelines Writing Committee. Antiretroviral therapy for HIV infection in women and children: standard of care guidelines. Sydney: Alpha Biomedical Communications, 1999

    Google Scholar 

  62. Rachlis AR, Zarowny DP. Guidelines for antiretroviral therapy for HIV infection. Canadian HIV Trials Network Antiretroviral Working Group. Can Med Assoc J 1998; 158: 496–505

    CAS  Google Scholar 

  63. Feitema-Sperling C. Antiviral therapy in childhood. Zentralbl Gynakol 1999; 121: 35–6

    Google Scholar 

  64. Italian Register for HIV Infection in Children. Italian guidelines for antiretroviral therapy in children with human immunodeficiency virus-type 1 infection. Acta Paediatr 1999; 88: 228–32

    Article  Google Scholar 

  65. Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents. Centers for Disease Control and Prevention. MMWR Morb Mortal Wkly Rep 1998; 47: RR–5

    Google Scholar 

  66. Pediatric AIDS: the challenge of HIV infection in infants, children and adolescents. Pizzo PA, Wilfert CM, editors. 3rd ed. Baltimore (MD): Williams and Wilkins, 1998

    Google Scholar 

  67. Steele R. What are the special needs of adolescent patients with HIV/AIDS? Annual meeting of the American Academy of Pediatrics; 2000 Oct 28–Nov 1; Chicago (IL). Available from URL: http://www.medscape.com [Accessed 2001 Sep 3]

  68. Richman DD, Havlir D, Corbeil J, et al. Nevirapine resistance mutations of human immunodeficiency virus type-1 selected during therapy. J Virol 1994; 68: 1660–6

    PubMed  CAS  Google Scholar 

  69. Murphy R. Nonnucleoside reverse transcriptase inhibitors. AIDS Clin Care 1997; 9: 75–9

    PubMed  CAS  Google Scholar 

  70. Mellors JW, Larder BA, Schinazi RF. Mutations in the HIV-1 reverse transcriptase and protease associated with drug resistance. Intern Antiviral News 1995; 3: 8–12

    Google Scholar 

  71. Curry R, Robinson P, Hussain SA, et al. Retained effectiveness of protease inhibitor (PI) therapy (Rx) following ‘protease sparing’ nevirapine/nucleoside (nevirapine/nuc) combination therapy [abstract no. 12231]. 12th World AIDS Conference; 1998 Jun 28–Jul 3; Geneva

  72. Para M, Weinstock M. Retrospective analysis of protease inhibitor efficacy among patients failing a delavirdine regimen [abstract no. 12236]. 12th World AIDS Conference; 1998 Jun 28–Jul 3; Geneva

  73. John M, Nolan D, Mallal S. Antiretroviral therapy and the lipodystrophy syndrome. Antivir Ther 2001; 6: 9–20

    PubMed  CAS  Google Scholar 

  74. Vigano A, Sala N, Bricalli D, et al. HAART-associated bone mineral loss through increased rate of bone turnover in vertically HIV-infected children [abstract no. LB9]. 8th Conference on Retroviruses and Opportunistic Infections; 2001 Feb 4–8: Chicago (IL)

  75. Vigano A, Mora S, Bricalli D, et al. HAART-associated changes in body fat distribution and bone mineral loss are detectable in HIV-infected children even in the absence of clinical evidence of lipodystrophy [abstract no. 652]. 8th Conference on Retroviruses and Opportunistic Infections; 2001 Feb 4–8; Chicago (IL)

  76. Amaya RA, Kline MW. Antiretroviral-associated lipodystrophy syndrome in HIV-infected children [abstract no. 649]. 8th Conference on Retroviruses and Opportunistic Infections; 2001 Feb 4–8; Chicago (IL)

  77. Meneilly G, Forbes J, Peabody D, et al. Metabolic and body composition changes in HIV-infected children on antiretroviral therapy [abstract no. 650]. 8th Conference on Retroviruses and Opportunistic Infections; 2001 Feb 4–8; Chicago (IL)

  78. Van der Valk M, Reiss P, Molhuizen H, et al. Nevirapine-containing potent antiretroviral therapy results in ananti-atherogenic plasma lipid profile: results from the Atlantic trial [abstract no. 654B]. Atlantic investigators. 8th Conference on Retroviruses and Opportunistic Infections; 2001 Feb 4–8; Chicago (IL)

  79. Martinez E, Conget I, Lozano L, et al. Reversion of lipodystrophy after switching from HIV-1 protease inhibitors to nevirapine. AIDS 1999; 13: 805–10

    Article  PubMed  CAS  Google Scholar 

  80. Martinez E, Garcia-Viejo MA, Blanco JL, et al. Impact of switching from human immunodeficiency virus type 1 protease inhibitors to efavirenz in successfully treated adults with lipodystrophy. Clin Infect Dis 2000; 31: 1266–73

    Article  PubMed  CAS  Google Scholar 

  81. McComsey G, Alvarez A, Joseph J, et al. Is simplification of HAART safe in HIV-infected children? First Pediatric Switch Study [abstract no. 679]. 8th Conference on Retroviruses and Opportunistic Infections; 2001 Feb 4–8; Chicago (IL)

  82. Merciéa P, Viallarda JP, Thiébaut R, et al. Efavirenz associated breast hypertrophy in HIV infected patients. AIDS 2001; 15: 126–9

    Article  Google Scholar 

  83. Arranz Caso JA, de Miguel Prieto J, Casas E, et al. Gynecomastia without lipodystrophy syndrome in HIV-infected men treated with efavirenz. AIDS 2001; 15: 1447–8

    Article  Google Scholar 

  84. Viramune (product information). Ridgefield (CT): Boehringer Ingelheim, 2000

  85. Murphy RL, Montaner J. Nevirapine: a review of its development, pharmacological profile and potential for use. Expert Opin Invest Drugs 1996; 5: 1183–99

    Article  CAS  Google Scholar 

  86. Luzuriaga K, Bryson Y, McSherry G, et al. Pharmacokinetics, safety and activity of nevirapine in human immunodeficiency virus type 1-infected children. J Infect Dis 1996; 174: 713–21

    Article  PubMed  CAS  Google Scholar 

  87. Luzuriaga K, Bryson Y, Krogstad P, et al. Combination treatment with zidovudine, didanosine and nevirapine in infants with human immunodeficiency virus type 1 infection. N Engl J Med 1997; 336: 1343–9

    Article  PubMed  CAS  Google Scholar 

  88. Musoke P, Guay L, Bagenda D, et al. A phase I/II study of the safety and pharmacokinetics of nevirapine in HIV-1-infected pregnant Ugandan women and their neonates (HIVNET 006). AIDS 1999; 13: 479–86

    Article  PubMed  CAS  Google Scholar 

  89. Havlir D, Cheeseman SH, McLaughlin M, et al. High-dose nevirapine: safety, pharmacokinetics and antiviral effect in patients with human immunodeficiency virus infection. J Infect Dis 1995; 171: 537–45

    Article  PubMed  CAS  Google Scholar 

  90. Soriano V, Dona C, Barreiro P, et al. Is there cross-toxicity between nevirapine and efavirenz in subjects developing rash? AIDS 2000; 14: 1672–3

    Article  PubMed  CAS  Google Scholar 

  91. Clarke S, Harrington P, Barry M, et al. The tolerability of efavirenz after nevirapine-related adverse events. Clin Infect Dis 2000; 31: 806–7

    Article  PubMed  CAS  Google Scholar 

  92. The European Agency for the Evaluation of Medicinal products; London; 2000 Apr 12

  93. Piscitelli SC, Gallicano KD. Interactions among drugs for HIV and opportunistic infections. N Engl J Med 2001; 344: 984–96

    Article  PubMed  CAS  Google Scholar 

  94. Skowron G. Practical issues in co-administering NNRTIs and PIs [abstract no. WS3. 3] AIDS 1998; 12Suppl. 4: S12

    Google Scholar 

  95. Fiske WD, Benedek IH, Joshi AS, et al. Summary of pharma-cokinetic drug interaction studies with efavirenz [abstract no. 460]. 36th Annual Meeting of the Infectious Diseases Society of America; 1998 Nov 12–15; Denver (CO)

  96. Falloon J, Piscatelli S, Vogel S, et al. Combination therapy with amprenavir, abacavir, efavirenz in human immunodeficiency virus (HIV)-infected patients failing a PI regimen: pharma-cokinetic drug interactions and antiviral activity. Clin Infect Dis 2000; 30: 313–8

    Article  PubMed  CAS  Google Scholar 

  97. Wintergrast U, Engelhorn C, Kurowski M, et al. Pharmacoki-netic interaction of amprenavir in combination with efavirenz or delavirdine in HIV-infected children. AIDS 2000; 14: 1866–8

    Article  Google Scholar 

  98. Bertz R, Lam W, Hsu A, et al. Assessment of the pharmacoki-netic interactions between ABT-378/Ritonavir (ABT-378/r) and efavirenz (EFV) in healthy volunteers and in HIV + subjects [abstract no. 424]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17–20; Toronto

  99. Kaletra (product information). Chicago (IL): Abbott Laboratories, 2000

  100. Luzuriaga K, Wu H, McManus M, et al. Dynamics of human immunodeficiency virus type I replication in vertically infected infants. J Virol 1999; 73: 362–7

    PubMed  CAS  Google Scholar 

  101. Rescriptor (product information). Ann Arbor (MI): Pharmacia & Upjohn, 1998–9

  102. Demeter LM, Shafer RW, Meehan PM, et al. Delavirdine susceptibilities and associated reverse transcriptase mutations in human immunodeficiency virus type 1 isolates from patients in a phase i/ii trial of delavirdine monotherapy (ACTG 260). Antimicrob Agents Chemother 2000; 44: 794–7

    Article  PubMed  CAS  Google Scholar 

  103. Sustiva TM. Efavirenz capsules (prescribing information). Wilmington (DE); DuPont Pharmaceuticals Company, 2000 Feb

    Google Scholar 

  104. Bacheler LT, Anton E, Jeffrey S, et al. RT gene mutations associated with resistance to efavirenz. Antiviral Ther 1998; 3Suppl. 1: 15–6

    Google Scholar 

  105. Bacheler LT, Anton ED, Kudish P, et al. Human immunodeficiency virus type 1 mutations selected in patients failing efavirenz combination therapy. Antimicrob Agents Chemother 2000; 44: 2475–84

    Article  PubMed  CAS  Google Scholar 

  106. Bacheler L, Jeffrey S, Hanna G, et al. Genotypic correlates of phenotypic resistance to efavirenz in virus isolates from patients failing nonnucleoside reverse transcriptase inhibitor therapy. J Virol 2001; 75: 4999–5008

    Article  PubMed  CAS  Google Scholar 

  107. Durant J, Clevenbergh P, Halfon P, et al. Drug-resistance genotyping in HIV-1 therapy: the VIRADAPT randomised controlled trial. Lancet 1999; 353: 2195–9

    Article  PubMed  CAS  Google Scholar 

  108. Staszewski S, Morales-Ramirez J, Tashima KT, et al. Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team. N Engl J Med 1999; 34: 1865–73

    Article  Google Scholar 

  109. Moyle G. Efavirenz: practicalities, considerations and new issues. Int J Clin Prac 1999; 103 Suppl.: 29–34

    Google Scholar 

  110. Teglas JP, Quartier P, Treluyer JM, et al. Tolerance of efavirenz in children. AIDS 2001; 15: 241–3

    Article  PubMed  CAS  Google Scholar 

  111. Cadman J. Efavirenz pregnancy warning [letter]. GMHC Treat Issues 1998; 12(3): 12

    Google Scholar 

  112. Brundage RC, Fletcher CV, Fiske WD, et al. Pharmacokinetics of an efavirenz suspension in children [abstract no. 424]. 6th Conference on Retroviruses and Opportunistic Infections; 1999 Jan 31–Feb 4; Chicago (IL)

  113. De Martino M, Tovo PA, Balducci M, et al. Reduction in mortality with availability of antiretroviral therapy for children with perinatal HIV-1 infection. JAMA 2000; 284: 190–7

    Article  PubMed  Google Scholar 

  114. Gortmaker S, Hughes M, Oyomopito R, et al. Impact of introduction of protease inhibitor therapy on reduction in mortality among children and youth infected with HIV-1 [abstract no. 691]. 7th Conference on Retroviruses and Opportunistic Infections; 2000 Jan 30–Feb 2; San Francisco (CA)

  115. Zhang H, Dornadula G, Wu Y, et al. Kinetic analysis of intravir-ion reverse transcription in the blood plasma of human immunodeficiency virus type-1 infected individuals: direct assessment of resistance to reverse transcriptase inhibitors in vivo. J Virol 1996; 70: 628–34

    PubMed  CAS  Google Scholar 

  116. Guay LA, Musoke P, Fleming T, et al. Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: HIVNET 012 randomised trial. Lancet 1999; 354: 795–802

    PubMed  CAS  Google Scholar 

  117. Centers for Disease Control. Administration of zidovudine during late pregnancy and delivery to prevent perinatal transmission: Thailand, 1996–1998. MMWR Morb Mortal Wkly Rep 1998; 47: 151–4

    Google Scholar 

  118. Owor M, Deseyre M, Duefield C, et al. The one year safety and efficacy data of the HIVNET 012 trial [abstract no. LbOr1]. XIII International AIDS Conference; 2000 Jul 9–14: Durban

  119. Marseille E, Kahn JG, Mmiro F, et al. Cost effectiveness of single-dose nevirapine regimen for mothers and babies to decrease vertical HIV-1 transmission in sub-Saharan Africa. Lancet 1999; 354: 803–9

    PubMed  CAS  Google Scholar 

  120. Eshelman SH, Krogstad P, Jackson JB, et al. Analysis of human immunodeficiency virus type 1 drug resistance in children receiving nucleoside analogue reverse-transcriptase inhibitors plus nevirapine, nelfinavir, or ritonavir. Pediatric AIDS Clinical Trials Group 377). J Infect Dis 2001; 183: 1732–8

    Article  Google Scholar 

  121. Mirochnick M, Fenton J, Gagnier P, et al. Pharmacokinetics of nevirapine in human immunodeficiency virus type-1 infected pregnant women and theirneonates. Pediatric ACTG Protocol 250 team. J Infect Dis 1998; 178: 368–74

    Article  PubMed  CAS  Google Scholar 

  122. World Health Organization. Use of nevirapine to reduce mother-to-child transmission of HIV (MTCT): WHO review of reported drug resistance. Geneva: Department of Reproductive Health and Research, World Health Organization, 2000 Mar 24

    Google Scholar 

  123. Burchett SK, Carey V, Yong F, et al. Virologic activity of didanosine, zidovudine and nevirapine combinations in pediatric subjects with advanced HIV disease (ACTG 245) [abstract no. 271]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1–5; Chicago (IL)

  124. Burchett S, Sullivan J, Luzuriaga K, et al. Combinations of ddI, ZDV and NVP can reduce CSF HIV-1 viral load in pediatric patients with advanced HIV disease [abstractno. 12253]. 12th World AIDS Conference; 1998 Jun 28–Jul 3; Geneva

  125. Wiznia A, Stanley K, Krogstad P, et al. Combination nucleoside analog reverse transcriptase inhibitors) plus nevirapine, nelfinavir or ritonavir in stable antiretroviral therapy-experienced HIV-infected children: week 24 results of a randomised controlled trial. Pediatric AIDS Clinical Trials Group 377 Study Team. AIDS Res Hum Retroviruses 2000; 16: 1113–21

    Article  PubMed  CAS  Google Scholar 

  126. Eshelman SH, Krogstad P, Jackson JB, et al. Analysis of HIV-1 drug resistance in a randomised controlled trial of a combination of nucleoside analog reverse transcriptase (RT) inhibitors plus nevirapine(NVP), nelfinavir (NFV) or ritonavir (RTV) in stable antiretroviral therapy-experienced HIV-infected children [abstract no. 468]. PACTG 377 study team. 8th Conference on Retroviruses and Opportunistic Infections; 2001Feb 4–8; Chicago (IL)

  127. Verweel G, Sharland M, Lyall H, et al. UK experience of nevirapine in the treatment of HIV-1 infected children [abstract no. 759]. Seventh European Conference on Clinical Aspects and Treatment of HIV infection; 1999 Oct 23–27; Lisbon

  128. Watson D, Cox S. Treatment of HIV infected children with dela-virdine combined with protease inhibitors: drug levels, safety and virologic response [abstract no. 432]. 6th Conference on Retroviruses and Opportunistic Infections; 1999 Jan 31–Feb 4; Chicago (IL)

  129. Starr SE, Fletcher CV, Specter SA, et al. Combination therapy with efavirenz, nelfinavir and nucleoside reverse-transcriptase inhibitors in children infected with human immunodeficiency virus type-1. PACTG 382 Team. N Engl J Med 1999; 341: 1874–81

    Article  PubMed  CAS  Google Scholar 

  130. Saitoh A, Hsia K, Fenton T, et al. HIV-1 DNA persists in PBMC of children on HAART despite prolonged suppression of plasma HIV-1 RNA [abstract no. 685B]. 8th Conference on Retroviruses and Opportunistic Infections; 2001 Feb 4–8; Chicago (IL)

  131. Nunez M, Rodriguez-Rosado R, Soriano V, et al. The SENC trial: Spanish EFV versus NVP comparison trial [abstract no. 472]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17–20; Toronto

  132. Clumeck N. Choosing the best initial therapy for HIV infection. N Engl J Med 1999; 341: 1925–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Maddocks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddocks, S., Dwyer, D. The Role of Non-Nucleoside Reverse Transcriptase Inhibitors in Children with HIV-1 Infection. Paediatr Drugs 3, 681–702 (2001). https://doi.org/10.2165/00128072-200103090-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128072-200103090-00006

Keywords

Navigation